
(2) Ninda Khoirunnisa

*corresponding author
AbstractHeart disease is one of the diseases that exposes high mortality worldwide. This conventional way of predicting heart disease is usually expensive, time-consuming, and prone to human error. Early detection of heart disease is important as it helps to prevent deaths caused by this disease. Machine learning utilization as the non-invasive means for predicting heart disease is considered as a fast and affordable method to prevent the fatality of heart disease. This work aims at utilizing  Convolutional neural network (CNN)  to enhance the performance of an Arrhythmia prediction model. We have built an Arrythmia prediction model using neural networks comprising multiple convolutional layers and maxpooling layers. Our proposed model is trained using the MIT-BIH Arrhythmia dataset. The model performance has been evaluated and the model achieves 98.43% of performance accuracy
KeywordsArrhythmia; Machine Learning; Neural Networks; Convolutional Neural Networks; Accuracy
|
DOIhttps://doi.org/10.31763/sitech.v5i2.1794 |
Article metrics10.31763/sitech.v5i2.1794 Abstract views : 145 | PDF views : 25 |
Cite |
Full Text![]() |
References
[1] “Cardiovascular diseases (CVDs),†World Health Organization (WHO), 2021. [Online]. Available at: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
[2] P. Rani et al., “An Extensive Review of Machine Learning and Deep Learning Techniques on Heart Disease Classification and Prediction,†Arch. Comput. Methods Eng., vol. 31, no. 6, pp. 3331–3349, Aug. 2024, doi: 10.1007/s11831-024-10075-w.
[3] R. Kumar and P. Rani, “Comparative analysis of decision support system for heart disease,†Adv. Math. Sci. J., vol. 9, no. 6, pp. 3349–3356, 2020, doi: 10.37418/AMSJ.9.6.15.
[4] “Cardiovascular Disease is the Highest Cause of Death in Indonesia,†Dinas Kesehatan Provinsi Aceh, 2023. [Online]. Available at: https://dinkes.acehprov.go.id/detailpost/kemenkes-penyakit-kardiovaskular-penyebab-kematian-tertinggi-di-indonesia.
[5] A. Gavhane, G. Kokkula, I. Pandya, and K. Devadkar, “Prediction of Heart Disease Using Machine Learning,†in 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), Mar. 2018, pp. 1275–1278, doi: 10.1109/ICECA.2018.8474922.
[6] V. Shorewala, “Early detection of coronary heart disease using ensemble techniques,†Informatics Med. Unlocked, vol. 26, p. 100655, Jan. 2021, doi: 10.1016/j.imu.2021.100655.
[7] R. H. Laftah and K. H. K. Al-Saedi, “Explainable Ensemble Learning Models for Early Detection of Heart Disease,†J. Robot. Control, vol. 5, no. 5, pp. 1412–1421, Jul. 2024. [Online]. Available at: https://journal.umy.ac.id/index.php/jrc/article/view/22448.
[8] A. Janosi, W. Steinbrunn, M. Pfisterer, and R. Detrano, “Heart Disease - UCI Machine Learning Repository.†[Online] Available at: https://archive.ics.uci.edu/dataset/45/heart+disease.
[9] K. M. Almustafa, “Prediction of heart disease and classifiers’ sensitivity analysis,†BMC Bioinformatics, vol. 21, no. 1, p. 278, Dec. 2020, doi: 10.1186/s12859-020-03626-y.
[10] A. K. Gárate-Escamila, A. Hajjam El Hassani, and E. Andrès, “Classification models for heart disease prediction using feature selection and PCA,†Informatics Med. Unlocked, vol. 19, p. 100330, Jan. 2020, doi: 10.1016/j.imu.2020.100330.
[11] P. Ghosh et al., “Efficient Prediction of Cardiovascular Disease Using Machine Learning Algorithms With Relief and LASSO Feature Selection Techniques,†IEEE Access, vol. 9, pp. 19304–19326, 2021, doi: 10.1109/ACCESS.2021.3053759.
[12] N. L. Fitriyani, M. Syafrudin, G. Alfian, and J. Rhee, “HDPM: An Effective Heart Disease Prediction Model for a Clinical Decision Support System,†IEEE Access, vol. 8, pp. 133034–133050, 2020, doi: 10.1109/ACCESS.2020.3010511.
[13] Y. Shen, Z. Fang, Y. Gao, N. Xiong, C. Zhong, and X. Tang, “Coronary Arteries Segmentation Based on 3D FCN With Attention Gate and Level Set Function,†IEEE Access, vol. 7, pp. 42826–42835, 2019, doi: 10.1109/ACCESS.2019.2908039.
[14] U. R. Acharya, H. Fujita, S. L. Oh, Y. Hagiwara, J. H. Tan, and M. Adam, “Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals,†Inf. Sci. (Ny)., vol. 415–416, pp. 190–198, Nov. 2017, doi: 10.1016/j.ins.2017.06.027.
[15] H. Sofian, J. T. Chia Ming, S. Mohamad, and N. M. Noor, “Calcification Detection Using Deep Structured Learning in Intravascular Ultrasound Image for Coronary Artery Disease,†in 2018 2nd International Conference on BioSignal Analysis, Processing and Systems (ICBAPS), Jul. 2018, pp. 47–52, doi: 10.1109/ICBAPS.2018.8527415.
[16] J. H. Tan et al., “Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals,†Comput. Biol. Med., vol. 94, pp. 19–26, Mar. 2018, doi: 10.1016/j.compbiomed.2017.12.023.
[17] A. L. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet,†Circulation, vol. 101, no. 23, p. 34, Jun. 2000, doi: 10.1161/01.CIR.101.23.e215.
[18] G. B. Moody and R. G. Mark, “The impact of the MIT-BIH Arrhythmia Database,†IEEE Eng. Med. Biol. Mag., vol. 20, no. 3, pp. 45–50, 2001, doi: 10.1109/51.932724.
[19] Ö. Yıldırım, P. Pławiak, R.-S. Tan, and U. R. Acharya, “Arrhythmia detection using deep convolutional neural network with long duration ECG signals,†Comput. Biol. Med., vol. 102, pp. 411–420, Nov. 2018, doi: 10.1016/j.compbiomed.2018.09.009.
[20] C. Chen, Z. Hua, R. Zhang, G. Liu, and W. Wen, “Automated arrhythmia classification based on a combination network of CNN and LSTM,†Biomed. Signal Process. Control, vol. 57, p. 101819, Mar. 2020, doi: 10.1016/j.bspc.2019.101819.
[21] M. Hammad et al., “Deep Learning Models for Arrhythmia Detection in IoT Healthcare Applications,†Comput. Electr. Eng., vol. 100, p. 108011, May 2022, doi: 10.1016/j.compeleceng.2022.108011.
[22] S. K. Pandey and R. R. Janghel, “Automatic detection of arrhythmia from imbalanced ECG database using CNN model with SMOTE,†Australas. Phys. Eng. Sci. Med., vol. 42, no. 4, pp. 1129–1139, Dec. 2019, doi: 10.1007/s13246-019-00815-9.
[23] M. Salem, S. Taheri, and J.-S. Yuan, “ECG Arrhythmia Classification Using Transfer Learning from 2- Dimensional Deep CNN Features,†in 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), Oct. 2018, pp. 1–4, doi: 10.1109/BIOCAS.2018.8584808.
[24] T. Mahmud, S. A. Fattah, and M. Saquib, “DeepArrNet: An Efficient Deep CNN Architecture for Automatic Arrhythmia Detection and Classification From Denoised ECG Beats,†IEEE Access, vol. 8, pp. 104788–104800, 2020, doi: 10.1109/ACCESS.2020.2998788.
[25] U. B. Baloglu, M. Talo, O. Yildirim, R. S. Tan, and U. R. Acharya, “Classification of myocardial infarction with multi-lead ECG signals and deep CNN,†Pattern Recognit. Lett., vol. 122, pp. 23–30, May 2019, doi: 10.1016/j.patrec.2019.02.016.
[26] Z. Ebrahimi, M. Loni, M. Daneshtalab, and A. Gharehbaghi, “A review on deep learning methods for ECG arrhythmia classification,†Expert Syst. with Appl. X, vol. 7, p. 100033, Sep. 2020, doi: 10.1016/j.eswax.2020.100033.
[27] A. Y. Hannun et al., “Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network,†Nat. Med., vol. 25, no. 1, pp. 65–69, Jan. 2019, doi: 10.1038/s41591-018-0268-3.
[28] S. Nurmaini, A. Darmawahyuni, A. N. Sakti Mukti, M. N. Rachmatullah, F. Firdaus, and B. Tutuko, “Deep Learning-Based Stacked Denoising and Autoencoder for ECG Heartbeat Classification,†Electronics, vol. 9, no. 1, p. 135, Jan. 2020, doi: 10.3390/electronics9010135.
[29] M. Khalid, C. Pluempitiwiriyawej, S. Wangsiripitak, G. Murtaza, and A. A. Abdulkadhem, “The Applications of Deep Learning in ECG Classification for Disease Diagnosis: A Systematic Review and Meta-Data Analysis,†Eng. J., vol. 28, no. 8, pp. 45–77, Aug. 2024, doi: 10.4186/ej.2024.28.8.45.
[30] Y. Obeidat and A. M. Alqudah, “A Hybrid Lightweight 1D CNN-LSTM Architecture for Automated ECG Beat-Wise Classification,†Trait. du Signal, vol. 38, no. 5, pp. 1281–1291, Oct. 2021, doi: 10.18280/ts.380503.
[31] S. Nurmaini et al., “An Automated ECG Beat Classification System Using Deep Neural Networks with an Unsupervised Feature Extraction Technique,†Appl. Sci., vol. 9, no. 14, p. 2921, Jul. 2019, doi: 10.3390/app9142921.
[32] P. Rajpurkar, A. Y. Hannun, M. Haghpanahi, C. Bourn, and A. Y. Ng, “Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks,†arxiv Artif. Intell., pp. 1–9, 2017, [Online]. Available at: http://arxiv.org/abs/1707.01836.
[33] S. S. Yadav and S. M. Jadhav, “Deep convolutional neural network based medical image classification for disease diagnosis,†J. Big Data, vol. 6, no. 1, p. 113, Dec. 2019, doi: 10.1186/s40537-019-0276-2.
[34] T. Mahmud, A. R. Hossain, and S. A. Fattah, “ECGDeepNET: A Deep Learning approach for classifying ECG beats,†in 2019 7th International Conference on Robot Intelligence Technology and Applications (RiTA), Nov. 2019, pp. 32–37, doi: 10.1109/RITAPP.2019.8932850.
[35] N. Q. K. Le, T.-T. Huynh, E. K. Y. Yapp, and H.-Y. Yeh, “Identification of clathrin proteins by incorporating hyperparameter optimization in deep learning and PSSM profiles,†Comput. Methods Programs Biomed., vol. 177, pp. 81–88, Aug. 2019, doi: 10.1016/j.cmpb.2019.05.016.
[36] D. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column deep neural networks for image classification,†in 2012 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2012, pp. 3642–3649, doi: 10.1109/CVPR.2012.6248110.
[37] S. Kiranyaz, T. Ince, and M. Gabbouj, “Real-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networks,†IEEE Trans. Biomed. Eng., vol. 63, no. 3, pp. 664–675, Mar. 2016, doi: 10.1109/TBME.2015.2468589.
[38] G. Sannino and G. De Pietro, “A deep learning approach for ECG-based heartbeat classification for arrhythmia detection,†Futur. Gener. Comput. Syst., vol. 86, pp. 446–455, Sep. 2018, doi: 10.1016/j.future.2018.03.057.
[39] S. Pouyanfar et al., “A Survey on Deep Learning,†ACM Comput. Surv., vol. 51, no. 5, pp. 1–36, Sep. 2019, doi: 10.1145/3234150.
[40] B. Pourbabaee, M. J. Roshtkhari, and K. Khorasani, “Deep Convolutional Neural Networks and Learning ECG Features for Screening Paroxysmal Atrial Fibrillation Patients,†IEEE Trans. Syst. Man, Cybern. Syst., vol. 48, no. 12, pp. 2095–2104, Dec. 2018, doi: 10.1109/TSMC.2017.2705582.
[41] H. Shi, C. Qin, D. Xiao, L. Zhao, and C. Liu, “Automated heartbeat classification based on deep neural network with multiple input layers,†Knowledge-Based Syst., vol. 188, p. 105036, Jan. 2020, doi: 10.1016/j.knosys.2019.105036.
[42] A. Ullah, S. U. Rehman, S. Tu, R. M. Mehmood, Fawad, and M. Ehatisham-ul-haq, “A Hybrid Deep CNN Model for Abnormal Arrhythmia Detection Based on Cardiac ECG Signal,†Sensors, vol. 21, no. 3, p. 951, Feb. 2021, doi: 10.3390/s21030951.
[43] D. W. Feyisa, T. G. Debelee, Y. M. Ayano, S. R. Kebede, and T. F. Assore, “Lightweight Multireceptive Field CNN for 12-Lead ECG Signal Classification,†Comput. Intell. Neurosci., vol. 2022, no. 1, pp. 1–14, Aug. 2022, doi: 10.1155/2022/8413294.
[44] T. F. Gonzalez, Handbook of Approximation Algorithms and Metaheuristics. Chapman and Hall/CRC, pp. 1-1432, 2007. [Online]. Available at: https://www.taylorfrancis.com/books/9781420010749.
[45] A. R. Yuniarti, S. Rizal, and K. M. Lim, “Single heartbeat ECG authentication: a 1D-CNN framework for robust and efficient human identification,†Front. Bioeng. Biotechnol., vol. 12, p. 1398888, Jul. 2024, doi: 10.3389/fbioe.2024.1398888.
[46] W. Zhu, N. Zeng, and N. Wang, “Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS® implementations.,†Northeast SAS Users Gr. 2010 Heal. Care Life Sci., pp. 1–9, 2010, [Online]. Available at: https://www.lexjansen.com/nesug/nesug10/hl/hl07.pdf.
[47] Ö. Yıldırım, U. B. Baloglu, and U. R. Acharya, “A deep convolutional neural network model for automated identification of abnormal EEG signals,†Neural Comput. Appl., vol. 32, no. 20, pp. 15857–15868, Oct. 2020, doi: 10.1007/s00521-018-3889-z.
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Dewi Pramudi Ismi; Ninda Khoirunnisa

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
___________________________________________________________
Science in Information Technology Letters
ISSN 2722-4139
Published by Association for Scientific Computing Electrical and Engineering (ASCEE)
W : http://pubs2.ascee.org/index.php/sitech
E : sitech@ascee.org, andri@ascee.org, andri.pranolo.id@ieee.org
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0