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1. Introduction 

In recent years, Deep Learning (DL) has become more and more relevant, and its uses are 
constantly increasing [1]–[3]. DL is often equated with Machine Learning (ML), but it should be noted 
that DL is a subset of ML, and both belong to the category of Artificial Intelligence (AI) [4], [5]. ML 
is defined as an independent, evolving branch of computing algorithms that aims to replicate human 
intelligence by learning from the environment [6]. DL, on the other hand, structures algorithms into 
layers to create an artificial neural network (ANN) that can learn autonomously and make intelligent 
decisions [1], [3], [7]–[9]. A neural network uses the knowledge it has learned during training and 
applies it to unseen data to best solve a given problem, which is called the generalization ability of a 
neural network [10], [11]. The monumental characteristic of DL is the ability of the layers to learn the 
individual features from the data themselves, using a universal learning method, which makes it 
suitable for numerous applications in many domains of science, economy, and administration [12]. 
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A significant problem with traditional DL, i.e., training and assessment of a single model, is that 
the results are based on a single model, which may have limited and therefore unsatisfactory outcomes, 
which can be affected by overfitting, or generally poor performance due to over-complex data, 
unbalanced datasets, incorrect hyper-parameters, etc. [13]. The reasons for poor performance can be 
enormously multifaceted, so relying on a single model entails risks, as a model must capture multiple 
complex features alone, which can be a significant difficulty and can lead to its uselessness [13]. This 
is exactly where Ensemble Learning (EL) comes into play. EL is a way to solve DL problems by 
combining several individual models that provide independent results and aggregating them to make 
a final decision based on consensus [1], [9], [10], [14]. EL is thus an effective way to optimize 
generalization, predictive performance, and robustness through a combined model [1], [10], [11], 
[14]–[16]. 

According to Dietterich [17], there are 3 different reasons why an ensemble can perform better 
than a single learner. Firstly, there is a statistical reason that the training data does not contain enough 
information and therefore it is not possible to identify the best learner. There may be several individual 
learners who present identical results, whereby the combination of the individual learners may be a 
better choice. The second reason is that the search process of the learners may be imperfect. The 
implication is that even when there is clearly the best hypothesis, it may be difficult to achieve it 
because the execution of individual learners may lead to suboptimal hypotheses. This is where EL 
steps in, as it is considered a way to compensate for an imperfect search process. As a final reason 
Dietterich mentions that the hypothesis space sought may not contain the true objective function, 
whereas an ensemble could provide a good approximation. Dietterich nevertheless points out that 
these reasons are intuitive and not strict theoretical rules. Three years later Dietterich consolidated all 
these reasons and gave each of them an umbrella term: the statistical, computational, and 
representational aspect.  

The use of an ensemble of different DL models has, in addition to the advantages mentioned, 
potential complications such as interpretability, training complexity and high hardware performance 
requirements, which are addressed by the innovative approaches also presented in this research. 
Because of this, it is very important to have a deep understanding of the most popular EL techniques 
and how they work, to further improve DL models, which is of great importance for a more extensive 
adaptation in real world applications. In addition, there are various methods of EL in the domain of 
DL, but an in-depth up-to-date overview of the favored ways to form an ensemble is missing to the 
best of my knowledge. Exactly this gap will be filled by this work to provide a basis for future work 
in connection with EL, to build up and develop further work with profound knowledge. Furthermore, 
the work is intended to provide an up-to-date state of research on the most frequently used methods 
of EL for use in DL, to promote innovative approaches and – according to the maxim of EL – to 
achieve better results in the future through an ensemble of knowledge. 

This paper addresses the current state of research on various EL methods for use in DL, focusing 
not only on the fundamental properties of the most popular EL methods, but also on uncovering further 
optimization potential. At the beginning, a general overview of the field of DL is given. It will be 
shown what EL is needed for and which methods are used, with the most popular ones resulting from 
the research. Then, the individual EL methods relevant to this work are pointed out and described in 
detail. The result of this work is to present the individual limitations and optimization possibilities of 
EL methods, which future research in this area should systematically consider and address in order to 
further advance EL research. 

2. Method 

To filter out the relevant results from the published literature, a systematic literature research with 
the search word combination “Ensemble Learning” and “Deep Learning” was carried out in the 
literature databases IEEEXplore DL and ScienceDirect. The search resulted in a total of 93 articles 
that contain the mentioned search word combination in the title, abstract or keywords. This was 
supplemented by a forward and backward search to cover the fundamental information of the research 
topic and build a citation network. To ensure that only significant scientific papers are included in this 
search, only peer-reviewed journals and conference papers were considered. After manually reviewing 
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these 93 articles, 51 articles were classified as relevant for the object of investigation set up at the 
beginning. 

2.1. Ensemble Learning  

The idea of EL can be reflected based on a real-life situation. When a company is faced with a 
critical decision, several opinions of experts are consulted instead of relying on a single judgement 
[18]. The EL is built on the same principle: a common decision is made based on several individual 
decisions of models [9], [18], [19]. In the context of DL, an ensemble can be defined as a ML system 
composed of several individual models that learn in parallel or sequentially [1], [9], [10], [14], [17],  
[19]–[21]. The individual results are combined to find a collective solution to a specific problem [1], 
[9], [10], [14], [17], [19]–[21]. Basically, EL combines different models, also called classifiers, to 
achieve better performance than a single classifier [3], [14], [15], [21]–[23]. 

 

Fig. 1. General presentation of Ensemble Learning; in accordance with [10]. 

Within EL, there is talk of “collectivism”, since the individual classifiers learn independently of 
each other, but nevertheless work out a common solution [9]. The individual classifiers are also 
referred to as learners, and the concept of the learner is further divided into weak and strong learners 
[9], [10]. A weak learner, also called a basic learner, is a classifier within an ensemble. A strong learner 
is defined by the combination of the individual weak learners or the individual classifiers [10], [18]. 
EL can create a strong learner from several weak learners, each of whom must be slightly better than 
random assumptions, and can make accurate predictions [9], [10], [24], [25]. The individual learners 
can be similar in type, so a homogeneous integration occurs, i.e., the individual classifiers are the 
same. When learners are diverse, it is called heterogeneous integration [9]. 

There are two core factors that define “good” EL: the accuracy of the individual classifiers and the 
diversity of the classifiers [1], [3], [8], [10], [19], [23], [26]. The diversity can be further subdivided 
into data, parameter, and structural diversity [8]. Data diversity describes the individual datasets that 
are made available to the individual classifiers, which should be as different as possible from each 
other. Parameter diversity covers the variation of the classifiers’ parameters, e.g., the weights and 
activation functions. Structural diversity includes the different architectures and structures, i.e., the 
structure of each classifier [8], [19]. The diversity is of enormous importance because it is directly 
correlated with the performance of an ensemble [1], [8], [10], [19], [23]. 

A significant point of EL is the combination strategy, which is elementary for ensemble 
performance [11], [15]. The combination strategy is used to combine the different models and their 
results to derive an overall result [18]. It is important to understand in advance that there is no one 
best combination strategy, but that the performance of an ensemble depends on the domain and the 
problem [17], [18]. It can be stated that an ideal ensemble consists of classifiers with high accuracy 
that differ as much as possible [18]. The reason for this is that classifiers with different errors reduce 
the total error. If individual classifiers make identical mistakes, an ensemble will appear useless 
because the opinions of weak learners agree [18]. 

2.2. Combination Strategies 

EL algorithms, also called combination strategies, are so-called meta-algorithms that combine 
different models to create a single prediction model [3], [27]. It is important to understand that there 
is no combination strategy that consistently outperforms other combination strategies [10], [17]. Each 
combination strategy has specific advantages and aspirations that should be achieved by a 
combination. A combination should optimize the predictive performance, the ability to generalize, as 
well as the robustness of an ensemble. Therefore, it is relevant to know the individual combination 
strategies and their specifics to use them efficiently [28]. The ability to generalize includes a further 
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goal of EL, namely the reduction of possible overfitting within the ensemble model [29]–[31]. 
Overfitting implies that during the training phase, the model learns the features and specifics of the 
training dataset extremely well but performs poorly within the test data or on data never seen before 
[10], [32]. Generalizability would be poor and unreliable, although EL can reduce the possibility of 
overfitting [10], [32]. 

In the research, the following combination strategies turned out to be most relevant: ”Boosting”, 
including the extended form ”AdaBoost” [33]–[36], the bootstrap aggregation known as ”Bagging” 
[37], ”Wagging” and ”Stacking”, which follow modified and extended approaches, respectively [10], 
[18], [23] and ”Random Forests”, as well as the modern ”Snapshot” procedure  [8], [11], [18], [22], 
[38]. 

2.2.1. Boosting 

Boosting is a concept that combines weak classifiers to form a strong classifier with high 
classification power and generalization capability. In 1990, Schapire presented Boosting for the first 
time to show that if the classification performance of a weak classifier were higher than 0.5, it would 
be possible to combine several weak classifiers into one strong classifier [9], [27], [39]. The logic of 
boosting is that it is much more efficient to find several small rules of thumb for a problem than to 
find one general rule that solves a particular problem [39]. The procedure is as follows: In an ensemble, 
the first learner is formed and trained on the entire training dataset; this first learner is only effective 
in identifying the data [9], [23]. Subsequently, further ensemble members are formed incrementally, 
who are assigned the adapted training data based on the previous learner. Adapted implies that a 
greater focus is placed on misclassified data, thus focusing on the errors of the previous ensemble 
members. In addition, complex and difficult-to-identify data is given a higher sampling probability in 
this process. The next iteration focuses on the previously distributed training data. This process is 
repeated until a predefined number of iterations is reached [9], [23]. The idea behind this is to execute 
the weak learners several times with different distributed instances to obtain several classification 
results [39]. Finally, the classifications of all trained learners are aggregated, and the correct 
classification is determined by a voting procedure. The vote of a classifier with a lower accuracy is 
weighted less than the vote of a classifier with a high accuracy [23]. 

Boosting nevertheless shows difficulties. On the one hand it is necessary to know the minimum 
learning performance of a weak learner, this is difficult to do in reality [9]. On the other hand, boosting 
can lead to an excessive focus on data that is difficult to train, which can result in a poorer 
performance. In addition, the training record should be adapted so that weak learners can learn the 
information that is not included in future iterations. Another major limitation of boosting is that it can 
be applied primarily to binary classification problems, since it can assume a result of 1 or -1, so that 
multiclass problems cannot be solved, or rules for them are lacking [18]. In addition, boosting is 
particularly sensitive to outliers and noisy data, which can degrade performance depending on the 
dataset [9], [27]. 

Nowadays an extended form of boosting is usually used, namely adaptive boosting (AdaBoost) 
[33]–[36]. AdaBoost was presented by Freund and Schapire in 1997 and is still the most representative 
and well-known algorithm within the family of boosting algorithms [34]. AdaBoost builds directly on 
the Boosting algorithm presented by Schapire and extends it [34]. The adaptive approach defines that 
the algorithm can adapt the weak learners after the training [9]. As with the predecessor, an ensemble 
is built incrementally, with each newly added ensemble member being trained to highlight the 
previously misclassified training instances [33], [35]. In AdaBoost, the individual weak learners must 
also be somewhat better than pure chance [18], [36]. Compared to the original boosting, the random 
sample is replaced by weighted samples within the training. This implies that the random sample is 
replaced by a weighted sample. This change allows the focus to be placed on training instances that 
are difficult to process, making the training of a weak learner much more targeted [9]. AdaBoost 
places a lot of emphasis on data that has been incorrectly classified and weights the correctly classified 
data less, which is an effective way of enabling the later strong classifier to make the right decision 
effectively [33], [36].An advantage of AdaBoost is that it is not necessary to know the learning 
efficiency of a weak learner in advance, since the classification performance of the strong classifier is 
directly dependent on the classification performance of the weak classifiers, and it is therefore possible 
to draw conclusions about the individual integrated weak classifiers. AdaBoost is an efficient method 
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to improve the generalization capability of the resulting strong classifier and to reduce errors within a 
classification problem and solve the problem efficiently. This effective error reduction is attributed to 
adaptive re-sampling by Breiman, who suggested the following “Bagging”. Furthermore, boosting is 
not very susceptible to overfitting, but is sensitive to noise data and outliers [40], [41]. Boosting is 
popular because it adapts the training data epochally, and selectively combines them depending on the 
individual weights of the classifiers, rather than using specific fusion rules [35]. In addition, the 
algorithm effectively controls the individual integrated weak classifiers, which leads to an increase in 
execution efficiency, thus enabling real-time application. 

 

Fig. 2. Boosting diagram; in accordance with [21]. 

2.2.2. Bagging 

The acronym Bagging stands for “Bootstrap Aggregation”, which was presented by Breiman in 
1996 [20]. It is one of the most intuitive and earliest EL-algorithms, yet with a good performance [18]. 
Bagging is described in the literature as the most well-known form of EL, with the random forest 
algorithm as the poster child for bagging, which is also described in detail in this paper [14]. 

The bagging algorithm provides the ability to effectively solve classification and regression 
problems, and the bootstrap algorithm proposed by Tibshirani and Efron [42] occupies an elementary 
role. Bootstrap generates random replications of the training dataset that are assigned to the individual 
models within the ensemble [42]. Each training dataset is generated from N instances, including 
replacements, from the entire dataset M, with uniformly random selection [18], [19], [37]. The 
individual bootstrap replicas contain an average of 63.2% of the original total training dataset, with 
some instances occurring more than once [18], [33]. Bootstrap replications increase the diversity of 
classifiers, which is of immense importance [18], [19]. The individual bootstrap samples are made 
available to the classifiers for training, whereby each training dataset is different from the others [18]. 
Significantly, each of the classifier’s trains completely independently of the others and thus the 
prediction results of each model are calculated independently and in parallel [3], [18], [21], [37]. Then 
the individual results are aggregated and combined [3], [18], [37]. By combining the results, a final 
decision can be made, which determines the decision of the ensemble [18]. The decision is combined 
by different methods, the most relevant being the sum and majority vote [21]. EL methods work best 
with unstable classifiers, including bagging [18], [37]. Unstable classifiers have different 
generalization capabilities, which are also called high variance classifiers [18]. Bagging can therefore 
be a way to exploit the instability of classifiers and thus optimize the prediction accuracy. Due to this 
effectiveness with unstable models, bagging is often used in the domain of DL using neural networks 
that are considered unstable due to the random initialization of the individual weights. Bagging works 
less well with extremely simple classifiers that have a high probability of making identical predictions, 
which leads to low diversity and poor result. Effective is the random replication of the training data 
on the same cardinality of the original training data, so the size of the sample is identical to the size of 
the training dataset. Bagging mainly aims at reducing the variance within the predictions of the 
classifiers to achieve a better result than single classifiers [18]. 
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Fig. 3.  Bagging diagram; in accordance with [15] [28]. 

2.2.3. Wagging 

Wagging, which was proposed by Bauer and Kohavi [40] in 1999, is an extended form of bagging 
and is therefore called “Weighted Bagging” [43]–[45]. Wagging is like bagging except that each weak 
learner is trained on the entire training dataset, with each instance being assigned a weight 
stochastically [43]–[45]. Instead of using random bootstrap samples, weights are randomly assigned 
to form the successive training datasets, whereby the number of total samples is kept [45]. Originally, 
Bauer Kohavi used “Gaussian Noise” to vary the individual weights of the instances. This occasionally 
resulted in some instance weights being reduced to 0, removing instances from the training dataset. 
As a result, Wagging was adapted at the suggestion of Quinlan, who implemented the Poisson 
distribution, known as exponential distribution.  

As in bagging, each classifier learns independently from the others, which also enables a fast and 
parallel process [45]. The variation of the data is achieved by adjusting the weights assigned to the 
instances, thus not by the data instances themselves. Wagging now follows the same process as 
bagging, because the results of the individual weak learners trained are combined, which leads to a 
final classification [43]–[45].Weighted bagging offers an interesting possibility to change the 
influence of each sample on the weak learner, within the training, using the weights. Wagging is less 
effective than bagging in reducing errors due to the inclusion of each instance of the training dataset, 
resulting in less variation between the resulting ensemble members [23]. Nevertheless, Wagging is 
often preferred to Bagging because it interacts better with learning algorithms, which can be explained 
by the full integration of all training cases. 

 

Fig. 4.  Wagging diagram; in accordance with [15]. 
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2.2.4. Stacking 

Stacking or “Stacked Generalization” was proposed by Wolpert in 1992 [46]. Stacking is primarily 
like boosting, but unlike boosting and bagging, stacking is often used to combine different types of 
models [18], [31]. Stacking ensures the variation and generalization of the resulting ensemble through 
the different models, the basic idea being to identify training data that has not been learned correctly 
[18], [31]. During stacking, the entire training dataset is divided into M-blocks, with a distinction 
being made between training and test sets within the M-blocks [31]. In the first instance, the entire 
training dataset is divided into training and test sets, and then the training datasets are further divided 
using “cross validation” [28]. The cross-validation has the peculiarity of stacking that a combination 
takes place subsequently instead of the “winner-takes-it-all” approach [18], [31]. Cross-validation is 
used to increase computational efficiency and to avoid possible overfitting [31]. In the first place, the 
weak learners are trained. When the whole dataset is split up, a pseudo test is retained, so that the 
weak learners can be tested on data not yet seen after the training. There are different types of 
classifiers for stacking, or classifiers divided into levels. On the one hand, there are the level-0 
classifiers, which provide the input for learning a level-1 classifier through their output. The output of 
level 0 thus becomes the training dataset of level 1, whereas the level 1 classifier is also called meta 
classifier. This is helpful in case a classifier in level 0 has learned a certain domain incorrectly and 
thus consistently classifies the instances incorrectly. A level 1 classifier can possibly learn this 
behavior together with the individual behavior of other weak learners [18], [27]. Thus, the level 1 
classifier can correct the wrong classification. When combining the level 0 classifiers to a level 1 
classifier it is relevant that the algorithms have a low correlation [27]. This allows the meta-classifier 
to determine the optimal performance of the model [27]. 

 

Fig. 5.  Stacking diagram; in accordance with [15], [35]. 

2.2.5. Random Forest 

The The Random Forest (RF) is an EL method with a combination of many decision trees, which 
is mainly used for classification, regression, and possible other tasks. The RF is a variation of bagging, 
which it combines the concepts of bagging and “random subspaces” and merges them [47]. Bagging 
works with arbitrary models as weak learners, whereas RFs are ensembles of undivided classification 
or regression trees, thus distinguishing them from other DL models [18]. To train the datasets, several 
decision trees are combined into one RF as weak learners [8], [18]. Each tree within an RF is grown 
according to a random tree-building scheme and without pruning [48]. The variation of the individual 
decision trees depends directly on the randomly generated tree structure, resulting in different 
classifications [48]. For example, in classification, each individual tree in the forest decides. Then the 
votes of the trees are counted and the class with the most votes, in case of a majority vote, wins the 
vote and the problem is solved based on the vote [18], [29], [30]. 



8 
Science in Information Technology Letters 

ISSN 2722-4139 
Vol. 2., No. 2, November  2021, pp. 1-14 

  

 Marco Klaiber (A Fundamental Overview of SOTA-Ensemble…) 

This EL method is characterized by the fact that it can train datasets relatively quickly and simply, 
since the trees make their decisions independently of each other, thus enabling parallel processing 
[18], [29]. Despite the parallelism, Breiman pointed out that AdaBoost has some similarities to a RF, 
although AdaBoost functions incrementally [8], [29]. The RF, compared to boosting, is still more 
robust and faster in the training process. This is due to the stable weighting and division of the data 
into small subsets. An RF acts efficiently regarding large amounts of data, and it is possible to process 
thousands of variables without having to delete variables [18]. In addition, RF are relatively easy to 
extend to an online version [18]. 

 

Fig. 6.  Random Forest diagram; in accordance with [9], [15]. 

2.2.6. Snapshot Ensemble Learning 

The Snapshot Ensemble Learning (SEL) was introduced by Huang et al. [38] in 2017. This method 
is the most innovative of all presented methods and addresses one of the biggest problems of EL: to 
minimize the enormous computing effort of an ensemble [9], [11], [22], [38].  

The SEL promises the performance of an ensemble at the expense of a single network by 
continuously taking snapshots in local minima of the search area of a network, which are finally 
merged [11], [22], [38]. The underlying idea is to have an ensemble of different and accurate models 
emerge from a single training process [22], [38]. Diverse and precise refers to the fact that the 
individual models have a small test error and do not overlap within their incorrect classifications [38]. 
At the heart of SEL is the optimization process, which seeks out multiple local minima before 
converging to a final solution [38]. The SEL process is divided into a cyclical learning rate plan. This 
implies that the entire training process is divided into M-cycles, which results in M-various network 
models [11], [22], [38]. At the end of the training cycles, the local minima in terms of training loss 
become apparent, which in practice is achieved for example by the stochastic gradient descent (SGD) 
method with warm restarts [22], [38]. To achieve multiple local minima, a cyclical annealing schedule 
presented by Loshchilov and Hutter [49] in 2016 is used. At each arrived minimum, a snapshot of the 
model weights is taken, then the learning rate is further adjusted [22], [38]. The learning rate is first 
decreased rapidly to promote rapid convergence, and then increased once, moving the model away 
from a local minimum [22]. This process is repeated for the next local minima, which allows the cost 
of a single training session to be maintained [22]. Of relevance is the fact that the training time of the 
cyclical learning rate plan hardly differs from a normal learning rate plan [38]. After training the M-
cycles, M-model snapshots are achieved, which are used in the final ensemble [38]. The M-local 
minima allow increasingly accurate predictions to be made during training [38]. The individual 
snapshots are accurate and provide different predictions and are therefore well suited for an ensemble 
that can make a valid decision by combining them [11]. 
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Fig. 7.  Snapshot Ensemble diagram; in accordance with [20], [29]. 

2.3. Voting Procedures 

Within EL, the various weak learners are trained and their results, and thus the output, are 
combined [18]. To make the right decision based on the different results, different voting and 
averaging procedures are used to determine how the solution to the problem should be classified. The 
voting process is necessary to make a final decision [3]. [36] generalize the individual procedures and 
presented that majority voting is primarily used for classification tasks. In contrast, the normal and 
weighted average procedure is primarily used for regression tasks [36]. Two different types of voting 
algorithms are distinguished: those that adaptively change the distribution of the training set based on 
the performance of previous classifiers, as in boosting, and those that do not, as in bagging, or RF 
[40]. 

2.3.1. Sum-method 

This method selects the class that has the highest sum of all probabilities [21]. All results of 
classifiers predicting the same result are added to form a sum of the respective class. The final decision 
is made on the class with the highest summed probability [21]. 

2.3.2. Majority-vote 

 

The majority vote follows the concept of selecting the class that is most frequently named or voted 
for [50]. Each classifier delivers a vote for a class, which is indicated by the highest integrated result 
[19], [25]. Furthermore, it is possible to add weights to the results of each classifier to decide [21]. 
This scheme is most often used in classification applications [10]. 

2.3.3. Unweighted-average 

In this method, the individual outputs of the different classifiers are averaged [17], [19], [25]. The 
calculation of the average is calculated with an equal weighting for all classifiers, as is the case for 
example with bagging [17], [25]. The output that has the maximum of the averaged values is selected 
as the correct class and is applied to the problem [19], [25]. This method can only be used if the outputs 
of the individual classifiers are numerical [19]. According to [25], the unweighted average works 
particularly well if the different classifiers are similar. 

2.3.4. Weighted-average  

This method weights the individual outputs of the classifiers, whereby the outputs are also 
averaged [19], [25], [50]. A certain set of weights must be found that reflects the individual 
performances of the classifiers [25]. The goal of the weightings is to minimize the difference between 
the ensemble’s performance and the desired output [19]. An error correlation matrix can be used to 
determine the weights [19]. This method is particularly popular for AdaBoost and regression 
applications [9], [10]. 
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3. Results and Discussion 

3.1. Predictive performance and limitation of EL 

A learner’s suitability for a particular domain is usually assessed based on predictive performance, 
which indicates how well the model will perform [28]. Predictive performance plays a crucial role in 
EL since an ensemble of several models should normally perform better than a single model [8]. 
Basically, an ensemble consists of several combined models. This combined ensemble model should 
outperform every single model within the ensemble [8], [9]. 

Lee et al. [9] showed that an ensemble can effectively compensate for the probability that an 
individual learner is misclassified. It also addresses the fact that combining several learners reduces 
the risk that individual learners will perform equally well and thus have a poor ability to generalize 
[9]. In addition, an ensemble reduces the risk of possible overfitting in terms of training data [9], [10]. 
Individual learners tend to capture a partial optimum, but the generalization ability of some partial 
optima can be poor, this risk can be reduced by integrating several learners [9]. This last point overlaps 
with the findings of Dietterich [17] from 1997, because an ensemble can expand the hypothesis space 
of individual learners, which improves the learning of an approximation function [9]. 

Other works also speak of an increase in the ability to generalize, using EL. Wang et al. [14] 
showed, for example, that the ability to generalize is usually much better than that of a single learner 
when several learners are combined [14]. In addition, they speculated that as the amount of data 
increases, the proposed EL method will also improve performance [14]. In the domain of image 
classification, Chen et al. [1] showed that an ensemble has a high potential and better classification 
accuracy than a single classifier. Nevertheless, they made it clear that an ensemble requires a much 
longer processing time [1]. Ren et al. [8]presented a performance enhancement by EL, especially in 
deep neural networks the performance can be improved.  

Webb and Zheng [23] focused explicitly on boosting and bagging and presented equally impressive 
improvements in the domain of prediction accuracy and generalization capability. Thus, it can be 
concluded that EL improves not only predictive performance but also generalization capability, 
accuracy, and robustness by combining several classifiers [51]. The list of successful integrations of 
EL will grow in the future, however, there are limitations and weaknesses within EL that limit the use 
of an ensemble [1], [8], [9], [17], [21], [22]. In particular, the required computing capacity, 
interpretability, and training complexity play a major role [1]. 

The main disadvantage of an ensemble is the enormous computational effort, because K different 
models are trained instead of a single model [22]. An ensemble requires an enormous amount of 
computing power [1], [22]. On the one hand, the data must be saved and on the other hand many 
calculations must be performed [17]. At that time, Dietterich had given the example that an ensemble 
with 200 decision trees achieves a perfect performance within one classification. The 200 decision 
structures required about 59 megabytes of memory, which was a lot in 1997 [17]. Due to the progress 
in technology, a much larger amount of data can be processed today, but the amount of data is still 
growing, especially in the age of Big Data, so the problem of computing capacity is still one of the 
most relevant [1], [9], [22], [38]. Explicitly within deep networks the EL is enormously 
computationally intensive [9], [22], [38]. From a computational point of view, deep networks are 
known for their high training costs, so that combinations are only feasible with the necessary 
computing capacity [9], [22], [38]. 

In terms of interpretability, EL still has potential for improvement [10], [17], [19]. The various 
ensemble methods lack a clear understanding of the underlying process [10]. In some cases, theoretical 
explanations of phenomena that occur when using EL are missing [10]. In addition, the learned 
knowledge of an ensemble is not easily understood by the user, which can cause problems for the user 
[19]. The user gains little insight into the decision-making process, so a single decision tree can be 
interpreted by one person, but to interpret a RF of K-decision trees is nearly impossible [17]. 

Training complexity is another major difficulty within EL [10], [17]. First and foremost, the most 
effective combination strategy must be chosen when using EL. This presents a difficulty because, as 
mentioned above, there is not one combination strategy that consistently outperforms all others [10] 
[17]. Thus, there cannot be the very best EL model for all applications, since the respective 
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performance depends strongly on the chosen domain and the specific requirements [10], [17]. If the 
data is too complex, it can lead to the fact that the weak learners all cannot be trained sufficiently and, 
moreover, they are very similar to each other. The enormous importance of the variation between the 
individual classifiers was often emphasized in this work and correlates directly with the training 
complexity [1], [3], [8], [10], [19], [23]. If there is no diversity within an ensemble, the members of 
the ensemble will learn the same mistakes during training and thus produce an unsatisfactory result as 
a combined ensemble [1], [3], [8], [10], [19], [23].  

The individual diversity measures are not yet pronounced, which makes diversity and thus training 
more difficult [19]. Within the training of an ensemble, the choice of the threshold value for each 
weak learner is also important, because if a value is not correctly defined, it can increase the 
susceptibility to errors within the model [25]. When training data changes, outliers, incorrect samples, 
or noise can cause bias, resulting in the so-called drift problem [24]. This can cause the EL model to 
gradually lose focus on the true target, a phenomenon that occurs primarily in real-time applications 
[24]. 

3.2. Limitations & Future Work 

The limitation in this study was the transparency of the works to be compared, since not all of them 
provided the required information in full. In addition, it was limited to the selected essential procedures 
and models, which means that possible further and innovative procedures must be analyzed in future 
works, besides the most frequently used ones from this work. 

In the domain of EL models for use in DL, the future focus will be on increasing efficiency in 
terms of interpretability, reducing training complexity, and lowering hardware performance 
requirements. When working with EL, an improvement in the results, compared to a single model, 
can be assumed. However, the individual EL methods take different approaches and therefore produce 
different results. As a result, it is often unclear in advance which method will yield the best results, 
and the optimal solution must be sought through time-consuming experimentation with different 
methods and parameters [26]. Here, time saving potentials regarding the increase of efficiency in the 
selection of the appropriate methods can be identified. In the future the focus should also be on 
interpretability. Often the user receives a good result, but still has little insight into the decision making 
of the ensemble [10], [17], [19]. The internal structures of an ensemble can hardly be explained clearly, 
this is where the focus should be [10], [17], [19]. In general, interpretability seems to be a problem 
not yet strongly addressed by EL, although it could further advance the progress of EL [10]. The 
methods of EL in the domain of DL presented in this literature review often have the problem that 
they place high demands on hardware resources and are therefore not suitable for use by the public 
[1], [9], [22], [38]. One reason for this is that instead of a model, K models are trained to deliver the 
desired results [22]. In the future it will be a task to design applications more resource efficient without 
losing accuracy and efficiency. 

4. Conclusion 

All major peer-reviewed journals and conference papers – supplemented by a forward and 
backward search – on EL for use in DL were considered and a comprehensive literature search was 
conducted. First, the basic terms in the domain of EL were introduced and then the relevant 
combination strategies were described. Subsequently, the individual voting and averaging procedures 
were added, and an example of application within a CNN was given. Finally, the strengths and 
limitations of EL were discussed. The structure of this paper results from the fact that a basic overview 
of the individual specifics of EL procedures is of elementary importance to act purposefully in the 
application. In addition, research gaps for future research in this domain were identified. Future work 
should systematically address the formulated research gaps. 
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