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1. Introduction  
Breast cancer is one of the most common types of cancer affecting women worldwide and remains a 

leading cause of cancer-related deaths. According to the Global Cancer Observatory report from the 
World Health Organization (WHO), breast cancer caused 670,000 deaths globally in 2022 [1]. About 
half of all breast cancer cases occur in women without specific risk factors other than gender and age. In 
2022, breast cancer was the most common type of cancer among women in 157 out of 185 countries. It 
occurs in every country around the world. In the United States, according to the American Cancer 
Society, breast cancer is the most common cancer among women and a leading cause of cancer-related 
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 Breast cancer remains one of the leading causes of death among women 
worldwide. This study aims to develop a clinical data-based breast cancer 
classification framework by integrating the Synthetic Minority 
Oversampling Technique (SMOTE), the Boruta feature selection 
algorithm, and the XGBoost classifier. The proposed approach is tested 
using the Wisconsin Breast Cancer Diagnostic (WBCD) dataset, consisting 
of 569 samples and 30 numerical features. SMOTE addresses class 
imbalance, Boruta selects the most relevant diagnostic features, and 
XGBoost is the main classification algorithm due to its tabular and 
imbalanced data robustness. Model validation is conducted through 
Repeated Stratified K-Fold Cross Validation with 30 repetitions to ensure 
statistical stability. The resulting model achieves excellent classification 
performance, with an average accuracy of 0.9608 ± 0.0274, precision of 
0.9465 ± 0.0481, Recall of 0.9512 ± 0.0524, and F1-score of 0.9475 ± 
0.0374. The ROC-AUC value reaches 0.9926 ± 0.0094, the PR-AUC is 
0.9906 ± 0.0113, and the Matthews Correlation Coefficient (MCC) is 
0.9179 ± 0.0575, indicating a well-balanced model. Clinically, this model 
can aid early diagnosis by effectively reducing irrelevant diagnostic 
attributes, retaining only 10 key features without compromising accuracy, 
thereby offering a lightweight yet reliable diagnostic tool. However, 
limitations include the relatively small dataset and the absence of 
hyperparameter tuning. Future research should explore larger datasets, 
advanced ensemble methods, and interpretability techniques such as SHAP 
or LIME to improve clinical transparency and adoption. 
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deaths. A similar situation exists in Indonesia. Globocan reported that in 2022, there were 66,271 new 
cases of breast cancer, with a total of 209,748 deaths over the past five years [2]. 

Breast cancer occurs when abnormal cells develop and spread uncontrollably throughout the body 
[3]–[5]. Cancer cells first appear in the milk ducts of the breast and spread through other breast tissues, 
eventually leading to tumors and can spread to other organ tissues [6]. In general, two types of abnormal 
cells can be detected, namely benign cells and cancer cells. Benign cells are characteristic of not spreading 
and not damaging the surrounding tissues [7], [8] while cancer cells can spread rapidly and damage the 
tissues present in the affected individual [9]. Many patients realise they have this disease when it has 
reached an advanced stage, resulting in a low success rate for treatment. The main contributing factors 
are low public awareness of early detection and limited diagnostic facilities, especially in remote areas. 

Early detection is essential to increase recovery chances and reduce mortality risks. Recently, machine 
learning (ML) technology based on clinical data has been introduced as an alternative approach to assist 
the diagnostic process. ML algorithms can analyse patterns in patient data, such as blood test results, 
anthropometric data, or biopsy findings, to classify whether a tumour is benign or malignant. One 
commonly used dataset is the Wisconsin Breast Cancer Dataset (WBCD) from the UCI Machine 
Learning Repository or Kaggle, which provides information from 569 samples with diagnostic features. 

Although various breast cancer diagnostic approaches have been developed, many challenges remain 
unaddressed, particularly when using real-world clinical data. Class imbalance, where benign tumor 
samples significantly outnumber malignant ones, often leads to misclassification, making models less 
accurate in detecting actual cancer cases. This misclassification may cause delayed treatment and pose 
serious risks to patient safety. Moreover, not all attributes in clinical data contribute meaningfully to 
classification. Including less relevant features may degrade model performance and increase the risk of 
overfitting. Thus, effective feature selection methods are required to filter out unimportant features and 
preserve model performance. 

Ensemble-based classification algorithms like XGBoost have performed excellently in various 
competitions and research studies. However, their implementation in real-world breast cancer cases 
requires systematic validation, particularly due to the complexities of imbalanced data. Combining data 
balancing techniques, optimal feature selection, and appropriate algorithms may offer a more robust 
approach for data-driven clinical diagnosis. ML-based methods have now become a prominent choice 
in breast cancer classification. Several algorithms have been applied, including Naïve Bayes, K-Nearest 
Neighbour (KNN), Decision Tree, Support Vector Machine (SVM), and ensemble methods like 
Random Forest and XGBoost. 

Several studies using Naïve Bayes algorithms for breast cancer classification have shown high accuracy, 
such as those conducted by Oktavianto and Handri [10] with an average accuracy of 96.9%. Research by 
Muntiari & Hanif [11] compared seven algorithms, including SVM, Random Forest, and Neural 
Network, concluding that some classical methods, such as Decision Tree and KNN, provide high 
accuracy. However, the evaluation only used one metric (accuracy), and there was still a lack of in-depth 
analysis, such as ROC-AUC, PR-AUC, or MCC. 

The ensemble classifier approach has also been studied to combine the strengths of various models. 
Khadijah & Kusumaningrum [12] combine SVM, ELM, and KNN through majority voting, increasing 
accuracy in several scenarios. However, it is limited to a small dataset (116 samples) and has not yet 
utilised data balancing techniques. Meanwhile, Jamaludin et al. (2024) [13] compared Random Forest 
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and Neural Network, with Random Forest performing better with an accuracy of 98.86%. However, the 
modelling is limited to basic evaluation and does not include ROC or PR curve visualisation. 

Deep learning-based approaches also demonstrate high performance. Erwandi & Suyanto [14] used 
the ResNet50 architecture and achieved an accuracy of 99.3% for binary classification. However, this 
study focuses on histopathological image data and does not use interpretability metrics such as feature 
importance, which are important for medical applications. The study by Supriyanto et al. (2022) [15] 
using the Inception-V3 architecture combined with various machine learning algorithms shows that the 
combination of CNN and Logistic Regression provides the best accuracy of 93% for images magnified 
40x. Nevertheless, this study has not utilised feature selection techniques and feature weighting.. 

Other studies also showed the success of ensemble and SVM models in breast cancer classification. 
Mohammed Amine Naji et al. [16]. SVM has the highest accuracy (97.2%), while Sharmin Ara et al 
[17]. Show SVM and Random Forest as the best methods with an accuracy of 96.5%. The research by 
Naufal Cahya Ramadhan et al. (2024) [18] integrates SMOTE and feature selection XGBoost into the 
KNN, Naïve Bayes, and Random Forest models, and achieves performance improvements, particularly 
in Random Forest (accuracy 98%, AUC 94%). Although many approaches have been developed, 
integrating data balancing, stable feature selection, and cross-fold performance evaluation remains 
underexplored within a single framework. 

This study aims to integrate SMOTE, Boruta, and XGBoost into a unified framework to address 
class imbalance and feature redundancy in breast cancer classification. The proposed model is validated 
using Repeated Stratified K-Fold Cross Validation (30 folds) and evaluated using multiple performance 
metrics (accuracy, precision, Recall, F1-score, ROC-AUC, PR-AUC, and MCC). Feature importance 
analysis is performed using Boruta and XGBoost to enhance clinical relevance, providing insights into 
the most influential clinical features. 

This research makes several contributions: 

• Proposing an integrated classification framework combining SMOTE, Boruta, and XGBoost for 
breast cancer classification based on clinical data..  

• Conducting a comprehensive evaluation using robust statistical validation and diverse performance 
metrics, while enhancing clinical interpretability through feature importance analysis to support 
informed medical decision-making. 

2. Method 

2.1. Research stages 
The stages in this research broadly consist of data collection, preprocessing, correlation analysis and 

multicollinearity reduction, feature selection, handling imbalanced data, classification, and evaluation. 
The stages can be seen in Fig. 1. Research stages. 

 

Fig. 1. Research stages 
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2.1.1. Data Collection 
This research uses public data from kaggle.com (https://www.kaggle.com/datasets/uciml/breast-

cancer-wisconsin-data). This dataset contains 569 samples of breast tissue examination results. Each 
sample consists of 30 numerical features that describe the morphological characteristics of cell nuclei 
from microscopic images. These features are generated from digital image analysis of fine-needle 
aspiration (FNA) procedures on breast tissue masses. There are ten main cell characteristics measured, 
namely: radius (the average distance from the center to the edge of the cell), texture (standard deviation 
of grayscale values), perimeter (circumference of the cell), area (surface area of the cell), smoothness 
(local variation in radius length), compactness (ratio of the square of the perimeter to the area, minus 
1), concavity (the degree of indentation in the contour), concave points (the number of concave points 
on the contour), symmetry (the degree of symmetry of the cell), and fractal dimension (the complexity 
of the cell contour resembling the length of a coastline). 

2.1.2. Preprocessing 
Preprocessing is the initial step in data processing, carried out to clean the data, prepare the data, and 

align the data for optimal use [19], [20]. The first step in preprocessing is the removal of irrelevant 
columns, such as id and Unnamed: 32, as shown in Table 1, which do not provide information for the 
classification process and only serve as administrative identification. Removing these columns is 
important to avoid noise disrupting the model's performance.  

Table 1.  Initial data before column deletion 

id diagnosis radius_mean texture_mean … Unnamed: 32 
842302 M 17.99 10.38 … NaN 
842517 M 20.57 17.77 … NaN 

84300903 M 19.69 21.25 … NaN 
84348301 M 11.42 20.38 … NaN 
 
The next step is the encoding process for the diagnosis labels, where the categories M (Malignant) 

and B (Benign) are converted into binary numeric form, namely 1 for M and 0 for B, as shown in Table 
2. 

Table 2.  Data before conversion 

diagnosis radius_mean texture_mean 
M 17.99 10.38 
… … … 
B 13.540 14.36 

 
This conversion allows the target data to be recognized and processed by machine learning algorithms 

requiring a numeric representation, data after conversion, as shown in Table 3. 

Table 3.  Data after conversion 

diagnosis radius_mean texture_mean 
1 17.99 10.38 
… … … 
0 13.540 14.36 

https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data
https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data
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Next, handling of missing values is carried out using a simple imputation method with 
SimpleImputer from the Scikit-learn library, using the mean strategy. Each numeric feature that contains 
missing values will be filled with the average value of that feature, thus avoiding errors during model 
training due to incomplete data. 

2.1.3. Correlation Analysis and Multicollinearity Reduction 
After the data cleaning phase, the next step is to conduct a correlation analysis between features to 

evaluate potentially strong linear relationships between pairs of features, as shown in Table 4. High 
correlation between features can lead to multicollinearity issues, which can ultimately disrupt model 
interpretation and cause information redundancy [21]. 

Table 4.  Features with high correlation (>0.9) 

 Feature 1 Feature 2 Correlation 
0 perimeter_mean radius_mean 0.997855 
1 perimeter_worst radius_worst 0.993708 
2 area_mean radius_mean 0.987357 
3 area_mean perimeter_mean 0.986507 
4 area_worst radius_worst 0.984015 
5 area_worst perimeter_worst 0.977578 
6 perimeter_se radius_se 0.972794 
7 perimeter_worst perimeter_mean 0.970387 
8 radius_worst radius_mean 0.969539 
9 radius_worst perimeter_mean 0.969476 
10 perimeter_worst radius_mean 0.965137 
11 radius_worst area_mean 0.962746 
12 area_worst area_mean 0.959213 
13 perimeter_worst area_mean 0.959120 
14 area_se radius_se 0.951830 
15 area_worst perimeter_mean 0.941550 
16 area_worst radius_mean 0.941082 
17 area_se perimeter_se 0.937655 
18 concave points_mean concavity_mean 0.921391 
19 texture_worst texture_mean 0.912045 
20 concave points_worst concave points_mean 0.910155 

 
Correlation analysis was performed using Pearson's correlation coefficient to understand the structure 

of relationships between numeric features in the dataset. The correlation between features was visualised 
as a heatmap to identify potential multicollinearity before further feature selection with the Boruta 
algorithm. Dark red indicates a high positive correlation, while blue indicates a high negative correlation. 
Zero or near-zero correlation is visualised in white or light grey. Due to the symmetry of the correlation 
matrix, this heatmap is symmetric with respect to the main diagonal, displaying a value of 1 as the 
correlation of a feature with itself. Based on Fig. 2, it was found that several pairs of features have very 
high correlations (r > 0.9), including: 1) radius_mean, perimeter_mean, and area_mean; 2) 
concavity_mean and concave_points_mean; 3) radius_worst, perimeter_worst and area_worst. 
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Fig. 2. Correlation Between All Features (Before Boruta) 

2.1.4. Feature Selection with Boruta 
To filter features relevant to the prediction target, feature selection is performed using the Boruta 

algorithm, a wrapper method based on Random Forest designed to identify all important features in a 
dataset [22]–[25]. This algorithm works by comparing the importance of the original features against 
the 'shadow' features (random features generated through permutation) and retaining the original 
features that are statistically more relevant than the random features. The Boruta algorithm uses the 
Random Forest Classifier as the main estimator in this study. Boruta is conservative and iterative; thus, 
it can preserve important features and eliminate features that do not contribute significantly [26], [27]. 
This process results in a more concise and meaningful feature subset, which is then used as the 
classification model's main input, as shown in Fig. 3. 

 
Fig. 3. Selected Feature Correlation (After Boruta & Correlation Filter) 
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2.1.5. Handling Imbalanced Data 
A common challenge in disease diagnosis classification is class imbalance, where the number of 

samples in one class (usually benign) is significantly greater than in the other class (malignant) [28], 
[29]. This imbalance can lead to a model being biased towards the majority class and neglecting detection 
in the minority class, which in the medical context is the most crucial case. To address this issue, this 
study applies the Synthetic Minority Oversampling Technique (SMOTE). In this research, SMOTE is 
specifically applied to the training data in each iteration of cross-validation (Repeated Stratified K-Fold), 
and is not applied to the test data to maintain the accuracy of evaluation. This strategy is implemented 
so the test data's distribution reflects the dataset's original distribution, while the model is trained on 
balanced data. Thus, the model's performance is measured to reflect the true generalisation capability of 
new data. The implementation of SMOTE is carried out using the imblearn library with default 
parameters, and it is applied after the training and testing data split in each fold. This technique allows 
for an increase in the model's sensitivity (Recall) towards cancer cases without decreasing overall accuracy 
and produces a more balanced model in detecting both classes. 

2.1.6. Classification Model 
The classification model used in this study is XGBoost (Extreme Gradient Boosting), an efficient and 

accurate boosting algorithm, especially for tabular data. XGBoost can handle small to large datasets and 
address overfitting through regularisation and model complexity management [30]–[33]. The main 
parameters of the XGBoost model used include the number of trees (n_estimators) set to 100, maximum 
tree depth (max_depth) of 5, and learning rate (learning_rate) of 0.1. The scale_pos_weight parameter 
is set to a default value of 1 with no adjustments to the class distribution, and the evaluation function 
during training is adjusted to logloss as the primary metric. The primary metric maintains result 
reproducibility, with the random_state value set to 42. 

To evaluate the impact of features that have high correlation on model performance, a comparison is 
made between two classification approaches: the model trained using all original features and the model 
filtered based on the correlation between features before feature selection using the Boruta algorithm. 
This experiment aims to assess the extent to which the initial filtering process of highly correlated 
features can influence the results of feature selection as well as the final performance of the classification 
model.  

The final stage of the optimisation process, the best classification model is formed by combining 
three main components: handling class imbalance using Synthetic Minority Over-sampling Technique 
(SMOTE) on the training data of each fold, relevant feature selection using the Boruta algorithm, and 
classification using XGBoost with the specified parameter configuration. This strategy is designed to 
produce a cancer classification model optimal for breasts, considering common challenges in medical 
data such as imbalanced class distribution and multicollinearity among input features. 

2.1.7. Model Evaluation 
To ensure the validity and stability of the model's performance, a Repeated Stratified K-Fold Cross-

Validation technique was used, which is a layered cross-validation method that divides the data into 10 
folds with a consistent class proportion in each fold, and repeats the process 3 times. Thus, there are a 
total of 30 evaluation scenarios that provide a more robust and reliable estimate of the model's 
performance against variations in the training data.  
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The model's performance is evaluated using various metrics that reflect the accuracy and quality of 
classification from different aspects. The first metric used is accuracy, which represents the proportion 
of correct predictions to the total amount of data, and is formulated as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   () 

Precision measures the accuracy of the model in predicting the positive class, and is defined as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   () 

Recall or sensitivity measures the model's ability to detect all actual positive data, with the formula: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   () 

To balance precision and Recall, the F1-score is used, which is the harmonic mean between the two, 
formulated as: 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
   () 

Furthermore, an evaluation was performed using Receiver Operating Characteristic - Area Under 
Curve (ROC-AUC), which measures the trade-off between True Positive Rate (TPR) and False Positive 
Rate (FPR), with TPR and FPR calculated as: 

𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
, 𝐹𝑃𝑅 =

𝐹𝑃

𝐹𝑃+𝑇𝑁
   () 

An evaluation that considers all elements in the confusion matrix more evenly uses the Matthews 
Correlation Coefficient (MCC), which is formulated as: 

𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
   () 

In addition to numerical evaluation, visualisation provides a more comprehensive understanding of 
the model's behaviour. The visualisation includes the confusion matrix for the first fold as an illustration 
of the distribution of correct and incorrect predictions, a boxplot showing the variation of performance 
metrics across all 30 cross-validation folds, and ROC and Precision-Recall curves for each fold and in 
aggregate form (mean curve).  

3. Results and Discussion 

3.1. Initial Experiment: Impact of Removing Highly Correlated Features 
This initial experiment was conducted to evaluate the impact of removing features that have a high 

correlation on the performance of the classification model. The goal is to identify whether reducing 
features based on correlation can improve predictive accuracy without sacrificing important information. 
In this case, features with an absolute Pearson correlation value greater than 0.9 were identified as 
redundant and removed from the data subset. This testing was carried out by comparing two scenarios. 

The XGBoost model was trained using all features (X_imputed), 30 original features from the dataset 
and the XGBoost model was trained after removing high correlation features (X_no_high_corr). 
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Both models were trained using XGBClassifier from the xgboost library with default parameters, 
including eval_metric=logloss, and consistent data splitting using train_test_split from scikit-learn with 
an 80:20 ratio and random_state=42 to maintain reproducibility. Evaluation was conducted by calculating 
the accuracy of the test data. The comparison results are visualised using bar graphs as shown in Fig. 4. 

 
Fig. 4. Comparison of the accuracy of the XGBoost model between the use of all features and after the removal 

of highly correlated features 

The results show that the model trained with all features achieved an accuracy of 0.9561, while the 
model with reduced features achieved a higher accuracy of 0.9649. Removing highly correlated features 
can enhance model performance, possibly because the model becomes simpler and free from features 
that carry redundant information. However, it is important to note that during the advanced feature 
selection stage using the Boruta algorithm, several features that statistically had a high correlation were 
still retained. This indicates that even though these features correlate, they are still considered 
predictively relevant to the target label by decision tree-based algorithms. In other words, correlation 
among features does not necessarily mean that one of those features is not helpful in the context of 
ensemble models like XGBoost; redundant information can still have contributions. 

Therefore, the results of this preliminary experiment provide an initial justification for cleaning 
features before further selection stages, while still highlighting the importance of model-based feature 
selection techniques like Boruta, so that important features are not prematurely removed just because of 
statistical relationships between features. 

3.2. Final Model Evaluation: SMOTE + Boruta + XGBoost 
Per-fold model evaluation is an important component in validating the performance of machine 

learning models, especially in the medical context, which requires a high level of trust in prediction 
results [34]. In this experiment, a 30-fold Repeated Stratified K-fold cross-validation approach was used, 
which allows for a comprehensive measurement of the variability of model performance on varied training 
data. This provides a more accurate estimate of generalisation compared to single testing. Based on Table 
5, the model shows consistently high performance in almost all folds, with some folds even achieving 
perfect performance (such as Fold 3, 10, and 21) with Accuracy, Precision, Recall, F1-Score, ROC-
AUC, MCC, and PR-AUC values of 1.0000. This indicates that on specific subsets of data, the XGBoost 
model can completely distinguish between benign and malignant classes without prediction errors. There 
are also some folds with relatively lower performance, such as: Fold 4: Recall = 0.7619 and F1-score = 



ISSN 2722-4139 
Science in Information Technology Letters 

25 
Vol. 6., No. 1, May  2025, pp. 16-33 

  

 Cicin Hardiyanti P (Optimizing Breast Cancer Classification Using SMOTE, Boruta, and XGBoost) 

0.8205, Fold 8: Precision = 0.8077, although Recall = 1.0000, Fold 22: Recall = 0.8636 and F1-score = 
0.9048. 

Table 5.  Evaluation of each fold 

 Fold Accuracy Precision Recall F1-Score ROC-AUC MCC PR-AUC 
0 1 0.9474 0.8800 1.0000 0.9362 1.0000 0.8970 1.0000 
1 2 0.9123 0.8696 0.9091 0.8889 0.9909 0.8170 0.9867 
2 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
3 4 0.8772 0.8889 0.7619 0.8205 0.9762 0.7330 0.9643 
4 5 0.9649 1.0000 0.9048 0.9500 0.9696 0.9258 0.9694 
5 6 0.9649 0.9524 0.9524 0.9524 0.9987 0.9246 0.9978 
6 7 0.9825 1.0000 0.9524 0.9756 1.0000 0.9626 1.0000 
7 8 0.9123 0.8077 1.0000 0.8936 0.9987 0.8340 0.9978 
8 9 0.9474 0.9500 0.9048 0.9268 0.9735 0.8864 0.9715 
9 10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
10 11 0.9825 0.9565 1.0000 0.9778 1.0000 0.9639 1.0000 
11 12 0.9649 0.9167 1.0000 0.9565 0.9974 0.9297 0.9962 
12 13 0.9649 0.9524 0.9524 0.9524 0.9974 0.9246 0.9959 
13 14 0.9649 1.0000 0.9048 0.9500 1.0000 0.9258 1.0000 
14 15 0.9825 0.9545 1.0000 0.9767 0.9974 0.9633 0.9956 
15 16 0.9474 0.9500 0.9048 0.9268 0.9788 0.8864 0.9763 
16 17 0.9825 1.0000 0.9524 0.9756 0.9854 0.9626 0.9836 
17 18 0.9649 0.9524 0.9524 0.9524 0.9974 0.9246 0.9959 
18 19 0.9474 0.9500 0.9048 0.9268 0.9894 0.8864 0.9851 
19 20 0.9464 0.9091 0.9524 0.9302 0.9932 0.8874 0.9887 
20 21 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
21 22 0.9298 0.9500 0.8636 0.9048 0.9818 0.8518 0.9763 
22 23 0.9474 0.9091 0.9524 0.9302 0.9960 0.8886 0.9936 
23 24 0.9474 0.8750 1.0000 0.9333 0.9987 0.8956 0.9978 
24 25 0.9825 0.9545 1.0000 0.9767 1.0000 0.9633 1.0000 
25 26 0.9649 0.9524 0.9524 0.9524 0.9987 0.9246 0.9978 
26 27 0.9825 1.0000 0.9524 0.9756 0.9987 0.9626 0.997 
27 28 0.9825 1.0000 0.9524 0.9756 0.9868 0.9626 0.9846 
28 29 0.9474 0.9091 0.9524 0.9302 0.9749 0.8886 0.9659 
29 30 0.9821 0.9545 1.0000 0.9767 1.0000 0.9630 1.0000 

 
These folds show a momentary imbalance between the model's ability to recognise positive and 

negative cases. For example, in Fold 4, although the precision is high (0.8889), the lower Recall indicates 
the presence of false negatives, which are cancer cases that were not detected, a condition that must be 
avoided in medical practice. Meanwhile, Fold 8 shows the opposite situation: perfect Recall but low 
precision, meaning the model identifies all cancer patients and misclassifies some healthy patients as 
positive (false positives). The F1-score value, as a harmonic metric between precision and Recall, has a 
relatively narrow range, from 0.8205 (Fold 4) to 1.0000 (Fold 3, 10, 21). This indicates that the model 
can consistently balance prediction performance across both target classes. 

The Matthews Correlation Coefficient (MCC) values are also high and consistent, mostly above 0.88 
with an average of around 0.92, indicating symmetric performance in imbalanced binary classification. 
ROC-AUC and PR-AUC reached the maximum value (1.0) in most folds, indicating excellent class 
discrimination ability and strong resilience to imbalanced data. 
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The results of this evaluation indicate that after applying the Synthetic Minority Oversampling 
Technique (SMOTE) to address class imbalance and the Boruta algorithm for feature selection, the 
performance of the XGBoost model significantly improved compared to the initial baseline. The model 
became more accurate and more stable when handling data with complex and variable distributions. 
Integrating SMOTE and Boruta has been shown to improve generalisation and reduce the potential for 
overfitting. 

3.2.1. Analysis of Confusion Matrix Fold-1 
An analysis was conducted on the confusion matrix in Fold-1 to evaluate the model's performance 

in more depth. This analysis aims to identify the model's ability to distinguish between breast cancer 
cases (malignant) and non-cancer cases (benign) based on the predictions produced by the combination 
of SMOTE, Boruta, and XGBoost. Fig. 5 Confusion Matrix Fold-1. 

 
Fig. 5. Confusion Matrix Fold -1 

Based on Fig. 5, the True Negative (TN) value is 32, the number of benign cases classified correctly 
as benign. False Positive (FP) is 3, the number of benign cases incorrectly classified as malignant. False 
Negative (FN) is 0, meaning no malignant cases went undetected. True Positive (TP) is 22, the number 
of malignant cases correctly classified as malignant. Based on these values, performance metrics can be 
calculated, accuracy 0.9474, precision 0.8800, recall 1.0000 and F1-Score 0.9362. 

The confusion matrix results in Fold-1 indicate that the model has perfect Recall (1.0), signifying 
that all cancer cases were correctly identified, which is an important advantage in the medical field to 
avoid life-threatening false negatives. However, three false positive cases reduced the precision to about 
0.88, indicating that approximately 12% of cancer predictions were incorrect. Although this may cause 
anxiety or require additional examinations, it is still tolerable in the context of early detection. The 
model demonstrates excellent performance with high sensitivity and a low error rate. 

3.2.2. Average and Standard Deviation of Matrix 
The average and standard deviation of various evaluation metrics were obtained after evaluating the 

model on all folds (30 folds). Table 6 shows a 30-fold cross-validation evaluation; the model shows 
strong and stable predictive performance. The average accuracy is 96.08% with a standard deviation of 
2.74%, indicating consistent classification ability and good generalisation across various data subsets. On 
the precision side, it is 94.65% with a standard deviation of 4.81%. Most positive predictions are indeed 
cancer cases, resulting in a low risk of overdiagnosis. The Recall is 95.12% ± 5.24% indicating low false 
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negatives. This is very important in the medical context, as errors in detecting cancer cases can have fatal 
consequences. The F1-score (94.75% ± 3.74%) shows a balance between precision and sensitivity, 
reinforcing the model's stability. The high ROC-AUC value (99.26% ± 0.94%) demonstrates excellent 
ability to distinguish between cancer and non-cancer across various classification thresholds. The 
Matthews Correlation Coefficient (91.79% ± 5.75%) underscores the overall prediction balance. Finally, 
a PR-AUC of 99.06% ± 1.13% indicates the model's robustness in maintaining the quality of positive 
detection, especially for the minority class. 

Table 6.  Average and Standard Deviation Matrix  

 Average Standard Deviation 
Accuracy 0.9608 0.0274 
Precision 0.9465 0.0481 

Recall 0.9512 0.0524 
F1-Score 0.9475 0.0374 

ROC-AUC 0.9926 0.0094 
MCC 0.9179 0.0575 

PR-AUC 0.9906 0.0113 
 
Overall, the SMOTE, Boruta, and XGBoost combination produces an accurate, robust, and reliable 

model for detecting breast cancer. The model combining SMOTE, Boruta, and XGBoost demonstrates 
superior and consistent predictive performance across 30 cross-validation scenarios. The average values 
of all metrics are high with slight variation, which means the model is accurate but also stable and reliable 
for implementation in real clinical contexts, particularly for early and accurate breast cancer detection. 

3.2.3. Matrix Distribution Visualisation 
To evaluate the performance of the breast cancer classification model, Repeated Stratified K-Fold 

was run 30 times, measuring seven key metrics: accuracy, precision, Recall, F1 score, ROC-AUC, MCC, 
and PR-AUC, as shown in Fig. 6.  

 
Fig. 6. Matrix Distribution Visualisation 

The results show excellent and stable model performance, with a ROC-AUC of 0.993 and a PR-
AUC of 0.991, reflecting a very high ability to distinguish between classes, even under conditions of class 
imbalance. The recall value (0.951) and F1-score (0.947) indicate a balance between sensitivity and 
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precision. In contrast, the precision (0.946) is slightly lower but still acceptable in a medical context, as 
the main priority is to reduce Type II errors (false negatives). The MCC value of 0.918 indicates a strong 
correlation between predictions and actual labels, which is important for evaluating imbalanced data. 
The low standard deviation across all metrics indicates the stability and generalizability of the model 
across different folds. 

The bar chat visualization shown in Fig. 7 summarizes descriptive statistics in the form of a bar chart 
showing the model's average evaluation metric values, accompanied by error bars indicating the standard 
deviation across folds. This presentation aims to quantitatively assess the model's performance stability 
within a framework of 30-fold cross-validation. 

 
Fig. 7. Bar Chat Visualisation 

Figure 7 shows that all model evaluation metrics are at a high performance level, with an average 
score above 0.90 indicating excellent classification ability. Here are some important points: 

• ROC-AUC and PR-AUC are the highest metrics with the smallest error bars, reflecting the 
model's strong and stable ability to differentiate between benign and malignant classes. This is 
crucial for medical diagnosis applications where detection accuracy is critical.  

• Accuracy, Precision, Recall, and F1-Score also demonstrate high and consistent performance. 
Although Precision and Recall have slightly larger fluctuations, their values remain within 
reasonable limits, indicating the model's capability to detect cancer cases while effectively 
minimising false positives.  

• The Matthews Correlation Coefficient (MCC) is slightly lower and more variable, but still shows 
good values, indicating that the model is not biased towards either class despite the imbalanced 
data. 

Overall, this graph confirms that the combination of SMOTE, Boruta, and XGBoost produces a strong, 
stable model with small inter-fold variation that is feasible to apply in medical classification. 

3.2.4. Combined ROC and PR Curve Fold 
The initial visual evaluation through the Precision-Recall (PR) curve on fold 1 provides an overview 

of the model's ability to balance precision and Recall. As shown in Fig. 8, the PR curve indicates very 
high performance, with precision nearing 1.0 across almost the entire recall range. This indicates the 
model can identify most cancer cases with very low error. The sharp drop in precision as Recall 
approaches 1.0 is a common phenomenon, occurring when the model attempts to classify all samples as 
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positive for maximum sensitivity. These results indicate that the SMOTE-based approach and XGBoost 
with selected features can provide precise detection even in a single data split. 

 
Fig. 8. PR-Curve 

Furthermore, to obtain an overall picture of the model's stability and generalisation, the results from 
30-fold cross-validation were aggregated. Fig. 9 shows ROC (left) and PR (right) curves, each 
representing the average results of all folds. 

 
Fig. 9. ROC and PR-Curve 

The average ROC curve shows a concave shape approaching the top left point, reflecting a high True 
Positive Rate despite a still low False Positive Rate, with an AUC ROC of 0.993. This indicates the 
model can distinguish between benign and malignant cases with minimal error. Meanwhile, the 
aggregate PR curve also performs well, with precision remaining high across the recall range. The decline 
in precision as Recall approaches 1.0 is gradual and insignificant, indicating that the model remains 
precise even as sensitivity increases. With an AUC PR of 0.991, the model proves reliable in dealing with 
class imbalance. Both curves reinforce the previous numerical evaluation results and demonstrate that 
the SMOTE, Boruta, and XGBoost-based classification pipeline can deliver consistent and reliable 
predictive performance on complex medical data. 

3.3. Feature Importance 
After the data balancing was performed using the Synthetic Minority Over-sampling Technique 

(SMOTE), it was followed by feature selection based on Boruta, and the final modelling was done using 
the XGBoost algorithm, resulting in ten important features that made the most significant contribution 
to breast cancer classification. Feature selection was conducted to eliminate less relevant or redundant 
attributes, while XGBoost provided feature importance scores based on the contribution to the model's 
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performance. Figure 10 presents the Top 10 Feature Importance visualisation based on integrating the 
Boruta selection results and the XGBoost gain scores. 

 
Fig. 10. Top 10 Feature Importance 

The perimeter_worst feature emerges as the most influential attribute in classification, reflecting the 
circumference length of the tumour mass under the most extreme conditions. Along with other features 
such as concave points_mean, concave points_worst, and concave points_se, the model utilises the edge 
shape information of the tumour to detect malignancy, where deeper and more varied concavities are 
often associated with aggressive tumours. The radius_worst, area_worst, and area_mean features describe 
the size and area of the tumour mass, which correlate with growth and malignancy levels. 
Concavity_worst measures the depth of the tumour boundary's concavity, indicating the potential for 
invasion into surrounding tissue. Meanwhile, texture_worst and texture_mean reflect variations in pixel 
intensity, where heterogeneous textures tend to indicate more dangerous tumour tissue. Overall, the 
most important features in classification are dominated by the morphological characteristics of tumours 
in worst-case scenarios, which are relevant clinically in assessing malignancy. Thus, these important 
features improve the classification performance over the combination of SMOTE, Boruta, and XGBoost 
but also strengthen the clinical relevance in identifying the degree of tumour malignancy, making the 
prediction results more relevant and medically interpretable. 

3.4. Discussion 
The model evaluation results show that the combination of SMOTE, Boruta, and XGBoost provides 

excellent classification performance in distinguishing between benign and malignant tumours in the 
Wisconsin Breast Cancer Diagnosis (WBCD) dataset. Based on Repeated Stratified K-fold validation, 
the model can achieve high and consistent average values for accuracy, precision, Recall, and F1-score 
across all folds. This indicates that the model is good at classifying the training data and can maintain 
performance on different test data, thereby reducing the risk of overfitting. 

From the feature importance analysis produced by the XGBoost model, features such as worst concave 
points, worst perimeter, and mean concave points are the most influential variables in the classification 
process. This finding supports several previous studies that indicate that the characteristics of the shape 
and contour of tumour tissue have a strong relationship with the degree of malignancy. Feature selection 
using the Boruta algorithm also plays a role in simplifying the model's complexity by discarding less 
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relevant features, thus not only increasing processing efficiency but also improving the performance of 
the model's results. 

Some advantages of this combined approach can be seen from three aspects. First, using SMOTE 
successfully addresses the class imbalance in the data, a common challenge in cancer diagnosis, by 
increasing the model's sensitivity to the minority class (malignant tumours). Second, the Boruta 
algorithm effectively filters important features, thus reducing noise and potential multicollinearity that 
can affect model performance. Third, XGBoost, as a strong classification algorithm, shows advantages in 
handling tabular data, providing high accuracy and tolerance to missing values and outliers. 

4. Conclusion 
This study contributes significantly to developing breast cancer classification systems by proposing 

an integrated framework combining SMOTE for data balancing, Boruta for feature selection, and 
XGBoost as the primary classification model. This approach successfully addresses the problem of clinical 
data imbalance while maintaining efficiency by using only about 10 important features. Evaluation using 
Repeated Stratified K-Fold (30 folds) showed excellent results, with an accuracy of 96.08% ± 2.74%, 
ROC-AUC of 99.26% ± 0.94%, and PR-AUC of 99.06% ± 1.13%. Morphological features such as 
perimeter_worst and concave points_mean proved to be dominant, thus improving the clinical relevance 
and interpretability of the model. However, this approach has limitations, such as the limited amount 
of data, potential model inaccuracy on more complex data, the use of default hyperparameters in 
XGBoost that may not be optimal, the risk of SMOTE in generating synthetic samples that may not 
accurately represent the original distribution, and this study has not implemented advanced model 
interpretability methods such as SHAP and LIME, which are recommended for future research to 
improve model transparency in the medical context. As future development directions, it is 
recommended to: 1) Optimize hyperparameters using Grid Search, Random Search, or Bayesian 
Optimization; 2) Explore alternative models such as LightGBM and CatBoost; 3) Combine multimodal 
data (radiology images, genetics, and medical records) and utilize deep learning to build a more 
comprehensive and accurate diagnostic system. 
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