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 Accurate forecasting of electrical power load is essential for properly 
planning, operating, and integrating energy systems to accommodate 
renewables and achieve environmental sustainability. Therefore, this study 
introduces different machine learning (ML) methods, including support 
vector machines (SVM), random forests (RF), extreme learning machines 
(ELM), and extreme gradient boosting (XGBoost) to predict hourly 
electricity demand using electricity consumption and temperature data for 
train and test ML models. The data is processed by autocorrelation 
function (ACF) and cross-correlation function (CCF) to determine the 
appropriate lag time for the inputs. Furthermore, ML model accuracy is 
assessed using coefficient of determination (R²), mean absolute error 
(MAE), and root mean square error (RMSE). Results show that the ELM 
model achieved the highest R² in both summer (0.971) and winter (0.868), 
outperforming the other models in accuracy R² and error reduction (MAE 
and RMSE). ELM also more effectively captured load fluctuations. The 
result of this research has applications for load demand forecasting in the 
proper planning and operation of the residential grid. The results help 
estimate load demand and provide useful guidance for residential grid 
planning and management by determining the best techniques for precisely 
estimating load demand and identifying domestic energy consumption 
patterns. 
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1. Introduction  
Power generation is facing a major challenge from the rising demand for electricity, which will 

increase the utilization of petroleum and harmful emissions [1]–[5]. Due to urbanization and population 
growth, the residential sector is predicted to have the fastest-growing electricity consumption among all 
sectors, with an annual increase of 1.2% by 2040. In addition to consuming more than 40% of global 
power, residential buildings are accountable for one-third of all CO2 emissions [6]–[9]. This rapid 
increase in residential energy consumption places immense strain on the power grid [10], [11]. 
Therefore, accurate electricity consumption prediction is essential in properly planning, operating, and 
integrating energy systems to accommodate renewable energy sources and achieve environmental 
sustainability, thus reducing power grid strain [12]–[15]. Consequently, analyzing electricity 
consumption data and forecasting accurate electricity load demand in buildings is essential for optimizing 
energy use and achieving energy savings. 

On the other hand, energy consumption changes dramatically during the year, and the nature of 
consumption varies from season to season, even day to day, or from time to time due to season 
differentiation of the year and the effect of utilization factors. So, obtaining a real load demand profile 
during the year is very difficult. At the same time, predicting load demand is quite important for each 
energy provider and consumer, which will help make plans to schedule loads based on the available 
generation and is a useful reference for improving energy management. Therefore, several methods have 
been used to forecast loads, such as traditional and modified traditional techniques, including the 
stochastic time series, exponential smoothing, multiple regression, adaptive load forecasting, regression 
method, etc. [15], [16]. However, these methods have low prediction accuracy, and the prediction error 
is high when the weather changes suddenly. In integrated energy systems, one of the most crucial pillars 
for attaining the energy balance among the grid and consumers is effective load prediction. In addition, 
accurate load forecasting is essential to formulate the planning and operation strategies of energy 
generation, transmission, and distribution systems [17]. Some academics looked into how accurate load 
forecasting affected electrical energy systems. For example, Ranaweera et al. [18] examined the effect of 
inaccurate load forecasts, enhancing daily peak load, and the influence of the various year seasons on the 
power systems. In the relevant study, the authors confirmed that load forecasting accuracy would increase 
the economic benefits of the energy systems and markets. In another study, Monforte et al. [19] 
examined load forecasting and developed frameworks for improving energy utilization. They identified 
the alternative methods of load forecasting that provide value to the grid and its consumers. The authors 
identified that the best load forecasting methods are based on ML. Recently, ML methods have been 
used widely for load forecasting. 

Wang et al. [20] utilized RF to forecast building energy consumption. RF model has been compared 
with regression tree (RT), and support vector regression (SVR); they found that the RF outperformed 
SVR and RT in performance index, which were 5–5.5% for SVR and 14–25% for RT, respectively. In 
another work, Shao et al. [6] examined energy consumption forecasting through SVM, and the authors 
showed that the MSE and R2 are equal to 2.22 % and 0.94, respectively. Furthermore, Abbasi et al. 
[21] investigated the prediction of load by using the XGBoost algorithm. In the study, the daily load 
data were converted to weekly data time series, and XGBoost was utilized to extract and select the 
characteristics from the data with the aim of load forecasting. In the relevant study, the mean absolute 
percentage error value equals 10.08%, and the MAE value equals 88.90%, with 97.21% accuracy. Li et 
al. [22] investigated a novel ensemble approach for short-term demand prediction according to three 
different kinds of forecast methods: ELM, partial least squares regression, and wavelet transform. The 
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authors demonstrate how the ELM approach can greatly enhance prediction accuracy. To obtain the 
proper planning and operation of energy management strategies, the load profile must be achieved over 
a period of time. Nevertheless, it is extremely challenging to obtain actual yearly electricity consumption 
curve. Consequently, designers employ a single day's average daily electricity consumption [23]. 
However, the daily average load for one day does not give an accurate description of the load profile due 
to energy consumption changing dramatically during the year, and the nature of consumption varies 
from season to season, even day to day, or from time to time. 

Accurate electricity demand forecasting is critical for efficient power management and system design. 
While previous studies have extensively employed ML algorithms due to their high accuracy, certain 
research gaps persist [24]–[27]. Despite tremendous progress in forecasting energy usage in residential 
buildings, there are still issues with the processing and quality of energy consumption data. In particular, 
current methods frequently fall short of identifying and utilizing the insightful information in this data. 
Thus, enhancing data processing and predicting accuracy are the primary goals of this research. The data 
is first processed and examined utilizing ACF and CCF to improve feature extraction and temporal 
analysis. A number of ML methods, such as RF, SVM, XGBoost, and ELM, are also used to improve 
energy consumption prediction. Model performance is thoroughly assessed using measures like R², 
MAE, and RMSE to ensure a thorough evaluation of their efficacy. This method seeks to fully utilize 
energy consumption data for more precise and trustworthy load forecasting by addressing the current 
constraints.  

2. Method 
To properly design, operate, and assess the energy system's performance and efficiencies, the demand 

for household electrical power must be accurately predicted. Making crucial and accurate decisions, such 
as buying and producing electrical energy, is aided by precise forecasts. Fig. 1 depicts the research 
methodology used in this work, which includes multiple crucial phases. 

 
Fig. 1. The electricity consumption forecasting model schematic diagram 
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The forecasting process uses temperature and load demand data as inputs. Furthermore, these inputs 
are preprocessed using ACF and CCF to enhance the data accuracy and identify pertinent features. Thus, 
ML approaches, including SVM, RF, ELM, and XGBoost, are used to forecast load demand. The ML 
performance is assessed by different key metrics: R², MAE, and RMSE. This structured methodology 
ensures a robust approach to enhance the precision and reliability of electricity demand in the residential 
grid. 

2.1. Machine Learning Algorithms Descriptions 

2.1.1. Support Vector Machine (SVM) 
Cortes [28] proposed the SVM model, which is a kernel-based supervised learning method designed 

to construct the optimal separating hyperplane across distinct categories. This process relies on binary 
classification in the field of arbitrary characteristics and is thus suited for predicting problems. SVM 
might learn and predict the nonlinear relationships between data in higher dimensions, minimizing the 
measured training error and distributing error extent to achieve generalized regression efficiency [29]. 
SVM is actually a productive learning technique founded on efficient optimization theory. The following 
equation can be used to represent SVM [30]. 

𝑓(𝑥) = 𝜛𝜙(𝑥) + 𝑏   () 

where ( )x  is a function that can convert x  into the high-dimensional feature spaces, x  is the 
input data,   and b  are the weights vector and a threshold, respectively, which can be estimated by 
minimizing the following regularized risk function [30]. 

𝑅(𝐶) =
1

2
||𝜛| |2 + 𝐶

1

𝑛
∑ 𝐿(𝑑𝑖 , 𝑦𝑖)𝑛

𝑖=1    () 
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21
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 is the regularized term, C  is the error penalty parameter, n  is the number of the 
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d  is the desired value, and 
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n

i i
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1
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n


 is an error of empirical, in which the function 
ε

L  can be expressed as [30]. 

𝐿𝑘(𝑑, 𝑦) = |𝑑 − 𝑦| − 𝜀|𝑑 − 𝑦 ≥ 𝜀  𝑜𝑟  0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   () 

where ε  is the tube size. The approximated function ( )f x  can be expressed by introducing 
Lagrange multipliers as follows [28]. 

( ) ( ) ( )
n

* *

i i i i i

i=1

, , ,f x K x x b   = − +                    () 

where 
*

i i
,   are Lagrange multipliers, and ( )i

,K x x  is the kernel function. The kernel function 

uses the Gaussian kernel function ( )k
,K x x , which is formulated as [30]. 

( ) ( )2

k k
, expK x x x x= − −                     () 

where   is the parameter of the kernel function 
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2.1.2. Random Forest (RF) 
Breiman  [31] presented the RF model, which used his "bagging" idea to set a collection of decision 

trees with controlled variation. A group of distinct classification and regression trees (CART) that are 
trained using bagging and random variable selection make up the ensemble prediction model known as 
RF [20]. It is also a set of decision trees that are based on the numbers of random vectors sampled 
separately with almost the same frequency for all tree predictors [32]. The RF method is frequently used 
for regression and prediction issues and is designed to give accurate estimation while avoiding overfitting 
the data. The CART utilized in RF depends on the Gini coefficient chosen. The criteria for each child 
node attaining its maximum purity, with all observations on that child node falling into the same 
categorization, is used to determine the Gini coefficient. The following formula can be used to determine 
the Gini coefficient of CART [33]. 

( ) ( )2 1Gini p p p= −                      () 

If a feature A a=  is utilized, D  it is separated into two sections upon passing each segmentation 

point: 1
D  the sample set that satisfies A a=  and 2

D  the sample set that satisfies A a . The Gini 
coefficient with the characteristic requirement is. 

( ) ( ) ( )1 2

1 2
,

D D
Gini D A Gini D Gini D

D D
= +                    () 

where ( ),Gini D A  denotes the uncertainty of D . Each CART in RF is intended to find the 
segmentation point of the feature with the fewest Gini coefficients by continually iterating over each 
possible segmentation point of the feature in the tree and dividing the data set into two subsets until 
the stop condition is met. 

2.1.3. Extreme Learning Machine (ELM) 
The ELM model was first presented by Huan [34], who claimed it could learn faster than feed-

forward neural network (FFNN) algorithms with greater generalization capabilities at incredibly fast 
learning speeds. For single-layer feed-forward networks (SLFNs), ELM is a sophisticated data-driven 
technique that defines the output weights of SLFNs analytically and chooses hidden nodes at random. 
An input layer, a hidden layer (made up of neurons), and an output layer make up the ELM model. 
Classical FFNN models require tuning of all model parameters, whereas the ELM model does not 
require tuning of the hidden layer. With the lowest training error and the smallest weight norm, the 
network outperforms gradient descent and backpropagation techniques in terms of enumerated capacity. 

In general, the ELM model with  hidden nodes and an activation function ( )g x  can be expressed 
as follows  [35]. 

( )i i i j i j

i=1

, 1, 2,....g w x B z j N  + = =                    () 

where  
T

i i1 i2 i3 in
, , ,....,w w w w w=  is the weight vector connecting the ith hidden node and the input 

nodes,  
T

i i1 i2 i3 im
, , ,....,    =  is the weight vector connecting the ith hidden node and the output 
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nodes, i
B  is the threshold of the ith hidden node and ( )i i j i

g w x B +
 is hidden layer output function, 

and i j
w x  denotes the inner product of i

w , j
x , and j

z  is the ELM model output.  

The above equation can be reformulated in the following matrix form: 

H Z =                        () 

( )

( ) ( )

( ) ( )

1 1 1 1

1 1 1

1 N 1 N N

...

,..., , ,..., , ,..., ... ... ...

...

g w x B g w x B

H w w B B x x

g w x B g w x B


 +  +

=

 +  +

 
 
 
  

             () 

T

1

T

m

...








=

 
 
 
 
 

                     () 

T

1

T

N N×m

...

Z

Z

Z

=

 
 
 
 
 

                    () 

2.1.4. Extreme Learning Machine (ELM) 
The XGBoost model presented by Chen [36] is an innovative implementation method with gradient 

boosting machines, specifically K classification and regression trees (CART). The technique was inspired 
by the concept of "boost," which aggregates all the predictions of a group of "weak" learners in order to 
build a "strong" learner using progressive training methods. The XGBoost model is designed to avoid 
overfitting while simultaneously minimizing computational expenses. This is accomplished by 
simplifying the goal functions, which allow for the combination of forecasting and regularization 
components while preserving appropriate computational speed. During the training period, simultaneous 
calculations are also performed for the functionalities in the XGBoost model. The general prediction 
function of the XGBoost model at step t can be expressed as follows [37]. 

( ) ( ) ( )t t-1

t i
f f f x= +                     () 

where ( )t
f  is predictions at steps t, ( )t-1

f  is the predictions at steps t−1, ( )t i
f x  is the learner at 

step t, and 
i

x  is the input variable. 

The analytic expression is used in the XGBoost model to prevent over-fitting issues without 
compromising the arithmetic speed of the model, which is presented as follows: 

( ) ( ) ( )
n t

t

k=1 k=1

,
i i i

obj l y y f= +                     () 

where l  is the loss function, n  is the used observations number, and   is the regularization term, 
which is formulated as: 

( )
21

2
f T   = +                     () 
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where   is the minimum loss, and   is the regularization parameter 

2.2. Statistical Metrics and Performance Estimation 
The efficacy of machine learning models to forecast the hourly load was evaluated in the current 

study using a few statistical criteria. It is recommended that this study make use of the R2, MAE, and 
RMSE. The best value of R2, which indicates good agreement, is 1, which quantifies the degree of 
agreement between the observation and prediction data. However, the systematic error was measured 
using the MAE and RMSE, and 0 is the ideal value. The calculation of the above-mentioned indices is 
as follows [38]–[41]. 

2
n

i i

2 i=1

n n
2 2

i=1 i=1

( )( )

( ) ( )
i i

X X Y Y

R

X X Y Y

− −

=

− −

 
 
 
 
 
 



 
                  () 

n

i i

i=1

X Y

MAE
n

−

=


                                  () 

n
2

i i

i=1

1
( )RMSE X Y

n
= −                                  () 

where i
X and i

Y  represent the observed and predicted values at  hour, while X  and Y  represent 
the observed and predicted mean values, respectively. 

2.3. Load Data Used in this Study 
Residential households' electricity consumption fluctuates throughout the course of a given day in 

rather predictable ways [42]–[47]. Electricity is used in almost every household in the United States. 
When most people are sleeping at night, the least amount of electricity is used. Every day, around 5:00 
am, the least amount of power is often requested, and depending on the season, the peak demand 
happens at some point during the day before declining in the late evening. Because homes utilize air 
conditioning on hot days, the US residential sector uses a lot of electricity during summer, when the 
afternoon load rises. Although the amount of energy used during the winter months is less variable than 
it is during the summer, there are still morning and evening peaks due to the need for space heating and 
water heating [48]. In the United States, residential users use between 29.7 and 40.1 kWh per day and 
between 893 and 1200 kWh per month [49]. The Northwest Energy Efficiency Alliance (NEEA) 
provided the load profile data used in this investigation [50]. This dataset includes hourly resolution 
power demand for a year, covering energy end users in 101 Pacific Northwest-US residences [51]. 

2.4. Data Processing 
Processing of data used: to determine the appropriate lag time for the inputs, this investigation 

applied a mathematical approach proposed by Sudheer et al. [52]–[54]. The approach relies on the 
hypothesis that potential contributing variables with varying time lags could be found through data series 
interpretation and statistical analysis, including ACF and CCF. Using ACF and CCF, this study 
established the best lag time of the inputs. The summer and winter seasons' maximum three-lag times 
for energy consumption were established for ACF > 0.6 and ACF > 0.4, respectively. However, the 

i
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maximum four-lag time of mean temperature in the summer and winter was found to be CCF > 0.6 and 
CCF > 0.4, respectively. During the applications, the models were trained using 80% of the original data 
and tested using 20% of the end data. 

3. Results and Discussion 
Scatter plots of predicted and actual load demand for a variety of ML models, such as RF, ELM, 

SVM, and XGBoost, are shown in Fig. 2 and Fig. 3, respectively, for the winter and summer seasons. 
The forecast accuracy of each model under both seasonal settings is shown graphically in these figures. 

A number of statistical measures, including the R², RMSE, and MAE, were utilized to evaluate the 
degree of agreement and the magnitude of error between the projected and actual load demand in order 
to quantify the accuracy of these predictions. The R² values, which show the percentage of variance in 
the observed data that can be accounted for by the model's predictions, are especially instructive. 

 
Fig. 2. Hourly load evaluations from various ML models throughout the testing phase over the winter are 

displayed in scatter plots 

 
Fig. 3. Hourly load evaluations from various ML models throughout the testing phase over the summer are 

displayed in scatter plots 
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Furthermore, according to several ML algorithms, Fig. 4 and Fig. 5 compare the actual and 
anticipated electricity consumption for the winter and summer. The findings show that the ELM 
algorithms outperform others throughout winter and summer in capturing the peak load demand. All 
things considered, the ELM model shows great potential and capability for simulating electricity use. 

 
Fig. 4. Comparison of the forecasted and real electricity consumption over the winter months using several 

ML algorithms 

 
Fig. 5. Comparison of the forecasted and real electricity consumption over the summer months using several 

ML algorithms 

3.1. Winter Season Analysis 
During the winter season (Fig. 2), the R² values for each model show in Table 1. 

Table 1.  Winter Season Performance Metrics 

Model R2 MAE RMSE 
RF 0.863 0.12 0.17 

XGBoost 0.867 0.11 0.17 
SVM 0.839 0.12 0.19 
ELM 0.868 0.10 0.17 
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As shown in the Table 1, ELM yields the highest R² value (0.868) in the winter season, closely 
followed by XGBoost (0.867). This indicates that both models offer excellent predictive accuracy, but 
ELM slightly outperforms the others in capturing the variation in load demand. Furthermore, the ELM 
model demonstrates the smallest MAE (0.10) and RMSE (0.17), suggesting that it consistently delivers 
more accurate predictions with lower errors compared to the other models. The RF model, while still 
effective, shows slightly higher values for MAE (0.12) and RMSE (0.17), indicating it is less precise than 
ELM. 

3.2. Summer Season Analysis 
During the summer season (Fig. 3), the R² values for the models improve significantly, as show in 

Table 2. 

Table 2.  Summer Season Performance Metrics 

Model R2 MAE RMSE 
RF 0.965 0.09 0.12 

XGBoost 0.969 0.07 0.10 
SVM 0.956 0.09 0.12 
ELM 0.971 0.06 0.10 

 
In the summer season, the ELM model achieves the highest R² value (0.971), followed closely by 

XGBoost (0.969). These results suggest that the predictive accuracy of all models improves during the 
summer, likely due to more consistent patterns in electricity consumption. With the lowest MAE (0.06) 
and RMSE (0.10), ELM once again performs exceptionally well, demonstrating its capacity to produce 
incredibly precise and dependable forecasts. Even while it is still useful, the RF model's greatest error 
scores for both MAE (0.09) and RMSE (0.12) demonstrate how limited it is in comparison to ELM in 
terms of forecasting load demand in the summer. 

3.3. Discussion 
The ELM model's superior R² values and the lowest MAE and RMSE show that it outperforms the 

other ML algorithms (RF, SVM, and XGBoost) in both the winter and summer months. This indicates 
that the ELM model is especially helpful for precise load forecasting in home energy systems since it is 
very good at identifying the underlying patterns in load demand and reducing prediction errors. Since 
temperature and other climatic conditions usually lead to higher and more consistent demand, the 
improvement in predictive performance during the summer months across all models is probably the 
result of more predictable patterns of power consumption. On the other hand, winter load demands 
could be more variable due to variables like heating needs, which are harder to forecast precisely. 

The RF model continually performs worse than ELM and XGBoost in terms of error metrics (MAE 
and RMSE), despite its encouraging results. This implies that although RF is able to identify certain 
trends in the data, it is not as good at simulating load demand as the other models, especially in the 
winter and summer. Despite being a robust model, SVM routinely outperforms XGBoost and ELM, 
particularly in the winter, with a slightly lower R2 and greater MAE and RMSE. These results imply 
that the ELM model is very appropriate for predicting residential load demand in terms of real-world 
implementation. It is a great option for energy generation and purchase decision-making processes 
because of its accuracy in modeling peak load demand. Further increasing its usefulness in energy system 
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planning and operation is the fact that it performs well in both the winter and the summer, suggesting 
that it can be dependably utilized all year round. 

Lastly, this study shows how crucial it is to choose the right machine learning model for load 
forecasting, with ELM turning out to be the best option for both the winter and summer. To further 
enhance the accuracy of load demand projections, research should investigate the incorporation of more 
intricate elements, including time-series data or outside variables. 

4. Conclusion 
This study evaluated different ML model performances, such as RF, SVM, XGBoost, and ELM, to 

predict the load demand of the residential sector. To train and test the models, hourly temperature and 
electricity consumption data were used. The ACF and CCF were used in the preprocessing steps to 
determine the proper fall timings. MAE, RMSE, and R² were the evaluation criteria that showed the 
ELM model consistently beat other models. ELM had the lowest MAE (0.10) and RMSE (0.17) during 
the winter, with an R² of 0.868, suggesting better accuracy and less prediction error. Furthermore, 
demonstrating its resilience to seasonal fluctuations, ELM achieved the maximum R² value of 0.971 in 
the summer, with the minimum MAE (0.06) and RMSE (0.10). Among the different ML algorithms 
examined, the ELM algorithm proved to be the most dependable due to its exceptional ability to capture 
patterns of low-variation electricity usage and peak load demand. Although RF and SVM models had 
significantly lower accuracy and greater error metrics, XGBoost also showed outstanding prediction 
skills, coming in just below ELM. While winter forecasts presented additional difficulties because of 
increased demand fluctuation, the seasonal study showed that predictive accuracy was better during the 
summer months due to more stable patterns of electricity usage. This study emphasizes how precise load 
forecasting for residential systems has real-world applications in resource optimization, energy generation 
planning, and purchasing decisions. Since ELM is the best model for forecasting household electricity 
load demand, this study provides important information about how to choose appropriate machine 
learning models for energy management systems. Future research could investigate the incorporation of 
other elements, such as behavioral patterns, socioeconomic data, and time-series features, to improve 
machine learning models' prediction capabilities. Furthermore, combining real-time forecasting skills 
with hybrid machine learning techniques may enhance flexibility in response to changing patterns in 
energy usage, facilitating the creation of intelligent and more effective energy systems. 
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