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1. Introduction  
Heart disease is a health condition that disrupts the performance of the heart and blood vessels. Heart 

disease includes a number of conditions, namely coronary artery disease (CAD), heart arrhythmias, heart 
valve disease, cardiomyopathy (heart muscle disease), and congenital heart disease. Heart disease is one 
of the diseases that exposes high mortality worldwide [1]. Based on the World Health Organization 
(WHO) data, around 17.9 million deaths are caused by heart disease per year [2]. The American Heart 
Association stated  121.5 million Americans suffered from heart disease in 2016 [3]. In Indonesia itself, 
heart disease causes 14.38% of deaths in Indonesia [4]. The detection of heart disease is usually 
conducted by examining several factors, such as blood pressure, blood sugar level, and also cholesterol 
level. Moreover, ECG signal is also used to detect irregularities of heart beats which may indicate a heart 
disease. This conventional way of predicting heart disease is usually expensive, time-consuming, and 
prone to human error [5]. Early detection of heart disease is important as it helps to prevent deaths 
caused by this disease [6], [7].  
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 Heart disease is one of the diseases that exposes high mortality worldwide. 
This conventional way of predicting heart disease is usually expensive, time-
consuming, and prone to human error. Early detection of heart disease is 
important as it helps to prevent deaths caused by this disease.  Machine 
learning utilization as the non-invasive means for predicting heart disease 
is considered as a fast and affordable method to prevent the fatality of heart 
disease. This work aims at utilizing  Convolutional neural network (CNN)  
to enhance the performance of an Arrhythmia prediction model. We have 
built an Arrythmia prediction model using neural networks comprising 
multiple convolutional layers and maxpooling layers. Our proposed model 
is trained using the MIT-BIH Arrhythmia dataset. The model performance 
has been evaluated and the model achieves  98.43% of performance  
accuracy. 
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In this Artificial Intelligence (AI) era, various AI based disease prediction models have been developed 
by biomedical researchers. The advancement of AI based disease prediction models are driven by two 
main factors: the availability of abundant patient data which provide valuable insights and the machine 
learning techniques to recognize patterns from the data. With respect to heart disease prediction, various 
machine learning based models have been developed. Machine learning utilization as the non-invasive 
means for predicting heart disease is considered as a fast and affordable method to prevent the fatality of 
heart disease. Hungary, Cleveland, Long Beach, Switzerland, and Framingham datasets are most 
commonly used datasets to predict CAD [8]. They are used widely by biomedical researchers to build 
CAD predictive models [9]–[13]. Almustafa [9] built a CAD predictive model using Decision Tree, K-
Nearest neighbour, and JRip with a performance accuracy of  99.70%. Gárate-Escamila et al [10] 
implemented PCA for feature extraction and built a CAD predictive model using Random forest 
classifier.  It achieved a performance accuracy of 99%. Ghosh et al [11] utilized Relief and Least Absolute 
Shrinkage and Selection Operator (LASSO) feature selection methods and trained a CAD predictive 
model using various ensemble methods including Decision Tree, Random Forest, K-Nearest Neighbors, 
AdaBoost, and Gradient Boosting. The model successfully achieved 99.05% of prediction accuracy.  
Fitriyani et al [12] used DBSCAN to eliminate anomalies from the dataset, SMOTE-ENN to balance 
the training data distribution, and XGBoost to classify the CAD. It achieved 98.40% performance 
accuracy. 

Besides the aforementioned CAD prediction studies, previous researchers also utilized neural 
networks to build CAD prediction models. Convolutional Neural Networks (CNN) has been widely used 
to build neural networks based CAD prediction models. Shen et al [13] implemented 3D Fully 
Convolutional Network and gained 90.05% performance accuracy. Acharya et al [14] implemented 11-
layer deep CNN and achieved 95.22% performance accuracy. Sofian et al [15] utilized 34 layers of residual 
networks, ResNet101, and gained 99.49% accuracy.  Tan et al [16] utilized 8 layers of deep CNN and 
gained 99.85% of performance accuracy in CAD prediction. Previous studies have shown that 
convolutional network based architectures have a stable performance in CAD prediction with the 
accuracy gained is beyond 90%. 

Apart from CAD prediction, machine learning and neural networks methods have been utilized for 
Arrhythmia detection. Arrhythmia is defined as a condition in which the heart beats with irregular or 
abnormal rhythm. The most popular dataset used in Arrhythmia detection is the MIT-BIH Arrhythmia 
dataset [17], [18].  This dataset has been used in [19]–[21]. Yıldırım at al [20] used  one-dimensional 
CNN to predict Arrhythmia on long duration ECG based on the MIT-BIH Arrhythmia dataset and 
achieved 91.33% of accuracy. Chen et al [20] developed Arrhythmia prediction model by using a 
combination of CNN and Long Short Term Memory (LSTM) and showed 99% performance accuracy. 
Hammad et al [21] utilized a combination of CNN and Convolutional LSTM in the Arrhythmia 
prediction model architecture and achieved 98% of accuracy. Although the accuracy gained by previous 
models in predicting Arrhythmia is remarkably good, those models tend to have complex architectures 
that result in a huge number of parameters to train, which affects the computational resources needed 
to train the models.   

This work aims at utilizing CNN to enhance the performance of an Arrhythmia prediction model. 
The experiments are conducted to see if the ability to recognize Arrhythmia patterns can be maximized 
by using convolutional layers and pooling layers only. We build a simple neural network architecture to 
minimize the number of trained parameters but to achieve a decent performance accuracy. Our proposed 
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model comprises multiple convolution layers with various dimensions. Moreover, our paper is organized 
as follows: introduction, the algorithm, proposed method, results and discussion, and conclusion. 

2. The Proposed Method/Algorithm  

2.1. Convolutional Neural Networks 
Deep learning (DL) has emerged as a state-of-the-art algorithm in artificial intelligence, driven by 

the availability of large datasets [22]–[25]. DL consists of multiple sequential layers where inputs are 
passed to the next layer in a feed-forward manner. Higher-level layers learn more abstract representations 
of the input data to perform specific tasks and generate outputs [26]–[28]. Deep learning models consist 
of hidden layers that learn and correct errors through the backpropagation algorithm [29]. Unlike 
traditional machine learning algorithms, which often require extensive feature extraction and selection 
that makes them slower and more computationally expensive, deep learning models automatically extract 
useful features from data [30], [31]. A study [32] even demonstrated that a deep learning model 
outperformed cardiologists in predicting arrhythmias from ECG signals. In many medical fields, deep 
learning has demonstrated an outstanding performance in improving prediction accuracy and reducing 
costs [30], [32], [33]. This success is largely attributed to its ability to learn complex features directly 
from raw data, eliminating the need for extensive preprocessing and feature engineering [23], [25], [34].  

Despite its advantages, deep learning faces several challenges that hinders the implementation of this 
algorithm, such as increased training time due to the multiple layers in its architecture [31] and a large 
number of parameters used, which can lead to overfitting and higher computational complexity [24]. 
Additionally, in domains like ECG classification, training data is often limited, making it difficult to 
achieve optimal performance [23], [32]. Parameter optimization is also a crucial but time-consuming 
process, as selecting the most suitable hyperparameters significantly impacts model performance [35]. 

Convolutional Neural Networks (CNN) are among the most commonly used deep learning models 
[25], [26], [30]. CNNs work similarly to the human visual system, making them particularly effective 
for computer vision tasks such as image classification and object detection [36]–[41]. They are especially 
powerful in feature extraction and classification [22]. However, CNNs performance heavily depends on 
the size of the training dataset [29]. 

In ECG classification tasks, CNNs play a crucial role in identifying the best feature representations 
from input data and analyzing those features for accurate categorization [42]. A typical CNN architecture 
consists of convolutional layers, pooling layers, normalization layers, and fully connected layers, each 
serving a specific role in transforming input data into meaningful representations [35], as shown in Fig. 
1. The fully connected layer is responsible for classification, while other layers are in charge of feature 
extraction [26]. Through convoluting and subsampling, CNNs extract essential features from input data 
using kernels or filters, which generate feature maps [22], [25], [43]. The overall CNN architecture can 
be adjusted by modifying parameters such as the number of convolutional layers, kernel size, stride, the 
number of neurons in fully connected layers, and learning rate [22], [44]. 

Although CNNs were originally designed for two-dimensional data, they have been successfully 
adapted for one-dimensional data sequences. 1D CNNs are particularly effective in integrating both 
feature extraction and classification into a single learning body, eliminating the need for domain 
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expertise, making them suitable for real-time monitoring as it is more compact and faster [37], [45]. 
The primary difference between 1D and 2D CNNs lies in the dimensionality of the arrays used for kernel 
weights, inputs, and outputs.  

 
Fig. 1. Illustration of CNN Architecture [36] 

2.2. Performance Metrics 
A confusion matrix is widely used to evaluate the performance of classification models [45]. This 

metric summarizes the number of instances in the test sets that are correctly and incorrectly classified. 
A true positive (TP) occurs when the model correctly identifies a positive instance as positive, while a 
false positive (FP) occurs when the model incorrectly classifies negative instance as positive. On the other 
hand, a true negative (TN) represents the number of negative instances correctly identified as a negative 
class, whereas a false negative (FN) occurs when the model incorrectly classifies a positive instance as 
negative.  

These metrics are used to calculate various performance criteria, such as accuracy (ACC), precision 
(PRE), Recall or sensitivity (SEN), and F1 score [46], [47]. Precision measures the proportion of 
correctly identified positive instances out of all positive instances predicted by the model. A high 
precision value indicates the model rarely misclassified negative instances as positive [45]. In medical 
applications, high precision signifies the model’s ability to correctly detect disease while minimizing false 
alarms [46].  Recall or sensitivity measures the proportion of correctly classified positive instances relative 
to all true positive instances. F1 score combines both precision and recall into a single value, providing 
a balanced evaluation on the model’s performance. Additionally, accuracy represents the ratio of correctly 
classified positive and negative instances to total number of observations in the test sets. However, 
accuracy needs to be interpreted with caution, as it is influenced by class imbalance in the dataset [46].  

The mathematical formulations of those evaluation criteria are defined as follows [46], [47]: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
   () 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   () 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   () 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2∗(𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
   () 
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3. Method 
In this section, the dataset, the neural network architectures, and the hyperparameter setting used in 

the experiments are described. 

3.1. Dataset  
In this work, the MIT-BIH Arrhythmia dataset is used to train the arrhythmia prediction model. 

This dataset is taken from the Physionet repository [16]. The dataset originated from The MIT-BIH 
Arrhythmia database which contains 48 half-hour excerpts of two-channel ambulatory ECG recordings. 
It was obtained from 47 subjects studied by the BIH Arrhythmia Laboratory between 1975 and 1979. 
Twenty-three recordings were arbitrarily chosen from a set of 4000 24-hour ambulatory ECG recordings. 
The recordings were collected from a mixed population of inpatients (about 60%) and outpatients (about 
40%) at Boston's Beth Israel Hospital. The MIT-BIH Arrhythmia dataset was initially used in [18].  

The MIT-BIH Arrhythmia dataset contains 100,689 data with 32 features. The target class for the 
dataset consists of five classes including ‘F’ (Fusion Beats), ‘N’ (Normal), ‘Q’ (Unknown Beats), ‘SVEB’ 
(Supraventricular ectopic beats), ‘VEB’ (Ventricular ectopic beats).  The dataset is actually imbalanced. 
The distribution of instances in the dataset is shown in Fig. 2. 

 
Fig. 2. Data Distribution in The MIT-BIH Arrhythmia Dataset 

We split the dataset randomly  into training dataset and test dataset with the proportion of 70:30. 
Moreover, we split the training dataset for training and validation with the proportion of 90:10 

3.2. Network Architecture 
In this work, we propose a neural network based arrhythmia prediction model. We propose a neural 

network architecture comprising multiple convolutional layers to extract the valuable information from 
the MIT-BIH dataset.  The details of the network is shown in Fig. 3. The network receives an input of 
length 32 (as it has 32 features). The network then passes the input into multiple convolutional layers 
in which each layer includes a 1D convolution layer and a 1D maxpooling layer.  The multiple 
convolutional layers are then followed by a flatten layer, to transform the resulting feature maps into a 
one-dimensional data. The last layer in the network architecture is the dense layer which produces the 
final result of the arrhythmia classification. During the experiment, the configuration of the 
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convolutional layers is tested out. Several configurations are tried and the one leading to the best 
classification performance is selected to build the final model. 

 
Fig. 3. The proposed neural network architecture 

3.3. Hyperparameters 
Hyperparameter setting plays an important role in the neural network training to shape the quality 

of the resulting model.  In this work, we utilize the hyperparameter settings as shown in Table 1. 

Table 1.  Hyperparameter settings in the proposed neural network model 

No Hyperparameter Value 

1 Optimizer Adam 

2 Callbacks EarlyStopping with: 
patience : 20 

variable to monitor: validation loss 

3 Batch Size 32 

4 Epoch 100 

4. Results and Discussion 

4.1. Experiment Results 
We have built three different network architectures comprising multiple convolutional layers and 

maxpooling layers to recognize hidden patterns of the MIT BIH Arrhythmia dataset (Fig. 4 depicts the 
details of each architecture). The first architecture, called Conv753-64, consists of a 1D-convolutional 
layer with filter/kernel size of 7, a 1D-convolutional layer with filter/kernel size of 5, a 1D-convolutional 
layer with filter/kernel size of 3, a 1D-maxpooling layer following each convolutional layer, a flatten 
layer, and a fully connected (dense) layer. The number of filters/kernels used in the first architecture is 
64. The second architecture, called Conv753-128, has an identical network composition compared to 
the first one, except that it uses 128 filters/kernels. The third architecture, called Conv75-128, consists 
of only two 1D-convolutional layers with filter/kernel size of 7 and 5, a 1D-maxpooling layer following 
each convolutional layer, a flatten layer, and a fully connected (dense) layer. The third architecture also 
used 128 filters/kernels.  
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Fig. 4. Detailed Network Architectures 

Table 2 shows the accuracy gained by each architecture. 

Table 2.  Performance Accuracy 

Model Accuracy (%) 

Conv753-64 98.38 

Conv753-128 98.43 

Conv75-128 98.21 

 
Besides the accuracy, we also examine the number of correctly predicted instances (True Positive) 

given by each model (shown in Table 3).   

Table 3.  The number of correctly predicted instances in each class 

 Class Correctly Predicted Instances 
Conv753-64 F 165 

N 26896 
Q 0 

SVEB 688 
VEB 1970 

Conv753-128 F 175 
N 26861 
Q 0 

SVEB 652 
VEB 1978 

Conv75-128 F 195 
N 26879 
Q 0 

SVEB 708 
VEB 1950 
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The experiment results show that all models failed to predict a Q (unknown beats) instance.  Conv75-
128 can predict F (Fusion) and SVEB (Supraventricular ectopic beats) instances better than other 
models.  Conv753-64 can predict N (normal beats) instances better than other models. Conv753-128 
can predict VEB (Ventricular ectopic beats) instances better than other models. 

Moreover, we also examine the precision, recall and F1-score achieved by each model. Table 4 shows 
the results. Conv753-64 predicts SVEB and VEB better than the other models as indicated in the 
precision, recall, and F1-Score achieved on those classes.  All the models achieve identical precision, 
recall, and F1-score for N class. 

Table 4.  Classification metrics: Precision, Recall, and F1-Score by class 

 Class Precision Recall F1-Score 
Conv753-64 F 0.88 0.68 0.77 

N 0.99 0.99 0.99 
Q 0 0 0.00 

SVEB 0.88 0.82 0.85 
VEB 0.96 0.95 0.95 

Conv753-128 F 0.90 0.72 0.80 
N 0.99 0.99 0.99 
Q 0.00 0.00 0.00 

SVEB 0.87 0.78 0.82 
VEB 0.94 0.95 0.94 

Conv75-128 F 0.86 0.80 0.83 
N 0.99 0.99 0.99 
Q 0.00 0.00 0.00 

SVEB 0.86 0.84 0.85 
VEB 0.96 0.94 0.95 

 
The experiment results show that Conv753-128 architecture produces the highest overall 

performance accuracy compared to the other architectures. Hence, we select this architecture to build 
the final model. The output size of each layer in Conv753-128 architecture as well as the number of 
parameters in each layer is shown in Table 5. Conv753-128 architecture has 132,997 total parameters, 
including 132,997 trainable parameters and 0  non-trainable parameters. 

Table 5.  Output shape and number of parameters 

Layer (type) Output Shape Param # 

Conv1D (Non, 26, 128) 1,024 

MaxPooling1D (None, 13, 128) 0 

Conv1D (None, 9, 128) 82,048 

MaxPooling1D (None, 4, 128) 0 

Conv1D (None, 2, 128) 49,280 

MaxPooling1D (None, 1, 128) 0 

Flatten (None, 128) 0 

Dense (None, 5) 645 
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4.2. Discussion 
Based on the experiment results, there are two variables that contribute significantly to the 

performance of convolutional network based models. The first variable is the kernel/filter size. In this 
work, we use kernel/filter sizes of 7, 5, and 3.  We use small kernel/filter size with the intention to 
analyze small patterns in the data. Eliminating the third convolutional layer (conv layer with kernel size 
of 3) from the model architecture (the Conv75-128 case) has reduced the overall performance of the 
model. The second variable affecting model performance is the number of kernels/filters used in each 
convolutional layer.  Our experiment shows that when more filters are used in each convolutional layer 
(i.e 128 compared to 64), the overall performance of the model is also increased. The reason is clear 
because the more filters are used, the richer feature maps are generated and the model may learn more 
patterns from the data.  

The experiments also show that all models have not successfully predicted a Q instance. In fact, the 
number of Q instances is very small (only 5 instances in the test set, 10 instances in the training set). 
The models failed to recognize the Q traits because the dataset does not have sufficient instances. In this 
work, we do not attempt to pre-process the dataset such that a more balanced dataset is generated, 
because we want to observe the capability of convolutional layers to recognize patterns directly from the 
imbalanced dataset. We found that although our models failed to recognize Q instances, our models are 
able to achieve a satisfying performance in predicting F and SVEB instances despite their limited number 
of instances. Thus, without balancing the dataset, the models are still able to learn patterns that 
differentiate each target class. 

5. Conclusion 
We have conducted experiments to observe three different neural network models utilizing 

convolutional layers to predict Arrhythmia. We use the MIT-BIH Arrhythmia dataset to build our 
models. Our final model architecture consists of a 1D-convolutional layer with filter/kernel size of 7, a 
1D-convolutional layer with filter/kernel size of 5, a 1D-convolutional layer with filter/kernel size of 3, 
a 1D-maxpooling layer following each convolutional layer, a flatten layer, and a fully connected (dense) 
layer. Each convolutional layer uses 128 kernels/filters. Our model has been tested using 30% instances 
of the dataset and achieved 98.43% of accuracy. Besides accuracy, our model also shows a positive result 
by having a decent precision, recall, and F1-score for all classes, except Q, which is likely due to 
insufficient number of instances. Our model also has a relatively small number of parameters, which 
indicates that it does not require much computational resources. 
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