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1. Introduction  
In recent years, machine learning techniques have become integral to addressing complex 

classification challenges across various fields [1]. These techniques offer significant advantages in 
identifying underlying patterns and structures within large and high-dimensional datasets, thereby 
enabling more accurate predictions and data-driven insights [2], [3]. One such technique, clustering, 
plays a pivotal role in grouping data points based on their inherent similarities, facilitating a more 
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 This study explores the application of machine learning techniques, 
specifically classification, to improve data analysis outcomes. The primary 
objective is to evaluate and compare the performance of Decision Tree and 
Random Forest classifiers in the context of a structured dataset. Using the 
Elbow Method for optimal clustering alongside decision tree and random 
forest for classification algorithms, this research investigates the 
effectiveness of each method in accurately categorizing data. The study 
employs K-Means clustering to segment the data and Decision Trees and 
Random Forests for classification tasks. Dataset used in this research was 
obtained from Kaggle consisting of 13 attributes and 1048575 rows, all of 
which are numeric. The key results show that Random Forest outperforms 
Decision Trees in terms of classification accuracy, precision, recall, and F1 
score, providing a more robust model for data classification. The 
performance improvement observed in Random Forest, particularly in 
handling complex datasets, demonstrates its superiority in generalizing 
across varied classes. The findings suggest that for applications requiring 
high accuracy and reliability, Random Forest is preferable to Decision 
Trees, especially when the dataset exhibits high variability. This research 
contributes to a deeper understanding of how different machine learning 
models can be applied to real-world classification problems, offering 
insights into the selection of the most appropriate model based on specific 
data characteristics. 
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effective analysis of the data. The Elbow Method is a widely adopted approach for determining the 
optimal number of clusters, relying on the principle that the sum of squared distances between data 
points and their respective cluster centroids decreases with the addition of more clusters, but at a 
diminishing rate beyond a certain threshold [4]–[6].  

Classification, a supervised learning task, builds upon clustering by assigning data to predefined 
categories or classes based on learned patterns [7], [8]. Among the most widely used classifiers are 
Decision Trees and Random Forests, which have demonstrated their effectiveness in a range of 
applications. Decision Trees provide a straightforward, interpretable approach to classification by 
recursively partitioning the data based on feature values [9]. However, their performance can degrade 
when faced with overly complex datasets, often leading to overfitting [10]. Random Forests, an ensemble 
learning method, address this issue by aggregating the predictions of multiple Decision Trees, thereby 
enhancing model robustness and improving generalization [11]. 

This research aims to explore and compare the performance of Decision Tree and Random Forest 
classifiers within the context of a structured dataset through the use of performance metrics containing 
accuracy, precision, recall, and f1-score. By assessing their classification accuracy and generalization 
capabilities, the study seeks to provide a deeper understanding of their strengths and limitations. The 
findings aim to inform decisions on which machine learning models are best suited for specific 
classification challenges, ultimately contributing to the optimization of machine learning workflows. 

2. Method 
The research process in this study is organized into stages as shown in Fig 1. It begins with data 

collection, followed by preprocessing, where the data undergoes normalization to ensure consistency. 
The next stage applies Principal Component Analysis (PCA) for dimensional reduction, which then K-
Means clustering is performed to group the data, and classification is carried out using Decision Tree 
and Random Forest models. Finally, the models are evaluated based on their accuracy and performance 
metrics to determine effectiveness. 

 
Fig. 1. Data Processing Flow 
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2.1. Data Collection  
     Dataset used for this research consists of sensor data collected from a Permanent Magent 

Synchronous Motor (PMSM) deployed on a test bench by LEA department at Paderborn University, 
accessed through Kaggle titled “Electric Motor Temperature” [12]. The dataset consists of 13 attributes 
as presented in Table 1 along with the descriptions and 1048575 rows, with each row representing one 
snapshot of sensor data at a certain time step. 

Table 1.  Attributes in Electric Motor Temperature 

Attributes Description 
u_q Voltage q-component measurement in dq-coordinates (in V) 

coolant Coolant temperature (in °C) 
stator_winding Stator winding temperature (in °C) measured with thermocouples 

u_d Voltage d-component measurement in dq-coordinates 
stator_tooth Stator tooth temperature (in °C) measured with thermocouples 
motor_speed Motor speed (in rpm) 

i_d Current d-component measurement in dq-coordinates 
i_q Current q-component measurement in dq-coordinates 

pm Permanent magnet temperature (in °C) measured with thermocouples and transmitted wirelessly via a 
thermography unit. 

stator_yoke Stator yoke temperature (in °C) measured with thermocouples 
ambient Ambient temperature (in °C) 
torque Motor torque (in Nm) 

profile_id Measurement session id. Each distinct measurement session can be identified through this integer id. 
 

2.2. Data Preprocessing 
Prior to data normalization, the 'profile_id' column was removed from the dataset, as it is an identifier 

rather than a feature relevant to the model. This step ensures that only the necessary features are included 
for normalization. Data Normalization is a widely used data preprocessing technique that scales or 
transforms data to ensure equal contribution of each feature, adjusting the data to meet consistent impact 
in analysis and modeling [13], [14]. The normalization techniques used in this research are: 

• Min-Max Normalization, a normalization method that performs a linear transformation to rescale 
data from one range to another, ensuring a balanced comparison between the original and 
transformed values [15], [16].  This method uses the formula expressed in Equation (1) to 
transform the data to the target range which in this research is 0 to 1. 

𝑥 =  
(𝑥)−𝑚𝑖𝑛 (𝑥) 

𝑥−𝑚𝑖𝑛 (𝑥)
   () 

• Z-Score Normalization, this method is performed by rescaling the data to have zero mean and unit 
variance, achieved by subtracting the mean and dividing by the standard deviation, a technique that 
standardizes both the mean and variance of gradients across layers, ensuring consistent scaling [17]. 
The method is shown in Equation (2). 

𝑧 =
 𝑥− 𝜇

𝜎
   () 
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The normalized data is subsequently divided into training and testing sets to ensure the model is 
trained on one subset and evaluated on another, facilitating unbiased performance assessment [18]. Data 
split show in Fig. 2. 

 
Fig. 2. Data Split 

Data splitting is a crucial step in ensuring that the model is trained and tested on distinct subsets of 
the data, helping to prevent overfitting and ensuring generalization [19]. For this study, the dataset is 
split into 70% for training and 30% for testing. The training data is used to build the model, while the 
testing data is reserved for evaluating its performance. This method ensures that the model's performance 
is assessed on unseen data, providing a reliable measure of its accuracy. 

2.3. Dimensionality Reduction and Clustering 
Dimensionality reduction techniques are used to reduce the number of input variables in high-

dimensional datasets, improving machine learning efficiency, reducing computational complexity, and 
mitigating the "curse of dimensionality" [20]. In this research, Principal Component Analysis (PCA) is 
applied after normalization as it produces better resuilts when dimensionality of the datasets is high by 
identifying a smaller set of principal components that capture the most important information in the 
data which reduces computational complexity, memory requirements, and improves algorithm efficiency, 
while preserving critical information [21], [22].  

Following dimensionality reduction, K-Means clustering is applied to group the dataset into distinct 
clusters based on the patterns identified in the reduced feature space. K-means clustering algorithm 
partitions datasets into clusters by finding the minimum squared error between the various data points 
in the data set and the mean of a cluster, which are subsequently assigned to the nearest cluster centre 
[23]. K-means cluster algorithm can be expressed as Equation (3). 

𝐽(𝑐) =  ∑𝐾
𝑘=1 ∑𝑥𝑖

‖𝑥𝑖 − 𝜇𝑘‖2   () 

Where J(c) is the cost function, Ck denotes the set of points assigned to cluster k, and µk is the 
centroid of cluster k. The algorithm is iterated through necessary conditions for minimizing the k-means 
objective function, which continues until convergence [24]. This approach is applied to the PCA reduced 
data in this research to improve clustering efficiency and focus on the most significant features. 

2.4. Classification 
In this study, classification models were applied to the clusters generated through K-Means 

clustering, aiming to categorize the dataset into meaningful groups. Two classification algorithms were 
used for comparison, Decision Tree and Random Forest. These models were selected for their simplicity, 
interpretability, and effectiveness in handling diverse datasets [25], [26]. 
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• Decision Tree 

The algorithm works by recursively splitting the dataset based on feature values that provides the 
best discriminatory power, resulting in a tree-like structure [27]. Each internal node represents a 
decision based on the input feature, and the leaves represent the specific classification outcome or 
value of the tested attribute. The tree is constructed using a greedy approach, selecting the best 
feature to split the data at each step [28]. In this study, the Decision Tree was trained using the 
normalized data and the K-Means cluster labels 

• Random Forest 

Random Forest, an ensemble learning technique, builds multiple decision trees and aggregates their 
results to improve predictive performance and reduce overfitting [29]–[31]. Each tree in the forest 
is trained on a random subset of the data, and predictions of each are combined through majority 
voting to produce the final classification. The Random Forest model was used to compare its 
performance to the Decision Tree, with expectations of improved accuracy and reduced variance. 
This method is often preferred in situations where robustness and generalization are important 
[32]. 

2.5. Testing 
The dataset was divided into training and testing subsets with a 7:3 ratio. The clustering phase 

utilized K-Means to partition dataset with Elbow method applied to determine the optimal number of 
clusters. The classification tested two models: Decision Tree and Random Forest, both evaluated 
through the use of a 5-fold cross validation [33], [34]. 

2.6. Evaluation 
The performance of all used algorithm are evaluated based on confusion matrix. Table 2 shows the 

formula of each metric utilized [35]. 

Table 2.  Performance Model Evaluation 

Attributes Formula Description 

Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Ratio of total number of correct classifications to the 
total number of all classifications 

Precision 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Ratio of true positive predictions to the total number of 
positive predicitons made 

Recall 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Ratio of true positive predictions to the total number of 
actual positive instances 

F1-Score 2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 Mean of precision and recall 

3. Results and Discussion 
In this research, dimensionality reduction, clustering, and classification model has been applied. The 

effectiveness of each is evaluated through elbow method and confusion matrix. 

3.1. Dimensionality Reduction and Clustering Result 
The application of Principal Component Analysis (PCA) allowed dimensionality reduction of the 

dataset, retaining ±41.67% and capturing the relevant features while maintaining data variance as shown 
on Fig. 3. 
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Fig. 3. 2D (Left) and 3D (Right) PCA Visualization 

The elbow method has been employed to determine the optimal number of clusters for the K-means 
clustering algorithm. The Elbow Method, depicted in Fig. 4, revealed a significant drop in inertia up to 
K=3, after which the improvement plateaued. This indicates that three clusters optimally represent the 
dataset’s structure. 

 
Fig. 4. Elbow Method for Optimal K 

With K=3 selected, K-means clustering has been applied to the normalized dataset, resulting in Fig. 
5, offering representation of how the data points are grouped based on features. 

 
Fig. 5. K-Means Clustering 
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3.2. Decision Tree 
The Decision Tree Classifier was trained using the dataset partitioned into clusters through the use 

of K-means clustering, achieving an accuracy of 94%. The model's performance was evaluated using a 
classification report containing accuracy, precision, recall, and F1 score, as well as by examining the 
confusion matrix. The results presented in Table 3 show a generally strong performance with average 
accuracy, precision, recall, and F1 scores all above 91%. 

Table 3.  Decision Tree Classification Report 

 Precision Recall F1-Score 
0 0.94 0.92 0.93 

1 0.96 0.97 0.96 
2 0.92 0.94 0.93 

accuracy   0.94 
 
These results suggest that the Decision Tree classifier is fairly accurate in identifying and 

distinguishing between the different clusters. However, certain clusters may be harder to predict, as 
reflected in the slight variation in the metrics across different clusters. In addition to the classification 
report, the confusion matrix is presented in Fig. 6. 

 
Fig. 6. Decision Tree Confusion Matrix 

From the decision tree confusion matrix in Fig. 6, it appears that decision tree performs best for class 
1 while misclassifications primarily occur between class 0 and class 2, indicating overlap in features or 
patters between the two classes 

3.3. Random Forest 
The Random Forest Classifier was trained using the dataset with clusters identified by K-means, 

intended as a comparison to the Decision Tree model. The model's performance was evaluated in the 
same manner as decision tree by using classification report containing accuracy, precision, recall, and F1 
score as well as by examining the confusion matrix. The results presented in Table 4 show a generally 
strong performance with average accuracy, precision, recall, and F1 scores all above 94%. 
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Table 4.  Decision Tree Classification Report 

 Precision Recall F1-Score 
0 0.95 0.96 0.96 

1 0.98 0.97 0.98 
2 0.95 0.95 0.95 

accuracy   0.96 
 

These results however, especially the accuracy suggests that random forest is superior by exceeding 
the overall score by 2-3%. The difference is slim however it is still superior regardless. Confusion matrix 
presented in Fig. 7 in order to provide further information for comparison against decision tree. 

 
Fig. 7. Random Forest Confusion Matrix 

Random Forest confusion matrix presented in Fig. 7 displays the consistent outperformance against 
Decision Tree across all classes, as indicated by the higher number of correctly classified instances and 
fewer missclassifications, further elaborated in Table 5. 

Table 5.  Decision Tree Random Forest Comparison 

 Decision Tree Random Forest Percentage Improvement 
0 91.76% 96.04% 4.28% 

1 96.92% 97.49% 0.57% 
2 93.61% 95.03% 1.41% 
 

     The comparison highlights that the Random Forest model demonstrates superior performance 
over the Decision Tree model, with the largest improvement observed for class 0 at 4.28% and the 
smallest improvement for class 1 at 0.57%. The notable improvement in class 0 suggests that the 
Random Forest model is particularly effective at handling the inherent variability or potential noise 
within this class, leading to fewer misclassifications. For class 1, while the improvement is marginal, it 
still reflects the model's ability to maintain a high level of accuracy. Overall, the consistent improvement 
across all classes, even if slight, underscores the robustness of the Random Forest model. This robustness 
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likely stems from its ensemble approach, which reduces overfitting and enhances generalization, making 
it better suited to handle complex patterns and diverse data distributions compared to a single Decision 
Tree. Additionally, the reduced misclassification rates across classes indicate that the Random Forest 
model is better equipped to minimize errors, improving reliability and predictive consistency. 

The comparison highlights that the Random Forest model demonstrates superior performance over 
the Decision Tree model, with the largest improvement observed for class 0 at 4.28% and the smallest 
improvement for class 1 at 0.57%. The notable improvement in class 0 suggests that the Random Forest 
model is particularly effective at handling the inherent variability or potential noise within this class, 
leading to fewer misclassifications. For class 1, while the improvement is marginal, it still reflects the 
model's ability to maintain a high level of accuracy. Overall, the consistent improvement across all classes, 
even if slight, underscores the robustness of the Random Forest model. This robustness likely stems 
from its ensemble approach, which reduces overfitting and enhances generalization, making it better 
suited to handle complex patterns and diverse data distributions compared to a single Decision Tree. 
Additionally, the reduced misclassification rates across classes indicate that the Random Forest model is 
better equipped to minimize errors, improving reliability and predictive consistency. 

4. Conclusion 
This study demonstrated the effectiveness of combining K-means clustering and decision tree 

compared with random forest classification for analyzing complex datasets. The Elbow Method applied 
to the K-Means algorithm revealed that the optimal number of clusters was 3, as indicated by the sharp 
drop in inertia followed by diminishing returns. The Decision Tree model performed reasonably well, 
with class-wise accuracies of 91% at the minimum while Random Forest model, achieved 95% 
minimum, showing improvement of at least 4% in class-wise accuracy compared to Decision Tree. From 
the accuracy percentage, it can be concluded that the Random Forest model outperformed the Decision 
Tree, achieving higher accuracy and better overall performance, as reflected in its confusion matrix, 
where fewer misclassifications were observed across all clusters. This improvement can be attributed to 
the ensemble nature of Random Forest, which helps mitigate overfitting and enhances generalization. 
Ultimately, the findings indicate that using K-Means for clustering, followed by Random Forest for 
classification, is a robust approach for analyzing complex datasets. The study highlights the potential of 
ensemble learning methods, such as Random Forest in enhancing predictive performance, particularly 
in scenarios involving varied class distributions. By demonstrating the improvements achieved over 
decision tree and random forest model through comparison, this research contributes to the growing 
body of evidence supporting ensemble methods as a robust solution for classification tasks. Additionally, 
the findings highlight opportunities for further exploration in both clustering and classification 
approaches. Future research could focus on exploring other clustering algorithms, such as DBSCAN or 
Hierarchical Clustering, and applying more advanced models like Gradient Boosting or Neural Networks. 
Additionally, hyperparameter tuning and feature engineering could further enhance the clustering and 
classification outcomes, providing opportunities for refining these methods in future studies. These 
advancements would not only improve predictive performance but also contribute to developing more 
adaptable and efficient machine learning pipelines for real-world applications. 
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