Investigation and Design of High Efficiency Quadrature Power Amplifier for 5G Applications

(1) Faris Hassan Taha Mail (Al-Kitab University, Iraq)
(2) Shamil H. Hussein Mail (University of Mosul, Iraq)
(3) Mohammed T. Yaseen Mail (University of Mosul, Iraq)
(4) Hilal A. Fadhil Mail (Sohar University, Iraq)
(5) Saad A. Assi Mail (University of Kirkuk, Iraq)
(6) Hazry Desa Mail (Universiti Malaysia Perlis, Malaysia)
(7) Ahmed Imad Imran Mail (Al-Bayan University, Iraq)
(8) Ahmed Dheyaa Radhi Mail (University of Al-Ameed, Iraq)
(9) * Taha Almulaisi Mail (Northern Technical University, Iraq)
*corresponding author

Abstract


The rapid rise of the high data rate requirements in modern wireless communications, which include Wi-Fi, LTE, and 5G, demands that appropriate linear and efficient transmitter architecture gets designed. The increased power amplifier (PA) efficiency in the output power back-off (OPBO) is one of the major challenges because it is difficult to achieve PA power efficiency and linearity at the same time. The current study provides design and simulation of a Quadrature Power Amplifier (QPA) for application in 5G in the 5.8 GHz band using 120nm CMOS technology. The proposed QPA system combines Envelope Elimination and Restoration (EER) technique with direct I and Q signal modulation, quite a different solution from the “conventional” approaches of EER and represents very a bandwidth efficient one. Hard-switching drivers as well as the optimized matching networks are used by the system to ensure that there is high power transfer capability and low distortion. In the design process the source impedance is optimized using a source pull simulation and the load impedance is optimized by using a load pull simulation; then, the L-type network is designed to realize optimal matching. For use in implementation, the Rogers RO-5880 material is applied using transmission lines set up through the microstrip techniques in a bid to reduce the losses and parasitic ones. Simulation results show that the QPA obtains a peak output power of 24.35dBm and a power-added efficiency (PAE) of 70% at 5.8 GHz. The best input and output impedances were:  and , respectively. In addition, the envelope and transient simulations prove high-accuracy signal transmission and clean switching quality. This QPA design offers a power-efficient solution with better performance characteristics that makes it an attractive candidate for the future 5G communication systems that are to operate in the 5.8 GHz frequency band.

Keywords


Quadrature Power Amplifier (QPA); Envelope Elimination and Restoration (EER); 5G Communication; CMOS 120nm Technology; Power-Added Efficiency (PAE)

   

DOI

https://doi.org/10.31763/ijrcs.v5i2.1881
      

Article metrics

10.31763/ijrcs.v5i2.1881 Abstract views : 122 | PDF views : 34

   

Cite

   

Full Text

Download

References


[1] A. Borel, V. Barzd?nas, and A. Vasjanov, “Linearization as a solution for power amplifier imperfections: A review of methods,” Electronics, vol. 10, no. 9, p. 1073, 2021, https://doi.org/10.3390/electronics10091073.

[2] V. Prodanov and M. Banu, “Power amplifier principles and modern design techniques,” CRC Press, pp. 349-381, 2017, https://doi.org/10.1201/9780849379970-15.

[3] J. Böhler et al., "Ultra-High-Bandwidth Power Amplifiers: A Technology Overview and Future Prospects," IEEE Access, vol. 10, pp. 54613-54633, 2022, https://doi.org/10.1109/ACCESS.2022.3172291.

[4] F. N. Ameen, Z. S. Mohammed, A. I. Siddiq, “GPS and GSM Based Tracking System for Objects Moving over Wide Geographical Areas,” Al-Kitab Journal for Pure Sciences, vol. 2, no. 1, 2018, https://doi.org/10.32441/kjps.v2i1.144.

[5] A. A. Ismael, A. T. Younis, E. A. Abdo, and S. H. Hussein, “Improvement of non-linear power amplifier performance using Doherty technique,” Journal of Engineering Science and Technology, vol. 16, no. 6, pp. 4481-4493, 2021, https://jestec.taylors.edu.my/Vol%2016%20Issue%206%20December%20%202021/16_6_9.pdf.

[6] F. Wang et al., "An Improved Power-Added Efficiency 19-dBm Hybrid Envelope Elimination and Restoration Power Amplifier for 802.11g WLAN Applications," IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 12, pp. 4086-4099, 2006, https://doi.org/10.1109/tmtt.2006.885575.

[7] M. E. Merza and K. Khalil Mohamed, "Design and Optimization of the GaN HEMT Class-J Power Amplifier for 2.4GHz Applications," 2024 21st International Multi-Conference on Systems, Signals & Devices (SSD), pp. 509-518, 2024, https://doi.org/10.1109/SSD61670.2024.10548613.

[8] F. Tamjid, Y. Alekajbaf, J. Y. Hasani, and A. Rahmati, “Analysis and Design a 2.5 GHz Class-E Power Amplifier in Two Configurations,” 5th Iranian Conference on Electrical and Electronic Engineering, pp. 22-2013, 2013, http://dx.doi.org/10.13140/2.1.2829.4084.

[9] S. H. Hussein, S. W. Luhabi, M. T. Yaseen, and M. Jasim, “Study and design of class f power amplifier for mobile applications,” Journal of Engineering Science and Technology, vol. 16, no. 5, pp. 3822-3834, 2021, https://jestec.taylors.edu.my/Vol%2016%20Issue%205%20October%202021/16_5_14.pdf.

[10] J. Nan, H. Wang, M. Cong and W. Yang, "A Broadband Doherty Power Amplifier With a New Load Modulation Network," IEEE Access, vol. 9, pp. 58025-58033, 2021, https://doi.org/10.1109/ACCESS.2021.3072780.

[11] M. Ahmed, X. Hue, M. Szymanowski, R. Uscola, J. Staudinger and J. Kitchen, "2.6-GHz Integrated LDMOS Doherty Power Amplifier for 5G Basestation Applications," IEEE Microwave and Wireless Components Letters, vol. 31, no. 7, pp. 881-884, 2021, https://doi.org/10.1109/LMWC.2021.3078699.

[12] W. Dai et al., "A 2.6-GHz-Band High Power GaN Doherty Power Amplifier Based on GaAs Integrated Passive Devices," 2023 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), pp. 1-3, 2023, https://doi.org/10.1109/IMWS-AMP57814.2023.10381082.

[13] S. H. Hussein, “Design and Simulation of a High Performance CMOS Voltage Doublers using Charge Reuse Technique,” Journal of Engineering Science and Technology, vol. 12, no. 12, pp. 3344-3357, 2017, https://doi.org/10.1016/j.procs.2015.03.192.

[14] P. Colantonio et al., “High efficiency and high linearity power amplifier design,” International Journal of RF and Microwave Computer?Aided Engineering, vol. 15, no. 5, pp. 453-468, 2005, https://doi.org/10.1002/mmce.20111.

[15] S. Singh and J. Malik, “Review of efficiency enhancement techniques and linearization techniques for power amplifier,” International Journal of Circuit Theory and Applications, vol. 49, no. 3, pp. 762-777, 2021, https://doi.org/10.1002/cta.2956.

[16] I. G. G. Ary, G. N. Kamucha, and F. Manene, “Design of a High-Efficiency Doherty Power Amplifier for 5G Applications Using Wilkinson Power Divider,” Journal of Communications, vol. 17, no. 8, pp. 675-681, 2022, https://doi.org/10.12720/jcm.17.8.675-681.

[17] C. H. Li, “Quadrature power amplifier for RF applications,” Master’s Thesis, University of Twente, 2009, https://essay.utwente.nl/59423/.

[18] M. A. E. Eid, H. A. Ibrahim, and T. G. Abouelnaga, “A Classification and Comparative Overview of CMOS Radio-Frequency Power Amplifiers,” Industrial Technology Journal, vol. 1, no. 1, pp. 61-75, 2023, https://doi.org/10.21608/itj.2023.213588.1000.

[19] M. N. Zahid, F. Javeed, and G. Zhu, “Design analysis of advanced power amplifiers for 5G wireless applications: a survey,” Analog Integrated Circuits and Signal Processing, vol. 118, no. 2, pp. 199-217, 2024, https://doi.org/10.1007/s10470-023-02193-5.

[20] J. Han and K. Kwon, "I/Q Balance-Enhanced Wideband Receiver Front-End for 2G/3G/4G/5G NR Cellular Applications," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 6, pp. 1881-1891, 2020, https://doi.org/10.1109/TCSI.2020.2974486.

[21] F. M. Ghannouchi and M. S. Hashmi, “High-Power Load-Pull Systems,” Load-Pull Techniques with Applications to Power Amplifier Design, vol. 32, pp. 113-138, 2012, https://doi.org/10.1007/978-94-007-4461-5_5.

[22] C. Liu, W. Chen and F. M. Ghannouchi, "A Novel Impedance Matching Network Suitable for Designing High-Efficiency Power Amplifiers," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 4, pp. 1271-1275, 2023, https://doi.org/10.1109/TCSII.2022.3222540.

[23] H. H. Abdullah, N. Y. Kasm, N. H. Abdullah, “Application of Coding Theory in Field 5,” Al-Kitab Journal for Pure Sciences, vol. 8, no. 1, pp. 136-144, 2024, https://doi.org/10.32441/kjps.08.01.p12.

[24] L. S. Alhiti, R. A. Jawad, R. A. A. Alwaahed, H. M. Sobhi, "Study of the Effect of Thin Layer Thickness on the Structural Properties of Copper Phthalocyanine (CuPc)Films Prepared by Vacuum Thermal Evaporation Method,” Al-Kitab Journal for Pure Sciences, vol. 8, no. 1, pp. 81-91, 2024, https://doi.org/10.32441/kjps.08.01.p8.

[25] N. A. Abbasi et al., “High-Isolation Array Antenna Design for 5G mm-Wave MIMO Applications,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 46, no. 1, p. 12, 2025, https://doi.org/10.1007/s10762-024-01027-3.

[26] I. H. Abdulqadder, I. T. Aziz, D. Zou, “DT-Block: Adaptive vertical federated reinforcement learning scheme for secure and efficient communication in 6G,” Computer Networks, vol. 254, p. 110841, 2024, https://doi.org/10.1016/j.comnet.2024.110841.

[27] D. Sharma, R. N. Tiwari, D. K. Singh, L. Matekovits, “A pocket-integrated miniature, dual-band, and high gain textile MIMO antenna for 5G and WiFi wearable applications,” Scientific Reports, vol. 15, no. 1, p. 5061, 2025, https://doi.org/10.1038/s41598-025-86605-8.

[28] M. M. F. Abdullah, O. Alluhaibi, A. Egemen Yilmaz and A. Kalaycioglu, "Performance Enhancement of V2V Communication by QC-LDPC Code and NOMA-UM-MIMO Techniques," IEEE Access, vol. 13, pp. 34449-34466, 2025, https://doi.org/10.1109/ACCESS.2025.3531511.

[29] T. Addepalli, “Effective area reduction & surface waves suppression of a novel four-element MIMO antenna exclusively designed for dual band 5G sub 6 GHz (N77/N78 & N79) applications,” Wireless Networks, vol. 31, no. 2, pp. 1463-1479, 2025, https://doi.org/10.1007/s11276-024-03853-8.

[30] A. B. Mohammed, L. C. Fourati, “Investigation on datasets toward intelligent intrusion detection systems for Intra and inter-UAVs communication systems,” Computers & Security, vol. 150, p. 104215, 2024, https://doi.org/10.1016/j.cose.2024.104215.

[31] N. Salim, M. J. Singh, H. Dibs, A. T. Abed, M. T. Islam, M. S. Islam, “Comparative performance analysis of two novel design MIMO antennas for 5G and Wi-Fi 6 applications,” Results in Engineering, vol. 25, p. 103808, 2025, https://doi.org/10.1016/j.rineng.2024.103808.

[32] J. Hu, L. Wang, J. Wu, Q. Pei, F. Liu, B. Li, “A comparative measurement study of cross-layer 5G performance under different mobility scenarios,” Computer Networks, vol. 257, p. 110952, 2025, https://doi.org/10.1016/j.comnet.2024.110952.

[33] K. H. Chan, A. Mustapha, M. A. Jubair, “Comparative Analysis of Loss Functions in TD3 for Autonomous Parking,” Journal of Soft Computing and Data Mining, vol. 5, no. 1, pp. 1-14, 2024, https://doi.org/10.11591/eei.v12i5.5160.

[34] E. Bekta? et al., “Enhancing Harmonic Reduction in Multilevel Inverters using the Weevil Damage Optimization Algorithm,” Journal of Robotics and Control (JRC), vol. 5, no. 3, pp. 717-722, 2024, https://doi.org/10.18196/jrc.v5i3.21544.

[35] T. A. Taha et al., “Enhancing Multilevel Inverter Performance: A Novel Dung Beetle Optimizer-based Selective Harmonic Elimination Approach,” Journal of Robotics and Control (JRC), vol. 5, no. 4, pp. 944-953, 2024, https://doi.org/10.18196/jrc.v5i4.21722.

[36] S. A. Ibrahem, W. K. Abdulwahab, M. L. Shuwandy, “Image denoising using smooth total variation function for 5G enhanced mobile broadband transmission system,” Iraqi Journal for Computer Science and Mathematics, vol. 6, no. 1, p. 14, 2025, https://doi.org/10.52866/2788-7421.1244.

[37] T. A. Taha, N. I. A. Wahab, M. K. Hassan, H. I. Zaynal, “Selective Harmonic Elimination in Multilevel Inverters Using the Bonobo Optimization Algorithm,” International Conference on Forthcoming Networks and Sustainability in the AIoT Era, pp. 304-321, 2024, https://doi.org/10.1007/978-3-031-62871-9_24.

[38] M. Alsharari, R. Agravat, S. Lavadiya, A. Armghan, K. Aliqab, S. K. Patel, “Design and development of hexagonal-shaped copper and liquid metamaterial-loaded superstrate patch antenna for 5G, WLAN, tracking and detection applications,” Ain Shams Engineering Journal, vol. 16, no. 1, p. 103236, 2025, https://doi.org/10.1016/j.asej.2024.103236.

[39] S. J. Rashid, A. Alkababji, A. M. Khidhir, “Communication and network technologies of IoT in smart building: A survey,” NTU Journal of Engineering and Technology, vol. 1, no. 1, pp. 1-18, 2021, https://doi.org/10.56286/ntujet.v1i1.50.

[40] H. N. Alsammak, Z. S. Mohammed, “Internet of things (IoT) work and communication technologies in smart farm irrigation management: a survey,” NTU Journal of Engineering and Technology, vol. 1, no. 3, 2022, https://doi.org/10.56286/ntujet.v1i3.182.

[41] C. K. Metallidou, K. E. Psannis and E. A. Egyptiadou, "Energy Efficiency in Smart Buildings: IoT Approaches," IEEE Access, vol. 8, pp. 63679-63699, 2020, https://doi.org/10.1109/ACCESS.2020.2984461.

[42] D. Liu, Y. Zhao, G. Liu, C. Wang, L. Zhou and Y. Qian, "Real-Time Performance Evaluation for 5G Multi-Link Communication in Industrial Application," IEEE Access, vol. 13, pp. 26864-26875, 2025, https://doi.org/10.1109/ACCESS.2025.3539679.

[43] O. F. Awad, S. R. Ahmed, A. S. Shaker, D. A. Majeed, A. S. T. Hussain, and T. A. Taha, "Human Activity Recognition Using Convolutional Neural Networks," International Conference on Forthcoming Networks and Sustainability in the AIoT Era, pp. 258-274, 2024, https://doi.org/10.1007/978-3-031-62871-9_20.

[44] P. Routray and D. Ghosh, "Wide-band metamaterial absorber for sub-6 GHz 5G applications: Reducing specific absorption rate," AEU - International Journal of Electronics and Communications, vol. 193, p. 155709, 2025, https://doi.org/10.1016/j.aeue.2025.155709.

[45] A. -S. T. Hussain, M. Fadhil, T. A. Taha, O. K. Ahmed, S. A. Ahmed and H. Desa, "GPS and GSM Based Vehicle Tracking System," 2023 7th International Symposium on Innovative Approaches in Smart Technologies (ISAS), pp. 1-5, 2023, https://doi.org/10.1109/ISAS60782.2023.10391720.

[46] M. A. Haque et al., “Machine learning-based technique for gain prediction of mm-wave miniaturized 5G MIMO slotted antenna array with high isolation characteristics,” Scientific Reports, vol. 15, no. 1, p. 276, 2025, https://doi.org/10.1038/s41598-024-84182-w.

[47] A. -S. T. Hussain, T. A. Taha, S. R. Ahmed, S. A. Ahmed, O. K. Ahmed and H. Desa, "Automated RFID-Based Attendance and Access Control System for Efficient Workforce Management," 2023 7th International Symposium on Innovative Approaches in Smart Technologies (ISAS), pp. 1-6, 2023, https://doi.org/10.1109/ISAS60782.2023.10391615.

[48] S. Shrimal, I. B. Sharma, B. Kalra, M. M. Sharma, “A CPW-Fed Hybrid Polarization-Frequency Reconfigurable Antenna with TCM Analysis for 5G New Radio Frequency Applications,” Arabian Journal for Science and Engineering, 2025, https://doi.org/10.1007/s13369-024-09929-z.

[49] H. A. D. F. Kokez, R. Aloulou, H. Mnif, “Design and Analysis of Tapered Slot Vivaldi Antenna for 5G mm?Wave Applications,” IEEJ Transactions on Electrical and Electronic Engineering, vol. 20, no. 2, pp. 226-231, 2025, https://doi.org/10.1002/tee.24189.

[50] T. A. Taha, H. I. Zaynal, A. S. T. Hussain, H. Desa, F. H. Taha, “Definite time over-current protection on transmission line using MATLAB/Simulink,” Bulletin of Electrical Engineering and Informatics, vol. 13, no. 2, pp. 713-723, 2024, https://doi.org/10.11591/eei.v13i2.5301.

[51] M. D. Alanazi, W. A. Ali, M. A. Abdelhady, A. A. Ibrahim, “Millimeter-wave monopole antenna with circular polarization utilizing FSS polarizer for 5G communications,” Engineering Science and Technology, an International Journal, vol. 61, p. 101931, 2025, https://doi.org/10.1016/j.jestch.2024.101931.

[52] T. A. Taha, M. K. Hassan, N. I. Abdul Wahab and H. I. Zaynal, "Red Deer Algorithm-Based Optimal Total Harmonic Distortion Minimization for Multilevel Inverters," 2023 IEEE IAS Global Conference on Renewable Energy and Hydrogen Technologies (GlobConHT), pp. 1-8, 2023, https://doi.org/10.1109/GlobConHT56829.2023.10087687.

[53] M. Dohler, S. Saikali, A. Gamal, M. C. Moschovas, V. Patel, “The crucial role of 5G, 6G, and fiber in robotic telesurgery,” Journal of Robotic Surgery, vol. 19, no. 1, pp. 1-12, 2025, https://doi.org/10.1007/s11701-024-02164-6.

[54] T. A. Taha, M. K. Hassan, H. I. Zaynal, N. I. A. Wahab, “Big data for smart grid: A case study,” CRC Press, pp. 142-180, 2023, https://doi.org/10.1201/9781032665399-8.

[55] Z. N. Abdulhameed, H. I. Hamd, Y. K. Najm, E. H. Yahia, “Evaluation of OFDM over a noisy channel based on transmitting multimedia data,” AIP Conference Proceedings, vol. 3009, no. 1, p. 030003, 2024, https://doi.org/10.1063/5.0194308.

[56] H. Tao et al., “Development of new computational machine learning models for longitudinal dispersion coefficient determination: case study of natural streams, United States,” Environmental Science and Pollution Research, vol. 29, no. 24, pp. 35841-35861, 2022, https://doi.org/10.1007/s11356-022-18554-y.

[57] F. Cui, S. Q. Salih, B. Choubin, S. K. Bhagat, P. Samui, Z. M. Yaseen, “Newly explored machine learning model for river flow time series forecasting at Mary River, Australia,” Environmental Monitoring and Assessment, vol. 192, pp. 1-15, 2020, https://doi.org/10.1007/s10661-020-08724-1.

[58] A. Lak, “Parameter study of a 5G array antenna at 28 GHz,” Scientific Reports, vol. 15, no. 1, 1948, https://doi.org/10.1038/s41598-025-85775-9.

[59] S. A. M. Al-Juboori, F. Hazzaa, Z. S. Jabbar, S. Salih, H. M. Gheni, “Man-in-the-middle and denial of service attacks detection using machine learning algorithms,” Bulletin of Electrical Engineering and Informatics, vol. 12, no. 1, pp. 418-426, 2023, https://doi.org/10.11591/eei.v12i1.4555.

[60] S. Q. Salih, A. A. Alsewari, B. Al-Khateeb, M. F. Zolkipli, “Novel multi-swarm approach for balancing exploration and exploitation in particle swarm optimization,” Recent Trends in Data Science and Soft Computing, pp. 196-206, 2019, https://doi.org/10.1007/978-3-319-99007-1_19.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Taha Almulaisi, Faris Hassan Taha

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


About the JournalJournal PoliciesAuthor Information

International Journal of Robotics and Control Systems
e-ISSN: 2775-2658
Website: https://pubs2.ascee.org/index.php/IJRCS
Email: ijrcs@ascee.org
Organized by: Association for Scientific Computing Electronics and Engineering (ASCEE)Peneliti Teknologi Teknik IndonesiaDepartment of Electrical Engineering, Universitas Ahmad Dahlan and Kuliah Teknik Elektro
Published by: Association for Scientific Computing Electronics and Engineering (ASCEE)
Office: Jalan Janti, Karangjambe 130B, Banguntapan, Bantul, Daerah Istimewa Yogyakarta, Indonesia