Analytical Investigation of the Existence and Ulam Stability of Integro-Differential Equations with Conformable Derivatives Under Non-Local Conditions

(1) Seddiki Fakhreddine Mail (University of Ziane Achour, Algeria)
(2) * Ayman A Hazaymeh Mail (Jadara University, Jordan)
(3) Mazin Aljazzazi Mail (University of Jordan, Jordan)
(4) Reham Qaralleh Mail (Middle East University, Jordan)
(5) Anwar Bataihah Mail (Jadara University, Jordan)
(6) Iqbal M. Batiha Mail (1) Department of Mathematics, Al Zaytoonah University of Jordan, Amman 11733, Jordan. 2) Nonlinear Dynamics Research Center (NDRC), Ajman University, Ajman 346, United Arab Emirates)
(7) Rasha Ibrahim Hajaj Mail (University of Jordan, Jordan)
*corresponding author

Abstract


This study examines an integro-differential equation involving fractional conformable derivatives and non-local conditions. It proves the existence and uniqueness of mild solutions by applying the Banach fixed-point theorem. Furthermore, it demonstrates a notable result about the existence of at least one solution, backed by conditions based on the Krasnoselskii fixed-point theorem. The investigation also explores the Ulam stability of integro-differential equations. To highlight the practical relevance and robustness of the findings, an illustrative example is provided.

Keywords


Conformable Fractional Derivative; Integro-Differential Equation; Banach Fixed-Point Theorem; Krasnoselskii Fixed-Point Theorem; Ulam Stability

   

DOI

https://doi.org/10.31763/ijrcs.v5i2.1828
      

Article metrics

10.31763/ijrcs.v5i2.1828 Abstract views : 81 | PDF views : 14

   

Cite

   

Full Text

Download

References


[1] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, 2000, https://books.google.co.id/books?id=MIXVCgAAQBAJ&hl=id&source=gbs_navlinks_s.

[2] G. Barbero et al., “A Brief Review of Fractional Calculus as a Tool for Applications in Physics: Adsorption Phenomena and Electrical Impedance in Complex Fluids,” Fractal and Fractional, vol. 8, no. 7, p. 369, 2024, https://doi.org/10.3390/fractalfract8070369.

[3] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006, https://books.google.co.id/books?id=uxANOU0H8IUC&hl=id&source=gbs_Navlinks_s.

[4] E. C. de Oliveira and J. A. Tenreiro Machado, “A review of definitions for fractional derivatives and integrals,” Mathematical Problems in Engineering, vol. 2014, pp. 1–6, 2014, http://dx.doi.org/10.1155/2014/238459.

[5] G. Farraj, B. Maayah, R. Khalil, and W. Beghami, “An algorithm for solving fractional differential equations using conformable optimized decomposition method,” International Journal of Advances in Soft Computing and Its Applications, vol. 15, no. 1, 2023, https://doi.org/10.15849/IJASCA.230320.13.

[6] M. Berir, “Analysis of the effect of white noise on the Halvorsen system of variable-order fractional derivatives using a novel numerical method,” International Journal of Advances in Soft Computing and its Applications, vol. 16, no. 3, pp. 294–306, 2024, https://doi.org/10.15849/IJASCA.241130.16.

[7] N. R. Anakira et al., “An algorithm for solving linear and non-linear Volterra Integro-differential equations,” International Journal of Advances in Soft Computing & Its Applications, vol. 15, no. 3, pp. 77–83, 2023, https://doi.org/10.15849/IJASCA.231130.05.

[8] I. M. Batiha, H. F. Abdalsmad, I. H. Jebril, H. O. Al-Khawaldeh, W. A. A. AlKasasbeh, and S. Momani, “Trapezoidal scheme for the numerical solution of fractional initial value problems,” International Journal of Robotics and Control Systems, vol. 5, no. 2, pp. 1238–1253, 2025, http://dx.doi.org/10.31763/ijrcs.v5i2.1795.

[9] N. Djeddi, I. Batiha, N. Harrouche, M. Al-Smadi, and S. Momani, “Advanced solutions for nonlinear fractional equations: a Laplace–Caputo–RKDM approach,” Gulf Journal of Mathematics, vol. 19, no. 2, pp. 93–110, 2025, https://doi.org/10.56947/gjom.v19i2.2575.

[10] A. Boudjedour, I. Batiha, S. Boucetta, M. Dalah, K. Zennir, and A. Ouannas, “A finite difference method on uniform meshes for solving the time-space fractional advection–diffusion equation,” Gulf Journal of Mathematics, vol. 19, no. 1, pp. 156–168, 2025, https://doi.org/10.56947/gjom.v19i1.2524.

[11] S. Alshorm and I. M. Batiha, “Stochastic population growth model using three-point fractional formula,” in Mathematical Analysis and Numerical Methods, pp. 457–465, 2024, https://doi.org/10.1007/978-981-97-4876-1_31.

[12] M. Shqair et al., “Numerical solutions for fractional multi-group neutron diffusion system of equations,” International Journal of Neutrosophic Science, vol. 24, no. 4, pp. 8–38, 2024, https://doi.org/10.54216/IJNS.240401.

[13] I. Batiha, A. Abdelnebi, M. Shqair, I. H. Jebril, S. Alkhazaleh, and S. Momani, “Computational approaches to two-energy group neutron diffusion in cylindrical reactors,” Journal of Robotics and Control (JRC), vol. 5, no. 6, pp. 1980–1989, 2024, https://doi.org/0.18196/jrc.v5i6.23392.

[14] R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, “A new definition of fractional derivative,” Journal of Computational and Applied Mathematics, vol. 264, pp. 65–70, 2014, https://doi.org/10.1016/j.cam.2014.01.002.

[15] A. Bouchenak, I. M. Batiha, I. H. Jebril, M. Aljazzazi, H. Alkasasbeh, and L. Rabhi, “Generalization of the nonlinear Bernoulli conformable fractional differential equations with applications,” WSEAS Transactions on Mathematics, vol. 24, pp. 168–180, 2025, https://doi.org/10.37394/23206.2025.24.17.

[16] A. Bouchenak, I. M. Batiha, R. Hatamleh, M. Aljazzazi, I. H. Jebril, and M. Al-Horani, “Study and analysis of the second order constant coefficients and Cauchy–Euler equations via modified conformable operator,” International Journal of Robotics and Control Systems, vol. 5, no. 2, pp. 794–812, 2025, https://doi.org/10.31763/ijrcs.v5i2.1577.

[17] T. Abdeljawad, “On conformable fractional calculus,” Journal of Computational and Applied Mathematics, vol. 279, pp. 57–66, 2015, https://doi.org/10.1016/j.cam.2014.10.016.

[18] W. S. Chung, “Fractional Newton mechanics with conformable fractional derivative,” Journal of Computational and Applied Mathematics, vol. 290, pp. 150–158, 2015, https://doi.org/10.1016/j.cam.2015.04.049.

[19] M. Al Horani, M. Abu Hammad, and R. Khalil, “Variation of parameters for local fractional nonhomogenous linear differential equations,” Journal of Mathematics and Computer Science, vol. 16, no. 2, pp. 147–153, 2016, https://doi.org/10.22436/JMCS.016.02.03.

[20] R. Khalil, M. Al Horani, and D. Anderson, “Undetermined coefficients for local fractional differential equations,” Journal of Mathematics and Computer Science, vol. 16, no. 2, pp. 140–146, 2016, http://dx.doi.org/10.22436/jmcs.016.02.02.

[21] N. A. Khan, O. A. Razzaq, and M. Ayaz, “Some properties and applications of conformable fractional Laplace transform (CFLT),” Journal of Fractional Calculus and Applications, vol. 9, no. 1, pp. 72–81, 2018, https://journals.ekb.eg/article_308446_1e4877389924d044f7e8a7eea19b7f06.pdf.

[22] Z. Al-Zhour, F. Alrawajeh, N. Al-Mutairi, and R. Alkhasawneh, “New results on the conformable fractional Sumudu transforms: theories and applications,” International Journal of Analysis and Applications, vol. 17, no. 6, pp. 1019–1033, 2019, https://doi.org/10.28924/2291-8639-17-2019-1019.

[23] M. Ayata and O. Ozkan, “A new application of conformable Laplace decomposition method for fractional Newell-Whitehead-Segel equation,” AIMS Mathematics, vol. 5, no. 6, pp. 7402–7412, 2020, https://doi.org/10.3934/math.2020474.

[24] F. Seddiki, M. Al Horani, and R. Khalil, “Finite rank solution for conformable degenerate first-order abstract Cauchy problem in Hilbert spaces,” European Journal of Pure and Applied Mathematics, vol. 14, no. 2, pp. 493–505, 2021, https://doi.org/10.29020/NYBG.EJPAM.V14I2.3950.

[25] F. Seddiki, M. Al Horani, and R. Khalil, “Tensor product and inverse fractional abstract Cauchy problem,” Rendiconti del Circolo Matematico di Palermo Series 2, vol. 72, no. 4, pp. 2321–2332, 2023, https://doi.org/10.1007/s12215-022-00769-0.

[26] A. Bouchenak, I. M. Batiha, M. Aljazzazi, I. H. Jebril, M. Al-Horani, and R. Khalil, “Atomic exact solution for some fractional partial differential equations in Banach spaces,” Partial Differential Equations in Applied Mathematics, vol. 9, p. 100626, 2024, https://doi.org/10.1016/j.padiff.2024.100626.

[27] A. Gökdo?an, E. Ünal, and E. Çelik, “Existence and uniqueness theorems for sequential linear conformable fractional differential equations,” Miskolc Mathematical Notes, vol. 17, no. 1, pp. 267–279, 2015, https://doi.org/10.18514/MMN.2016.1635.

[28] W. Zhong and L. Wang, “Basic theory of initial value problems of conformable fractional differential equations,” Advances in Difference Equations, vol. 2018, no. 321, pp. 1–14, 2018, https://doi.org/10.1186/s13662-018-1778-5.

[29] S. Zhang, S. Li, and L. Hu, “The existence and uniqueness result of solutions to initial value problems of nonlinear diffusion equations involving with the conformable variable derivative,” Revista de la Real Academia de Ciencias Exactas, F??sicas y Naturales. Serie A. Matemáticas, vol. 113, no. 2, pp. 1601–1623, 2019, https://doi.org/10.1007/s13398-018-0572-2.

[30] G. Xiao, J. Wang, and D. O’Regan, “Existence, uniqueness and continuous dependence of solutions to conformable stochastic differential equations,” Chaos, Solitons & Fractals, vol. 139, p. 110269, https://doi.org/10.1016/j.chaos.2020.110269.

[31] P. Agarwal, M. R. Sidi Ammi, and J. Asad, “Existence and uniqueness results on time scales for fractional nonlocal thermistor problem in the conformable sense,” Advances in Difference Equations, vol. 2021, no. 162, 2021, https://doi.org/10.1186/s13662-021-03319-7.

[32] M. Sher, A. Khan, K. Shah, and T. Abdeljawad, “Existence and stability theory of pantograph conformable fractional differential problem,” Thermal Science, vol. 27, no. 1, pp. 237–244, 2023, https://doi.org/10.2298/TSCI23S1237S.

[33] M. Aljazzazi, S. Fakhreddine, I. M. Batiha, I. H. Jebril, A. Bouchenak, and R. I. Hajaj, “Impulsive conformable evolution equations in Banach spaces with fractional semigroup,” Filomat, vol. 38, no. 26, pp. 9321–9332, 2024, https://www.jstor.org/stable/27387904.

[34] M. Li, J. Wang, and D. O’Regan, “Existence and Ulam’s stability for conformable fractional differential equations with constant coefficients,” Bulletin of the Malaysian Mathematical Sciences Society, vol. 42, no. 4, pp. 1791–1812, 2019, https://doi.org/10.1007/s40840-017-0576-7.

[35] S. Ö?rekçi, Y. Ba?c?, and A. M?s?r, “Ulam type stability for conformable fractional differential equations,” Rendiconti del Circolo Matematico di Palermo Series 2, vol. 70, no. 2, pp. 807–817, 2021, https://doi.org/10.1007/s12215-020-00532-3.

[36] F. Wan, X. Liu, and M. Jia, “Ulam-Hyers stability for conformable fractional integro-differential impulsive equations with the antiperiodic boundary conditions,” AIMS Mathematics, vol. 7, no. 4, pp. 6066–6083, 2022, http://dx.doi.org/10.3934/math.2022338.

[37] W. Albalawi, M. I. Liaqat, F. U. Din, K. S. Nisar, and A. H. Abdel-Aty, “Well-posedness and Ulam Hyers stability results of solutions to pantograph fractional stochastic differential equations in the sense of conformable derivatives,” AIMS Mathematics, vol. 9, no. 5, pp. 12375–12398, 2024, https://dx.doi.org/%2010.3934/math.2024605.

[38] R. P. Agarwal, M. Meehan, and D. O’Regan, Fixed Point Theory and Applications, Cambridge University Press, 2001, https://books.google.co.id/books?id=iNccsDsdbIcC&hl=id&source=gbs_navlinks_s.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Seddiki Fakhreddine, Iqbal Batiha, Mazin Aljazzazi, Ahmed Bouchenak

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


About the JournalJournal PoliciesAuthor Information

International Journal of Robotics and Control Systems
e-ISSN: 2775-2658
Website: https://pubs2.ascee.org/index.php/IJRCS
Email: ijrcs@ascee.org
Organized by: Association for Scientific Computing Electronics and Engineering (ASCEE)Peneliti Teknologi Teknik IndonesiaDepartment of Electrical Engineering, Universitas Ahmad Dahlan and Kuliah Teknik Elektro
Published by: Association for Scientific Computing Electronics and Engineering (ASCEE)
Office: Jalan Janti, Karangjambe 130B, Banguntapan, Bantul, Daerah Istimewa Yogyakarta, Indonesia