
(2) Ali J. Ramadhan

(3) Noor T. Al-Sharify

(4) Mohammed I. Khalaf

(5) * Ahmed Ali Farhan Ogaili

(6) Alaa Abdulhady Jaber

(7) Zainab T. Al-Sharify

*corresponding author
AbstractThis study introduces a novel framework for classifying multi-state cognitive processes using electroencephalogram (EEG) signals. By integrating optimized time-domain feature extraction with ensemble learning techniques, the proposed method achieves exceptional accuracy in distinguishing eight distinct cognitive states. The preprocessing pipeline employs finite impulse response (FIR) bandpass filtering (0.5–45 Hz) and Independent Component Analysis (ICA) for artifact removal, while feature extraction leverages Hjorth parameters and statistical measures. A comparative analysis of classification algorithms reveals CatBoost as the top performer, achieving 93.4% accuracy, followed by Neural Network (91.3%), SVM (89.7%), and AdaBoost (88.9%). CatBoost excels in discriminating complex states with computational efficiency, processing times ranging from 18 ms (SVM) to 32 ms (CatBoost), supporting real-time applications. The framework demonstrates robustness under varying signal quality, maintaining >91% accuracy at 10 dB SNR. These advancements set new benchmarks for EEG-based cognitive monitoring, with implications for adaptive systems requiring real-time neural feedback.
KeywordsEEG Signal Processing; CatBoost; Time-Domain Features; Real-Time Classification; Cognitive State Analysis
|
DOIhttps://doi.org/10.31763/ijrcs.v5i2.1799 |
Article metrics10.31763/ijrcs.v5i2.1799 Abstract views : 175 | PDF views : 37 |
Cite |
Full Text![]() |
References
[1] M. Teplan, “Fundamentals of EEG Measurement,” Semantic Scholar, 2002, https://api.semanticscholar.org/CorpusID:17002960.
[2] A. Vázquez-Guardado, Y. Yang, A. J. Bandodkar, and J. A. Rogers, “Recent advances in neurotechnologies with broad potential for neuroscience research,” Nature Neuroscience, vol. 23, no. 12, pp. 1522–1536, 2020, https://doi.org/10.1038/s41593-020-00739-8.
[3] F. Lotte et al., “A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update,” Journal of Neural Engineering, vol. 15, no. 3, p. 031005, 2018, https://doi.org/10.1088/1741-2552/aab2f2.
[4] W. Klimesch, “EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis,” Brain Research Reviews, vol. 29, no. 2-3, pp. 169–195, 1999, https://doi.org/10.1016/S0165-0173(98)00056-3.
[5] J. Xu and B. Zhong, “Review on portable EEG technology in educational research,” Computers in Human Behavior, vol. 81, pp. 340–349, 2018, https://doi.org/10.1016/j.chb.2017.12.037.
[6] L. A. Al-Haddad and A. A. Jaber, “An Intelligent Fault Diagnosis Approach for Multirotor UAVs Based on Deep Neural Network of Multi-Resolution Transform Features,” Drones, vol. 7, no. 2, p. 82, 2023, https://doi.org/10.3390/drones7020082.
[7] W. H. Alawee, L. A. Al-Haddad, H. A. Dhahad, and S. A. Al-Haddad, “Predicting the Cumulative Productivity of a Solar Distillation System Augmented with a Tilted Absorber Panel Using Machine Learning Models,” Journal of Engineering Research, 2024, https://doi.org/10.1016/j.jer.2024.01.007.
[8] A. Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for electroencephalogram (EEG) classification tasks: a review,” Journal of Neural Engineering, vol. 16, no. 3, p. 31001, 2019, https://doi.org/10.1088/1741-2552/ab0ab5.
[9] B. Hjorth, “EEG analysis based on time domain properties,” Electroencephalography and Clinical Neurophysiology, vol. 29, no. 3, pp. 306–310, 1970, https://doi.org/10.1016/0013-4694(70)90143-4.
[10] H. Jiang, F. Shen, L. Chen, Y. Peng, H. Guo, and H. Gao, “Joint domain symmetry and predictive balance for cross-dataset EEG emotion recognition,” Journal of Neuroscience Methods, vol. 400, p. 109978, 2023, https://doi.org/10.1016/j.jneumeth.2023.109978.
[11] B. F. O. Coelho, A. B. R. Massaranduba, C. A. dos Santos Souza, G. G. Viana, I. Brys, and R. P. Ramos, “Parkinson’s disease effective biomarkers based on Hjorth features improved by machine learning,” Expert Systems with Applications, vol. 212, p. 118772, 2023, https://doi.org/10.1016/j.eswa.2022.118772.
[12] Y. Duan, Z. Wang, Y. Li, J. Tang, Y.-K. Wang, and C.-T. Lin, “Cross task neural architecture search for EEG signal recognition,” Neurocomputing, vol. 545, p. 126260, 2023, https://doi.org/10.1016/j.neucom.2023.126260.
[13] S. Kansal, D. Garg, A. Upadhyay, S. Mittal, and G. S. Talwar, “DL-AMPUT-EEG: Design and development of the low-cost prosthesis for rehabilitation of upper limb amputees using deep-learning-based techniques,” Engineering Applications of Artificial Intelligence, vol. 126, p. 106990, 2023, https://doi.org/10.1016/j.engappai.2023.106990.
[14] A. Delorme and S. Makeig, “EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis,” Journal of Neuroscience Methods, vol. 134, no. 1, pp. 9–21, 2004, https://doi.org/10.1016/j.jneumeth.2003.10.009.
[15] R. M. Mehmood, M. Bilal, S. Vimal, and S.-W. Lee, “EEG-based affective state recognition from human brain signals by using Hjorth-activity,” Measurement, vol. 202, p. 111738, 2022, https://doi.org/10.1016/j.measurement.2022.111738.
[16] N. S. Suhaimi, J. Mountstephens, and J. Teo, “A Dataset for Emotion Recognition Using Virtual Reality and EEG (DER-VREEG): Emotional State Classification Using Low-Cost Wearable VR-EEG Headsets,” Big Data and Cognitive Computing, vol. 6, no. 1, p. 16, 2022, https://doi.org/10.3390/bdcc6010016.
[17] V. Asanza, L. L. Lorente-Leyva, D. H. Peluffo-Ordóñez, D. Montoya, and K. Gonzalez, “MILimbEEG: A dataset of EEG signals related to upper and lower limb execution of motor and motor imagery tasks,” Data in Brief, vol. 50, p. 109540, 2023, https://doi.org/10.1016/j.dib.2023.109540.
[18] W. H. Alawee, A. Basem, and L. A. Al-Haddad, “Advancing biomedical engineering: Leveraging Hjorth features for electroencephalography signal analysis,” Journal of Electrical Bioimpedance, vol. 14, no. 1, pp. 66–72, 2023, https://doi.org/10.2478/joeb-2023-0009.
[19] C. Vidaurre, N. Krämer, B. Blankertz, and A. Schlögl, “Time domain parameters as a feature for EEG-based brain–computer interfaces,” Neural Networks, vol. 22, no. 9, pp. 1313–1319, 2009, https://doi.org/10.1016/j.neunet.2009.07.020.
[20] A. S. Al-Fahoum and A. A. Al-Fraihat, “Methods of EEG Signal Features Extraction Using Linear Analysis in Frequency and Time?Frequency Domains,” International Scholarly Research Notices, vol. 2014, no. 1, p. 730218, 2014, https://doi.org/10.1155/2014/730218.
[21] J. D. Bonita et al., “Time domain measures of inter-channel EEG correlations: a comparison of linear, nonparametric and nonlinear measures,” Cognitive Neurodynamics, vol. 8, pp. 1–15, 2014, https://doi.org/10.1007/s11571-013-9267-8.
[22] S. Rajwal and S. Aggarwal, “Convolutional Neural Network-Based EEG Signal Analysis: A Systematic Review,” Archives of Computational Methods in Engineering, vol. 30, no. 6, pp. 3585–3615, 2023, https://doi.org/10.1007/s11831-023-09920-1.
[23] S.-H. Oh, Y.-R. Lee, and H.-N. Kim, “A Novel EEG Feature Extraction Method Using Hjorth Parameter,” International Journal of Electronics and Electrical Engineering, pp. 106–110, 2014, https://doi.org/10.12720/ijeee.2.2.106-110.
[24] A. A. Shandookh, A. A. Farhan Ogaili, and L. A. Al-Haddad, “Failure analysis in predictive maintenance: Belt drive diagnostics with expert systems and Taguchi method for unconventional vibration features,” Heliyon, vol. 10, no. 13, p. e34202, 2024, https://doi.org/10.1016/j.heliyon.2024.e34202.
[25] A. A. F. Ogaili, Z. T. Al-Sharify, A. Abdulhady, and F. Abbas, “Vibration-based fault detection and classification in ball bearings using statistical analysis and random forest,” Fifth International Conference on Green Energy, Environment, and Sustainable Development (GEESD 2024), pp. 518–526, 2024, https://doi.org/10.1117/12.3041850.
[26] A. A. F. Ogaili, K. A. Mohammed, A. A. Jaber, and E. S. A. Ameen, “Automated wind turbines gearbox condition monitoring: A comparative study of machine learning techniques based on vibration analysis,” FME Transactions, vol. 52, no. 3, pp. 471–485, 2024, https://doi.org/10.5937/fme2403471O.
[27] S. Choo et al., “Effectiveness of multi-task deep learning framework for EEG-based emotion and context recognition,” Expert Systems with Applications, vol. 227, p. 120348, 2023, https://doi.org/10.1016/j.eswa.2023.120348.
[28] D. C. E. Saputra, A. Ma’arif, and K. Sunat, “Optimizing Predictive Performance: Hyperparameter Tuning in Stacked Multi-Kernel Support Vector Machine Random Forest Models for Diabetes Identification,” Journal of Robotics and Control (JRC), vol. 4, no. 6, pp. 896–904, 2023, https://doi.org/10.18196/jrc.v4i6.20898.
[29] M. H. Abdullah and M. A. Ahmed, “Human Activity Recognition Using Accelerometer & Gyroscope Smartphone Sensor by Extract Statistical Features,” Journal of Robotics and Control (JRC), vol. 5, no. 5, pp. 1390–1398, 2024, https://doi.org/10.18196/jrc.v5i5.22443.
[30] A. A. F. Ogaili, A. A. Jaber, and M. N. Hamzah, “Wind turbine blades fault diagnosis based on vibration dataset analysis,” Data Brief, vol. 49, p. 109414, 2023, https://doi.org/10.1016/j.dib.2023.109414.
[31] N. M. Mahdi, A. H. Jassim, S. A. Abulqasim, A. Basem, A. A. F. Ogaili, and L. A. Al-Haddad, “Leak detection and localization in water distribution systems using advanced feature analysis and an Artificial Neural Network,” Desalination Water Treat, vol. 320, p. 100685, 2024, https://doi.org/10.1016/j.dwt.2024.100685.
[32] M. S. Karis et al., “Analysis of ANN and Fuzzy Logic Dynamic Modelling to Control the Wrist Exoskeleton,” Journal of Robotics and Control (JRC), vol. 4, no. 4, pp. 572–583, 2023, https://doi.org/10.18196/jrc.v4i4.19299.
[33] V. Vapnik, “Statistical Learning Theory,” Semantic Scholar, 1998, https://api.semanticscholar.org/CorpusID:61112307.
[34] F. Lotte et al., “A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update,” Journal of Neural Engineering, vol. 15, no. 3, p. 31005, 2018, https://doi.org/10.1088/1741-2552/aab2f2.
[35] J. T. Hancock and T. M. Khoshgoftaar, “CatBoost for big data: an interdisciplinary,” Research Square, 2020, https://doi.org/10.21203/rs.3.rs-54646/v1.
[36] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin, “CatBoost: unbiased boosting with categorical features,” ArXiv, 2018, https://doi.org/10.48550/arXiv.1706.09516.
[37] S. A. Sarow, H. A. Flayyih, M. Bazerkan, L. A. Al-Haddad, Z. T. Al-Sharify, and A. A. F. Ogaili, “Advancing sustainable renewable energy: XGBoost algorithm for the prediction of water yield in hemispherical solar stills,” Discover Sustainability, vol. 5, no. 1, p. 510, 2024, https://doi.org/10.1007/s43621-024-00782-6.
[38] R. E. Schapire, “Explaining adaboost,” Empirical inference, pp. 37–52, 2013, https://doi.org/10.1007/978-3-642-41136-6_5.
[39] A. A. F. Ogaili, A. A. Jaber, and M. N. Hamzah, “A methodological approach for detecting multiple faults in wind turbine blades based on vibration signals and machine learning,” Curved and Layered Structures, vol. 10, no. 1, p. 20220214, 2023, https://doi.org/10.1515/cls-2022-0214.
[40] S. A. Mohammed, L. A. Al-Haddad, W. H. Alawee, H. A. Dhahad, A. A. Jaber, and S. A. Al-Haddad, “Forecasting the productivity of a solar distiller enhanced with an inclined absorber plate using stochastic gradient descent in artificial neural networks,” Multiscale and Multidisciplinary Modeling, Experiments and Design, vol. 7, pp. 1819–1829, 2023, https://doi.org/10.1007/s41939-023-00309-y.
[41] T.-V. Dang, “Smart home management system with face recognition based on ArcFace model in deep convolutional neural network,” Journal of Robotics and Control (JRC), vol. 3, no. 6, pp. 754–761, 2022, https://doi.org/10.18196/jrc.v3i6.15978.
[42] A. A. F. Ogaili, A. A. Jaber, and M. N. Hamzah, “Statistically Optimal Vibration Feature Selection for Fault Diagnosis in Wind Turbine Blade,” International Journal of Renewable Energy Research (IJRER), vol. 13, no. 3, pp. 1082–1092, 2023, https://doi.org/10.20508/ijrer.v13i3.14096.g8782.
[43] A. A. F. Ogaili, Z. T. Al-Sharify, A. A. Jaber, D. A. Farhan, and S. M. Al-Khafaji, “Effective Ball Bearing Fault Diagnosis Leveraging ANN and Statistical Feature Integration,” CEUR Workshop Proceedings, 2024, https://ceur-ws.org/Vol-3870/p06.pdf.
[44] R. Jenke, A. Peer and M. Buss, "Feature Extraction and Selection for Emotion Recognition from EEG," IEEE Transactions on Affective Computing, vol. 5, no. 3, pp. 327-339, 2014, https://doi.org/10.1109/TAFFC.2014.2339834.
[45] M. Hajinoroozi, Z. Mao, T.-P. Jung, C.-T. Lin, and Y. Huang, “EEG-based prediction of driver’s cognitive performance by deep convolutional neural network,” Signal Processing: Image Communication, vol. 47, pp. 549–555, 2016, https://doi.org/10.1016/j.image.2016.05.018.
[46] U. R. Acharya, S. Vinitha Sree, G. Swapna, R. J. Martis, and J. S. Suri, “Automated EEG analysis of epilepsy: A review,” Knowledge-Based Systems, vol. 45, pp. 147–165, 2013, https://doi.org/10.1016/j.knosys.2013.02.014.
[47] Y. Roy, H. Banville, I. Albuquerque, A. Gramfort, T. H. Falk, and J. Faubert, “Deep learning-based electroencephalography analysis: a systematic review,” Journal of Neural Engineering, vol. 16, no. 5, p. 51001, 2019, https://doi.org/10.1088/1741-2552/ab260c.
[48] B. T. Atmaja, H. Ihsannur, Suyanto, D. Arifianto, “Lab-scale vibration analysis dataset and baseline methods for machinery fault diagnosis with machine learning,” Journal of Vibration Engineering & Technologies, vol. 12, no. 2, pp. 1991-2001, 2024, https://doi.org/10.1007/s42417-023-00959-9.
[49] L. A. Al-Haddad et al., “Protocol for UAV fault diagnosis using signal processing and machine learning,” STAR Protocols, vol. 5, no. 4, p. 103351, 2024, https://doi.org/10.1016/j.xpro.2024.103351.
[50] D. Das Chakladar, P. P. Roy and M. Iwamura, "EEG-Based Cognitive State Classification and Analysis of Brain Dynamics Using Deep Ensemble Model and Graphical Brain Network," IEEE Transactions on Cognitive and Developmental Systems, vol. 14, no. 4, pp. 1507-1519, 2022, https://doi.org/10.1109/TCDS.2021.3116079.
[51] A. S. Ahmed and S. K. Kadhim, “A comparative study between convolution and optimal backstepping controller for single arm pneumatic artificial muscles,” Journal of Robotics and Control (JRC), vol. 3, no. 6, pp. 769–778, 2022, https://doi.org/10.18196/jrc.v3i6.16064.
[52] L. A. W. Gemein et al., “Machine-learning-based diagnostics of EEG pathology,” Neuroimage, vol. 220, p. 117021, 2020, https://doi.org/10.1016/j.neuroimage.2020.117021.
[53] D. Kostas and F. Rudzicz, “Thinker invariance: enabling deep neural networks for BCI across more people,” Journal of Neural Engineering, vol. 17, no. 5, p. 056008, 2020, https://doi.org/10.1088/1741-2552/abb7a7.
[54] P. Thodoroff, J. Pineau, and A. Lim, “Learning Robust Features using Deep Learning for Automatic Seizure Detection,” Proceedings of the 1st Machine Learning for Healthcare Conference, pp. 178–190, 2016, https://proceedings.mlr.press/v56/Thodoroff16.html.
[55] V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. Hung, and B. J. Lance, “EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces,” Journal of Neural Engineering, vol. 15, no. 5, p. 056013, 2018, https://doi.org/10.1088/1741-2552/aace8c.
[56] S. Sridhar, V. Manian, “EEG and deep learning based brain cognitive function classification,” Computers, vol. 9, no. 4, p. 104, 2020, https://doi.org/10.3390/computers9040104.
[57] P. Bashivan, I. Rish, and S. Heisig, “Mental State Recognition via Wearable EEG,” ArXiv, 2016, https://doi.org/10.48550/arXiv.1602.00985.
[58] O. Tarahi, S. Hamou, M. Moufassih, S. Agounad, and H. I. Azami, “EEG classification using a simple CNN model for imagined and executed motor signals,” Multimedia Tools and Applications, 2024, https://doi.org/10.1007/s11042-024-20264-1.
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Ahmed Ali Farhan Ogaili, Layla M. Nassir, Ali J., AlaaJaber Abdulhady Abdulhady‎Jaber, Noor T. Al-Sharify, Mohammed Khalaf, Zainab Al-Sharify

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
About the Journal | Journal Policies | Author | Information |
International Journal of Robotics and Control Systems
e-ISSN: 2775-2658
Website: https://pubs2.ascee.org/index.php/IJRCS
Email: ijrcs@ascee.org
Organized by: Association for Scientific Computing Electronics and Engineering (ASCEE), Peneliti Teknologi Teknik Indonesia, Department of Electrical Engineering, Universitas Ahmad Dahlan and Kuliah Teknik Elektro
Published by: Association for Scientific Computing Electronics and Engineering (ASCEE)
Office: Jalan Janti, Karangjambe 130B, Banguntapan, Bantul, Daerah Istimewa Yogyakarta, Indonesia