Optimizing Small-Scale Wind Energy Generation: Site-Specific Wind Speed Analysis and Turbine Placement Strategies

(1) * Shouket A. Ahmed Mail (Al-Kitab University, Iraq)
(2) Adem Çiçek Mail (Çank?r? Karatekin University, Turkey)
(3) Enes Bektas Mail (Çank?r? Karatekin University, Turkey)
(4) Khalil Farhan Yassin Mail (Northern Technical University, Iraq)
(5) Ahmed Dheyaa Radhi Mail (University of Al-Ameed, Iraq)
(6) Raad Hamza Awad Mail (Northern Technical University, Iraq)
(7) Taha Abdulsalam Almalaisi Mail (Northern Technical University, Iraq)
(8) Nilisha Itankar Mail (Symbiosis International (Deemed University), India)
(9) Ravi Sekhar Mail (Symbiosis International (Deemed University), India)
(10) Ahmed H. Ahmed Mail (Northern Technical University, Iraq)
*corresponding author

Abstract


Wind is an effective renewable power source suitable for localized electricity production when regional environmental factors have substantial impact on system output. The research studies the best wind turbine placement through wind speed variability studies conducted with calibrated anemometers and data loggers that assess site conditions. A data-based assessment method creates the research's main contribution which facilitates the optimization of wind power potential measurement for enhanced energy efficiency. The research methodology includes continuous Vantage Pro2 equipment together with anemometers at different heights for wind speed observation while performing accuracy-based calibration analysis. The research shows that elevating the turbine from seven meters to ten meters leads to a 12 percent growth in the amount of power produced. The power output of wind energy decreases as wind speed changes because of environmental conditions so proper installation locations become essential. Energy performance increases best when selecting sites which feature reliable and elevated wind speeds. This research provides useful knowledge about enhancing decentralized power generation through wind energy but it cannot be easily scaled up to bigger systems. The study demonstrates that specific site assessments together with practical recommendations will enhance the efficiency of small-scale wind energy systems.

Keywords


Wind Energy Optimization; Site-Specific Wind Assessment; Wind Turbine Placement; Anemometer Data Analysis; Renewable Energy Efficiency

   

DOI

https://doi.org/10.31763/ijrcs.v5i2.1792
      

Article metrics

10.31763/ijrcs.v5i2.1792 Abstract views : 136 | PDF views : 46

   

Cite

   

Full Text

Download

References


[1] B. Ayar, Z. G. Yalç?n, M. Da?, “Rüzgâr? hasat etmek: Türkiye'de rüzgâr enerjisinin fizibilitesi ve geli?meleri üzerine bir ara?t?rma,” Avrupa Bilim ve Teknoloji Dergisi, vol. 49, pp. 43-49, 2023, https://doi.org/10.31590/ejosat.1261573.

[2] A. Rosato, A. Perrotta, L. Maffei, “Commercial small-scale horizontal and vertical wind turbines: A comprehensive review of geometry, materials, costs and performance,” Energies, vol. 17, no. 13, p. 3125, 2024, https://doi.org/10.3390/en17133125.

[3] I. C. Gil-García, A. Fernández-Guillamón, Á. H. Montes-Torres, “Innovation in clean energy from man-made wind and small-wind generation,” Scientific Reports, vol. 14, no. 1, p. 22932, 2024, https://doi.org/10.1038/s41598-024-74141-w.

[4] A. Shahid, F. Plaum, T. Korõtko and A. Rosin, “AI Technologies and Their Applications in Small-Scale Electric Power Systems,” IEEE Access, vol. 12, pp. 109984-110001, 2024, https://doi.org/10.1109/ACCESS.2024.3440067.

[5] B. Mendi, M. Pattnaik, G. Srungavarapu, “A single current sensor based adaptive step size MPPT control of a small scale variable speed wind energy conversion system,” Applied Energy, vol. 357, p. 122492, 2024, https://doi.org/10.1016/j.apenergy.2023.122492.

[6] R. Figaj, “Energy and Economic Sustainability of a Small-Scale Hybrid Renewable Energy System Powered by Biogas, Solar Energy, and Wind,” Energies, vol. 17, no. 3, p. 706, 2024, https://doi.org/10.3390/en17030706.

[7] O. Apata, P. N. Bokoro, G. Sharma, “Integration of small-scale wind turbines in sustainable and energy efficient buildings,” Natural Energy, Lighting, and Ventilation in Sustainable Buildings, pp. 111-129, 2023, https://doi.org/10.1007/978-3-031-41148-9_6.

[8] B. Y. Kassa, A. T. Baheta, A. Beyene, “Current trends and innovations in enhancing the aerodynamic performance of small-scale, horizontal axis wind turbines: A review,” ASME Open Journal of Engineering, vol. 3, p. 031001, 2024, https://doi.org/10.1115/1.4064141.

[9] L. Zemite, J. Kozadajevs, L. Jansons, I. Bode, E. Dzelzitis, K. Palkova, “Integrating Renewable Energy Solutions in Small-Scale Industrial Facilities,” Energies, vol. 17, no. 11, p. 2792, 2024, https://doi.org/10.3390/en17112792.

[10] Y. Li, W. Jiang, G. Zhang, L. Shu, “Wind turbine fault diagnosis based on transfer learning and convolutional autoencoder with small-scale data,” Renewable Energy, vol. 171, pp. 103-115, 2021, https://doi.org/10.1016/j.renene.2021.01.143.

[11] M. Martín-Betancor, J. Osorio, A. Ruíz-García, I. Nuez, “Technical-economic limitations of floating offshore wind energy generation in small isolated island power systems without energy storage: Case study in the Canary Islands,” Energy Policy, vol. 188, p. 114056, 2024, https://doi.org/10.1016/j.enpol.2024.114056.

[12] X. Liu, D. Zhao, N. L. Oo, “CFD investigation on wind power harvesting from small-scale wind turbines for powering residential buildings in New Zealand,” Journal of the Royal Society of New Zealand, pp. 1-28, 2024, https://doi.org/10.1080/03036758.2024.2323488.

[13] A. Ghigo, E. Petracca, G. Mangia, G. Giorgi, G. Bracco, “Development of a floating vertical axis wind turbine for the mediterranean sea,” Journal of Physics: Conference Series, vol. 2745, no. 1, p. 012008, 2024, https://doi.org/10.1088/1742-6596/2745/1/012008.

[14] A. Vallati, M. Di Matteo, L. Pompei, F. Nardecchia, C. V. Fiorini, “Mitigation of renewable energy source production variability in residential stock through small-scale gas–liquid energy storage technology application,” Processes, vol. 12, no. 4, p. 655, 2024, https://doi.org/10.3390/pr12040655.

[15] D. Keisar, V. Freger, D. Greenblatt, “Direct wind-powered vertical axis brackish water desalination system,” Desalination, vol. 570, p. 117060, 2024, https://doi.org/10.1016/j.desal.2023.117060.

[16] R. Heredia-Fonseca, S. Kumar, S. Ghosh, J. Thakur, A. Bhattacharya, “Modeling a 100% renewable energy pathway in developing Countries: A case study of State of Goa, India,” Energy Conversion and Management, vol. 315, p. 118800, 2024, https://doi.org/10.1016/j.enconman.2024.118800.

[17] A. F. Olivera, E. Chica, H. A. Colorado, “Design and manufacturing with 3D printing and life cycle analysis of a recyclable polymer-based H-Darrieus wind turbine,” Engineered Science, vol. 31, p. 1156, 2024, http://dx.doi.org/10.30919/es1156.

[18] V. Adomavicius, G. Simkoniene, A. Dedenok, “Usefulness of Small-Scale Stand-Alone Hybrid Solar-Wind Power Plants in Rural Areas,” Engineering for Rural Development, pp. 601-607, 2024, https://doi.org/10.22616/ERDev.2024.23.TF111.

[19] C. Azorin-Molina et al., “Biases in wind speed measurements due to anemometer changes,” Atmospheric Research, vol. 289, p. 106771, 2023, https://doi.org/10.1016/j.atmosres.2023.106771.

[20] Ç. Ersin, A. Öz, “Remote Monitoring of Wind Speed and Produced Voltage Measured by Anemometer,” Avrupa Bilim ve Teknoloji Dergisi, vol. 31, pp. 986-990, 2021, https://doi.org/10.31590/ejosat.1019527.

[21] S. Liu, Q. Li, B. Lu, J. He, “Analysis of NREL-5MW wind turbine wake under varied incoming turbulence conditions,” Renewable Energy, vol. 224, p. 120136, 2024, https://doi.org/10.1016/j.renene.2024.120136.

[22] A. Setiawan et al., “Opportunity Assessment of Virtual Power Plant Implementation for Sustainable Renewable Energy Development in Indonesia Power System Network,” Sustainability, vol. 16, no. 5, p. 1721, 2024, https://doi.org/10.3390/su16051721.

[23] R. McKenna et al., “System impacts of wind energy developments: Key research challenges and opportunities,” Joule, vol. 9, no. 1, p. 101799, 2025, https://doi.org/10.1016/j.joule.2024.11.016.

[24] C. Shen, Z. B. Li, F. Liu, H. W. Chen, D. Chen, “A robust reduction in near-surface wind speed after volcanic eruptions: Implications for wind energy generation,” The Innovation, vol. 6, no. 1, p. 100734, 2025, https://doi.org/10.1016/j.xinn.2024.100734.

[25] E. Ramalho et al., “Understanding wind Energy Economic externalities impacts: A systematic literature review,” Renewable and Sustainable Energy Reviews, vol. 209, p. 115120, 2025, https://doi.org/10.1016/j.rser.2024.115120.

[26] T. A. Taha et al., “Enhancing Multilevel Inverter Performance: A Novel Dung Beetle Optimizer-based Selective Harmonic Elimination Approach,” Journal of Robotics and Control (JRC), vol. 5, no. 4, pp. 944-953, 2024, https://doi.org/10.18196/jrc.v5i4.21722.

[27] N. B. Altinpulluk, D. Altinpulluk, M. Yildirim, S. Zhao, F. Qiu, A. Greco, “A survey on degradation modeling, prognosis, and prognostics-driven maintenance in wind energy systems,” Renewable and Sustainable Energy Reviews, vol. 211, p. 115281, 2025, https://doi.org/10.1016/j.rser.2024.115281.

[28] S. Liu et al., “Advances in urban wind resource development and wind energy harvesters,” Renewable and Sustainable Energy Reviews, vol. 207, p. 114943, 2025, https://doi.org/10.1016/j.rser.2024.114943.

[29] T. A. Taha, H. I. Zaynal, A. S. T. Hussain, H. Desa, F. H. Taha, “Definite time over-current protection on transmission line using MATLAB/Simulink,” Bulletin of Electrical Engineering and Informatics, vol. 13, no. 2, pp. 713-723, 2024, https://doi.org/10.11591/eei.v13i2.5301.

[30] A. A. Galarza-Chavez, J. L. Martinez-Rodriguez, R. F. Domínguez-Cruz, E. López-Garza, A. B. Rios-Alvarado, “Multi-step wind energy forecasting in the Mexican Isthmus using machine and deep learning,” Energy Reports, vol. 13, pp. 1-15, 2025, https://doi.org/10.1016/j.egyr.2024.11.074.

[31] A. A. Mas’ud, I. Seidu, S. Salisu, U. Musa, H. Z. AlGarni, M. Bajaj, I. Zaitsev, “Wind energy assessment and hybrid micro-grid optimization for selected regions of Saudi Arabia,” Scientific Reports, vol. 15, no. 1, p. 1376, 2025, https://doi.org/10.1038/s41598-025-85616-9.

[32] A. S. T. Hussain, “Unlocking solar potential: advancements in automated solar tracking systems for enhanced energy utilization,” Journal of Robotics and Control (JRC), vol. 5, no. 4, pp. 1018-1027, 2024, https://doi.org/10.18196/jrc.v5i4.19931.

[33] O. K. Ahmed, S. Algburi, M. A. Jasim, T. A. Taha, A. M. Saleh, K. F. Yassin, “Experimental assessment of the effect of black dye and water depth on the performance of PV/solar distiller,” Desalination and Water Treatment, vol. 318, p. 100317, 2024, https://doi.org/10.1016/j.dwt.2024.100317.

[34] P. Shakya, M. Thomas, A. C. Seibi, M. Shekaramiz, M. S. Masoum, “Fluid-structure interaction and life prediction of small-scale damaged horizontal axis wind turbine blades,” Results in Engineering, vol. 23, p. 102388, 2024, https://doi.org/10.1016/j.rineng.2024.102388.

[35] T. A. Taha, M. K. Hassan, H. I. Zaynal, N. I. A. Wahab, “Big data for smart grid: a case study,” Big Data Analytics Framework for Smart Grids, pp. 142-180, 2024, https://doi.org/10.1201/9781032665399-8.

[36] A. S. T. Hussain, D. Z. Ghafoor, S. A. Ahmed, T. A. Taha, “Smart inverter for low power application based hybrid power system,” AIP Conference Proceedings, vol. 2787, no. 1, p. 050022, 2023, https://doi.org/10.1063/5.0150294.

[37] T. A. Taha, A. S. T. Hussain, K. A. Taha, “Design solar thermal energy harvesting system,” AIP Conference Proceedings, vol. 2591, no. 1, p. 030041, 2023, https://doi.org/10.1063/5.0119752.

[38] M. A. Sharif, “Numerical simulation of a ground-supported solar panel PV array subjected to periodic flow,” NTU Journal of Renewable Energy, vol. 1, no. 1, pp. 50-55, 2021, https://doi.org/10.56286/ntujre.v1i1.23.

[39] M. Sun et al., “A novel small-scale H-type Darrieus vertical axis wind turbine manufactured of carbon fiber reinforced composites,” Renewable Energy, vol. 238, p. 121923, 2025, https://doi.org/10.1016/j.renene.2024.121923.

[40] C. Sreenu, G. Mallesham, T. C. Shekar, S. R. Salkuti, “High Gain Quasi Z-Source Converters with Artificial Bee Colony Control for Grid-Integrated Solar-Wind Energy Sources,” Green Energy and Intelligent Transportation, p. 100264, 2025, https://doi.org/10.1016/j.geits.2025.100264.

[41] O. H. Mohammed, D. K. Hashim, M. Y. Suliman, “The Optimal Energy Management Methods of The Hybrid Power System,” NTU Journal of Renewable Energy, vol. 4, no. 1, pp. 7-17, 2023, https://doi.org/10.56286/ntujre.v4i1.401.

[42] N. H. Aziz, “Load Frequency Control With Renewable Energy Sources Using Practical Swarm Optimization Based On PID,” NTU Journal of Renewable Energy, vol. 5, no. 1, pp. 61-73, 2023, https://doi.org/10.56286/ntujre.v5i1.563.

[43] T. Atyia, M. Qasim, “Evaluating the impact of weather conditions on the effectiveness and performance of PV solar systems and inverters,” NTU Journal of Renewable Energy, vol. 5, no. 1, pp. 34-46, 2023, https://doi.org/10.56286/ntujre.v5i1.551.

[44] L. Onwuemezie, H. G. Darabkhani, “Biohydrogen production from solar and wind assisted AF-MEC coupled with MFC, PEM electrolysis of H2O and H2 fuel cell for small-scale applications,” Renewable Energy, vol. 224, p. 120160, 2024, https://doi.org/10.1016/j.renene.2024.120160.

[45] O. Gaidai, F. Wang, J. Sheng, Y. Zhu, A. Ashraf, Y. Cao, “State-of-the-art Gaidai hypersurface risk assessment for semi-submersible wind turbines, accounting for memory effects,” Energy Conversion and Management: X, vol. 26, p. 100946, 2025, https://doi.org/10.1016/j.ecmx.2025.100946.

[46] A. D. Verma, P. Gaur, A. Tomar, “Low-voltage synchronized BPF-based cascaded VSI controller in solar-wind powered small-scale isolated hybrid microgrid for rural electrification,” Energy, vol. 309, p. 133141, 2024, https://doi.org/10.1016/j.energy.2024.133141.

[47] H. Farooki et al., “A Closer Look at Small-scale Magnetic Flux Ropes in the Solar Wind at 1 au: Results from Improved Automated Detection,” The Astrophysical Journal Supplement Series, vol. 271, no. 2, p. 42, 2024, https://doi.org/10.3847/1538-4365/ad24e1.

[48] K. Naik, N. Sahoo, “Aerodynamic performance and starting torque enhancement of small-scale Darrieus type straight-bladed vertical axis wind turbines with J-shaped airfoil,” Journal of Renewable and Sustainable Energy, vol. 16, no. 3, p. 033304, 2024, https://doi.org/10.1063/5.0203557.

[49] F. Mechnane, S. Drid, N. Nait-Said, L. Chrifi-Alaoui, “Robust Current Control of a Small-Scale Wind–Photovoltaic Hybrid System Based on the Multiport DC Converter,” Applied Sciences, vol. 13, no. 12, p. 7047, 2023, https://doi.org/10.3390/app13127047.

[50] T. J. Zaremba, J. R. Minder, K. Friedrich, “Small-scale wind fluctuations within melting layers of winter storms: results from WINTRE-MIX,” Journal of the Atmospheric Sciences, vol. 82, no. 3, pp. 457-482, 2025, https://doi.org/10.1175/JAS-D-24-0087.1.

[51] M. Borunda, R. Garduno, J. de la Cruz Soto, R. A. F. Díaz, “Intelligent Control of an Experimental Small-Scale Wind Turbine,” Energies, vol. 17, no. 22, pp. 1-32, 2024, https://doi.org/10.3390/en17225656.

[52] Z. Zhao et al., “Harmonics propagation and interaction evaluation in small-scale wind farms and hydroelectric generating systems,” ISA transactions, vol. 129, pp. 334-344, 2022, https://doi.org/10.1016/j.isatra.2022.02.050.

[53] A. Eltayesh et al., “Experimental and numerical investigation of the effect of blade number on the aerodynamic performance of a small-scale horizontal axis wind turbine,” Alexandria Engineering Journal, vol. 60, no. 4, pp. 3931-3944, 2021, https://doi.org/10.1016/j.aej.2021.02.048.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Shouket Ahmed

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


About the JournalJournal PoliciesAuthor Information

International Journal of Robotics and Control Systems
e-ISSN: 2775-2658
Website: https://pubs2.ascee.org/index.php/IJRCS
Email: ijrcs@ascee.org
Organized by: Association for Scientific Computing Electronics and Engineering (ASCEE)Peneliti Teknologi Teknik IndonesiaDepartment of Electrical Engineering, Universitas Ahmad Dahlan and Kuliah Teknik Elektro
Published by: Association for Scientific Computing Electronics and Engineering (ASCEE)
Office: Jalan Janti, Karangjambe 130B, Banguntapan, Bantul, Daerah Istimewa Yogyakarta, Indonesia