
(2) Zainouba Chebana

(3) Taki-Eddine Oussaeif

(4) Sana Abu-Ghurra

(5) Abeer Al-Nana

(6) Anwar Bataihah

(7) Iqbal H. Jebril

*corresponding author
AbstractThe Columbia space shuttle catastrophe in 2003 served as the inspiration for this paper’s improved mathematical model, which includes a nonlinear damping Neumann boundary condition. By creating and examining a modified heat equation with piecewise nonlinear source terms and damping Neumann boundary conditions, the study seeks to investigate the incident’s heat transport dynamics. To ensure that the problem is well-posed, we provide strong mathematical arguments for the existence of solutions both locally and globally. In addition, we use numerical simulations to show how the nonlinear boundary conditions affect heat dissipation and to confirm the theoretical results. The findings advance our knowledge of thermal modeling in aircraft applications and offer greater insights into heat propagation under such conditions.
KeywordsHeat Equation; Damping Term; Existence; Nonlinear Boundary Condition
|
DOIhttps://doi.org/10.31763/ijrcs.v5i2.1653 |
Article metrics10.31763/ijrcs.v5i2.1653 Abstract views : 144 | PDF views : 63 |
Cite |
Full Text![]() |
References
[1] I. M. Batiha, O. Talafha, O. Y. Ababneh, S. Alshorm, and S. Momani, “Handling a commensurate, in commensurate, and singular fractional-order linear time-invariant system,” Axioms, vol. 12, no. 8, p. 771, 2023, https://doi.org/10.3390/axioms12080771.
[2] N. R. Anakira, O. Ababneh, A. S. Heilat, and I. Batiha, “A new accurate approximate solution of singular two-point boundary value problems,” General Letters in Mathematics, vol. 12, no. 1, pp. 31–39, 2022, https://doi.org/10.31559/glm2022.12.1.4.
[3] R. B. Albadarneh, A. K. Alomari, N. Tahat, and I. M. Batiha, “Analytic solution of nonlinear singular BVP with multi-order fractional derivatives in electrohydrodynamic flows,” Turkish World Mathematical Society Journal of Applied and Engineering Mathematics, vol. 11, no. 4, pp. 1125–1137, 2021, http://jaem.isikun.edu.tr/web/index.php/archive/113-vol11-no4/770.
[4] I. M. Batiha, R. El-Khazali, A. AlSaedi, and S. Momani, “The general solution of singular fractional- order linear time-invariant continuous systems with regular pencils,” Entropy, vol. 20, no. 6, p. 400, 2018, https://doi.org/10.3390/e20060400.
[5] I. M. Batiha, N. Barrouk, A. Ouannas, and A. Farah, “A study on invariant regions, existence and uniqueness of the global solution for tridiagonal reaction-diffusion systems,” Journal of Applied Mathematics and Informatics, vol. 41, no. 4, pp. 893–906, 2023, https://doi.org/10.14317/jami.2023.893.
[6] I. M. Batiha, A. Ouannas, and J. A. Emwas, “A stabilization approach for a novel chaotic fractional- order discrete neural network,” Journal of Mathematical and Computational Science, vol. 11, no. 5, pp. 5514–5524, 2021, https://scik.org/index.php/jmcs/article/view/6004.
[7] Z. Chebana, T. E. Oussaeif, S. Dehilis, A. Ouannas, and I. M. Batiha, “On nonlinear Neumann integral condition for a semilinear heat problem with blowup simulation,” Palestine Journal of Mathematics, vol. 12, no. 3, pp. 389-394, 2023, https://www.researchgate.net/profile/Iqbal-Batiha/publication/375084322_On_Nonlinear_Neumann_Integral_Conditionfor_a_Semilinear_Heat_Problem_With_Blow_Up_Simulation/links/653fe02df7d021785f223687/On-Nonlinear-Neumann-Integral-Condition-for-a-Semilinear-Heat-Problem-With-Blow-Up-Simulation.pdf.
[8] R. B. Albadarneh, A. Abbes, A. Ouannas, I. M. Batiha, and T. E. Oussaeif, “On chaos in the fractional order discrete-time macroeconomic systems,” AIP Conference Proceedings, vol. 2849, no. 1, p. 030014, 2023, https://doi.org/10.1063/5.0162686.
[9] I. M. Batiha, N. Djenina, and A. Ouannas, “A stabilization of linear incommensurate fractional-order difference systems,” AIP Conference Proceedings, vol. 2849, no. 1, p. 030013, 2023, https://doi.org/10.1063/5.0164866.
[10] N. Abdelhalim, A. Ouannas, I. Rezzoug, and I. M. Batiha, “A study of a high–order time–fractional partial differential equation with purely integral boundary conditions,” Fractional Differential Calculus, vol. 13, no. 2, pp. 199—210, 2024, https://doi.org/10.7153/fdc-2023-13-13.
[11] A. A. Khennaoui, A. O. Almatroud, A. Ouannas, M. M. Al-sawalha, G. Grassi, V. T. Pham, and I. M. Batiha, “An unprecedented 2-dimensional discrete-time fractional-order system and its hidden chaotic attractors,” Mathematical Problems in Engineering, vol. 2021, p. 6768215, 2021, https://doi.org/10.1155/2021/6768215.
[12] I. M. Batiha, N. Allouch, I. H. Jebril, and S. Momani, “A robust scheme for reduction of higher fractional order systems,” Journal of Engineering Mathematics, vol. 144, no. 4, 2024, https://doi.org/10.1007/s10665-023-10310-6.
[13] I. M. Batiha, A. Benguesmia, T. E. Oussaeif, I. H. Jebril, A. Ouannas, and S. Momani, “Study of a superlinear problem for a time fractional parabolic equation under integral over-determination condition,” IAENG International Journal of Applied Mathematics, vol. 54, no. 2, pp. 187–193, 2024, https://www.iaeng.org/IJAM/issues_v54/issue_2/IJAM_54_2_05.pdf.
[14] A. Bouchenak, I. M. Batiha, M. Aljazzazi, I. H. Jebril, M. Al-Horani, and R. Khalil, “Atomic exact solution for some fractional partial differential equations in Banach spaces,” Partial Differential Equations in Applied Mathematics, vol. 9, p. 100626, 2024, https://doi.org/10.1016/j.padiff.2024.100626.
[15] I. M. Batiha, I. H. Jebril, A. A. Al-Nana, and S. Alshorm, “A simple harmonic quantum oscillator: fractionalization and solution,” Mathematical Models in Engineering, vol. 10, no. 1, pp. 26–34, 2024, https://doi.org/10.21595/mme.2024.23904.
[16] I. M. Batiha, J. Oudetallah, A. Ouannas, A. A. Al-Nana, and I. H. Jebril, “Tuning the fractional-order PID-controller for blood glucose level of diabetic patients,” International Journal of Advances in Soft Computing and its Applications, vol. 13, no. 2, pp. 1–10, 2021, http://www.i-csrs.org/Volumes/ijasca/2021.2.1.pdf.
[17] I. M. Batiha, S. A. Njadat, R. M. Batyha, A. Zraiqat, A. Dababneh, and S. Momani, “Design fractional order PID controllers for single-joint robot arm model,” International Journal of Advances in Soft Computing and its Applications, vol. 14, no. 2, pp. 96–114, 2022, https://doi.org/10.15849/IJASCA.220720.07.
[18] Z. Chebana, T. E. Oussaeif, A. Ouannas, and I. M. Batiha, “Solvability of Dirichlet problem for a fractional partial differential equation by using energy inequality and Faedo-Galerkin method,” Innovative Journal of Mathematics, vol. 1, no. 1, pp. 34–44, 2022, https://doi.org/10.55059/ijm.2022.1.1/4.
[19] I. M. Batiha, “Solvability of the solution of superlinear hyperbolic Dirichlet problem,” International Journal of Analysis and Applications, vol. 20, p. 62, 2022, https://doi.org/10.28924/2291-8639-20-2022-62.
[20] I. M. Batiha, Z. Chebana, T. E. Oussaeif, A. Ouannas, S. Alshorm, and A. Zraiqat, “Solvability and dynamics of superlinear reaction diffusion problem with integral condition,” IAENG International Journal of Applied Mathematics, vol. 53, no. 1, pp. 113–121, 2023, https://www.iaeng.org/IJAM/issues_v53/issue_1/IJAM_53_1_15.pdf.
[21] I. M. Batiha, Z. Chebana, T. E. Oussaeif, A. Ouannas, I. H. Jebril, and M. Shatnawi, “Solvability of nonlinear wave equation with nonlinear integral Neumann conditions,” International Journal of Analysis and Applications, vol. 21, p. 34, 2023, https://doi.org/10.28924/2291-8639-21-2023-34.
[22] I. M. Batiha, A. Ouannas, R. Albadarneh, A. A. Al-Nana, and S. Momani, “Existence and uniqueness
[23] of solutions for generalized Sturm–Liouville and Langevin equations via Caputo–Hadamard fractional order operator,” Engineering Computations, vol. 39, no. 7, pp. 2581–2603, 2022, https://doi.org/10.1108/EC-07-2021-0393.
[24] I. M. Batiha, N. Barrouk, A. Ouannas, and W. G. Alshanti, “On global existence of the fractional reaction diffusion system’s solution,” International Journal of Analysis and Applications, vol. 21, p. 11, 2023, https://doi.org/10.28924/2291-8639-21-2023-11.
[25] I. M. Batiha, Z. Chebana, T. E. Oussaeif, A. Ouannas, and I. H. Jebril, “On a weak Solution of a fractional order temporal equation,” Mathematics and Statistics, vol. 10, no. 5, pp. 1116–1120, 2022, https://doi.org/10.13189/ms.2022.100522.
[26] N. Anakira, Z. Chebana, T. E. Oussaeif, I. M. Batiha, and A. Ouannas, “A study of a weak solution of a diffusion problem for a temporal fractional differential equation,” Nonlinear Functional Analysis and Applications, vol. 27, no. 3, pp. 679–689, 2022, https://doi.org/10.22771/nfaa.2022.27.03.14.
[27] I. M. Batiha, I. Rezzoug, T. E. Oussaeif, A. Ouannas, and I. H. Jebril, “Pollution detection for the singular linear parabolic equation,” Journal of Applied Mathematics and Informatics, vol. 41, no. 3, pp. 647–656, 2023, https://doi.org/10.14317/jami.2023.647.
[28] N. R. Anakira, A. Almalki, D. Katatbeh, G. B. Hani, A. F. Jameel, K. S. Al Kalbani, and M. Abu-Dawas, “An algorithm for solving linear and non-linear Volterra Integro-differential equations,” International Journal of Advances in Soft Computing & Its Applications, vol. 15, no. 3, pp. 77–83, 2023, https://doi.org/10.15849/IJASCA.231130.05.
[29] G. Farraj, B. Maayah, R. Khalil, and W. Beghami, “An algorithm for solving fractional differential equations using conformable optimized decomposition method,” International Journal of Advances in Soft Computing and Its Applications, vol. 15, no. 1, pp. 187–196, 2023, https://doi.org/10.15849/IJASCA.230320.13.
[30] M. Berir, “Analysis of the effect of white noise on the Halvorsen system of variable-order fractional derivatives using a novel numerical method,” International Journal of Advances in Soft Computing and its Applications, vol. 16, no. 3, pp. 294–306, 2024, https://doi.org/10.15849/IJASCA.241130.16.
[31] X. Yang and Z. Zhou, “Blow-up problems for the heat equation with a local nonlinear Neumann boundary condition,” Journal of Differential Equations, vol. 261, no. 5, pp. 2738–2783, 2016, https://doi.org/10.1016/j.jde.2016.05.011.
[32] B. Hu, “Remarks on the blowup estimate for solution of the heat equation with a nonlinear boundary condition,” Differential and Integral Equations, vol. 9, no. 5, pp. 891–901, 1996, https://doi.org/10.57262/die/1367871522.
[33] E. Vitillaro, “Global existence for the wave equation with nonlinear boundary damping and source terms,” Journal of Differential Equations, vol. 186, no. 1, pp. 259–298, 2002, https://doi.org/10.1016/S0022-0396(02)00023-2.
[34] E. Vitillaro, “Global existence for the heat equation with nonlinear dynamical boundary conditions,” Proceedings of the Royal Society of Edinburgh Section A: Mathematics, vol. 135, no. 1, pp. 175–207, 2005, https://doi.org/10.1017/S0308210500003838.
[35] A. Fiscella and E. Vitillaro, “Blow-up for the wave equation with nonlinear source and boundary damping terms,” Proceedings of the Royal Society of Edinburgh Section A: Mathematics, vol. 145, no. 4, pp. 759–778, 2015, https://doi.org/10.1017/S0308210515000165.
[36] E. Vitillaro, “Global existence for the wave equation with nonlinear boundary damping and source terms,” Journal of Differential Equations, vol. 186, no. 1, pp. 259–298, 2002, https://doi.org/10.1016/S0022-0396(02)00023-2.
[37] E. Vitillaro, “On the Laplace equation with non-linear dynamical boundary conditions,” Proceedings of the London Mathematical Society, vol. 93, no. 2, pp. 418–446, 2006, https://doi.org/10.1112/S0024611506015875.
[38] S. T. Wu, “General decay and blow-up of solutions for a viscoelastic equation with nonlinear boundary damping-source interactions,” Zeitschrift für angewandte Mathematik und Physik, vol. 63, no. 3, pp. 65–106, 2011, https://doi.org/10.1007/s00033-011-0151-2.
[39] L. C. Evans, Partial Differential Equations, American Mathematical Society, 2022, https://books.google.co.id/books?id=Ott1EAAAQBAJ&hl=id&source=gbs_navlinks_s.
[40] H. Brezis, Functional Analysis, Sobolev Spaces, and Partial Differential Equations, Springer New York Dordrecht Heidelberg London, 2010, https://doi.org/10.1007/978-0-387-70914-7.
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Iqbal Batiha, Zainouba Chebana, Taki-Eddine Oussaeif, Anwar Bataihah, Thabet Abdeljawad, Iqbal H. Jebril

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
About the Journal | Journal Policies | Author | Information |
International Journal of Robotics and Control Systems
e-ISSN: 2775-2658
Website: https://pubs2.ascee.org/index.php/IJRCS
Email: ijrcs@ascee.org
Organized by: Association for Scientific Computing Electronics and Engineering (ASCEE), Peneliti Teknologi Teknik Indonesia, Department of Electrical Engineering, Universitas Ahmad Dahlan and Kuliah Teknik Elektro
Published by: Association for Scientific Computing Electronics and Engineering (ASCEE)
Office: Jalan Janti, Karangjambe 130B, Banguntapan, Bantul, Daerah Istimewa Yogyakarta, Indonesia