
(2) * Iqbal M. Batiha

(3) Wala’a Ahmad Alkasasbeh

(4) Nidal Anakira

(5) Iqbal H. Jebril

(6) Shaher Momani

*corresponding author
AbstractThis work is dedicated to advancing the approximation of initial value problems through the introduction of an innovative and superior method inspired by the Euler-Maclaurin formula. This results in a higher-order implicit corrected method that outperforms Taylor’s and Runge–Katta’s methods in terms of accuracy. We derive an error bound for the Euler-Maclaurin higher-order method, showcasing its stability, convergence, and greater efficiency compared to the conventional Taylor and Runge-Katta methods. To substantiate our claims, numerical experiments are provided, highlighting the exceptional efficiency of our proposed method over the traditional well-known methods.
KeywordsEuler-Maclaurin Formula; Euler Method; Darboux’s Formula; Approximations; Initial Value Problem
|
DOIhttps://doi.org/10.31763/ijrcs.v5i1.1560 |
Article metrics10.31763/ijrcs.v5i1.1560 Abstract views : 141 | PDF views : 57 |
Cite |
Full Text![]() |
References
[1] A. F. Jameel, A. H. Shather, N. R. Anakira, A. K. Alomari, and A. Saaban, “Comparison for the approximate solution of the second-order fuzzy nonlinear differential equation with fuzzy initial conditions,†Mathematics and Statistics, vol. 8, no. 5, pp. 527–534, 2020, https://doi.org/10.13189/ms.2020.080505.
[2] A. F. Jameel, N. Anakira, A. K. Alomari, I. Hashim, and S. Momani, “A new approximation method for solving fuzzy heat equations,†Journal of Computational and Theoretical Nanoscience, vol. 13, no. 11, pp. 7825–7832, 2016, https://doi.org/10.1166/jctn.2016.5784.
[3] S. A. Altaie, N. Anakira, A. Jameel, O. Ababneh, A. Qazza, and A. K. Alomari, “Homotopy analysis method analytical scheme for developing a solution to partial differential equations in fuzzy environment,†Fractal and Fractional, vol. 6, no. 8, p. 419, 2022, https://doi.org/10.3390/fractalfract6080419.
[4] I. M. Batiha, M. W. Alomari, N. Anakira, S. Meqdad, I. H. Jebril, and S. Momani, “Numerical advancements: A duel between Euler-Maclaurin and Runge-Kutta for initial value problem,†International Journal of Neutrosophic Science, vol. 25, no. 3, pp. 76–91, 2025, https://doi.org/10.54216/IJNS.250308.
[5] N. Allouch, I. Batiha, I. H. Jebril, A. Al-Khateeb, and S. Hamani, “A new fractional approach for the higher-order q-Taylor method,†Image Analysis and Stereology, vol. 43, no. 3, 2024, https://doi.org/10.5566/ias.3286.
[6] A. Zraiqat, I.M. Batiha, and S. Alshorm, “Numerical comparisons between some recent modifications of fractional Euler methods,†WSEAS Transactions on Mathematics, vol. 23, no. 1, pp. 529–535, 2024, https://doi.org/10.37394/23206.2024.23.55.
[7] I. M. Batiha, I. H. Jebril, N. Anakira, A. A. Al-Nana, R. Batyha, and S. Momani, “Two-dimensional fractional wave equation via a new numerical approach,†International Journal of Innovative Computing, Information & Control, vol. 20, no. 4, pp. 1045–1059, 2024, https://doi.org/10.24507/ijicic.20.04.1045.
[8] I. M. Batiha, R. Saadeh, I. H. Jebril, A. Qazza, A. A. Al-Nana, and S. Momani, “Composite fractional trapezoidal rule with Romberg integration,†Computer Modeling in Engineering & Sciences, vol. 140, no. 3, pp. 2729–2745, 2024, https://doi.org/10.32604/cmes.2024.051588.
[9] I. M. Batiha, S. Alshorm, and M. Almuzini, “Solving fractional-order monkeypox model by new numerical methods,†in The International Arab Conference on Mathematics and Computations, vol. 466, pp. 551–561, 2024, https://doi.org/10.1007/978-981-97-4876-1_38.
[10] I. Jebril, S. Alshorm, and I. M. Batiha, “Numerical solution for fractional-order glioblastoma multiforme model,†in The International Arab Conference on Mathematics and Computations, vol. 466, pp. 599–607, 2024, https://doi.org/10.1007/978-981-97-4876-1_42.
[11] M. W. Alomari, I. M. Batiha, and S. Momani, “New higher-order implicit method for approximating solutions of the initial value problems,†Journal of Applied Mathematics and Computing, vol. 70, pp. 3369–3393, 2024, https://doi.org/10.1007/s12190-024-02087-3.
[12] I. M. Batiha, I. H. Jebril, A. Abdelnebi, Z. Dahmani, S. Alkhazaleh, and N. Anakira, “A new fractional representation of the higher order Taylor scheme,†Computational and Mathematical Methods, vol. 2024, no. 1, 2024, https://doi.org/10.1155/2024/2849717.
[13] I. M. Batiha, I. H. Jebril, S. Alshorm, M. Aljazzazi, and S. Alkhazaleh, “Numerical approach for solving incommensurate higher-order fractional differential equations,†Non-linear Dynamics and Systems Theory, vol. 24, no. 2, pp. 123–134, 2024, https://www.researchgate.net/profile/Andrzej-Okninski/publication/379315192_The_Twin-Well_Duffing_Equation_Escape_Phenomena_Bistability_Jumps_and_Other_Bifurcations/links/66041cb910ca86798715d5b5/The-Twin-Well-Duffing-Equation-Escape-Phenomena-Bistability-Jumps-and-Other-Bifurcations.pdf#page=17.
[14] A. A. Al-Nana, I. M. Batiha, and S. Momani, “A numerical approach for dealing with fractional boundary value problems,†Mathematics, vol. 11, no. 19, p. 4082, 2023, https://doi.org/10.3390/math11194082.
[15] I. M. Batiha, A. A. Abubaker, I. H. Jebril, S. B. Al-Shaikh, and K. Matarneh, “New algorithms for dealing with fractional initial value problems,†Axioms, vol. 12, no. 5, p. 488, 2023, https://doi.org/10.3390/axioms12050488.
[16] I. M. Batiha, S. Alshorm, A. Al-Husban, R. Saadeh, G. Gharib, and S. Momani, “The n-point composite fractional formula for approximating Riemann–Liouville integrator,†Symmetry, vol. 15, no. 4, p. 938, 2023, https://doi.org/10.3390/sym15040938.
[17] I. M. Batiha, A. A. Abubaker, I. H. Jebril, S. B. Al-Shaikh, and K. Matarneh, “A numerical approach of handling fractional stochastic differential equations,†Axioms, vol. 12, no. 4, p. 388, 2023, https://doi.org/10.3390/axioms12040388.
[18] I. M. Batiha, S. Momani, S. Alshorm and A. Ouannas, “Numerical Solutions of Stochastic Differential Equation Using Modified Three-Point Fractional Formula,†2023 International Conference on Fractional Differentiation and Its Applications (ICFDA), pp. 1-5, 2023, https://doi.org/10.1109/ICFDA58234.2023.10153192.
[19] I. M. Batiha, A. Bataihah, A. A. Al-Nana, S. Alshorm, I. H. Jebril, and A. Zraiqat, “A numerical scheme for dealing with fractional initial value problem,†International Journal of Innovative Computing, Information & Control, vol. 19, no. 3, pp. 763–774, 2023, https://doi.org/10.24507/ijicic.19.03.763.
[20] I. M. Batiha, S. Alshorm, I. Jebril, A. Zraiqat, Z. Momani, and S. Momani, “Modified 5-point fractional formula with Richardson extrapolation,†AIMS Mathematics, vol. 8, no. 4, pp. 9520–9534, 2023, https://doi.org/10.3934/math.2023480.
[21] I. M. Batiha, S. Alshorm, A. Ouannas, S. Momani, O.Y. Ababneh, and M. Albdareen, “Modified three point fractional formulas with Richardson extrapolation,†Mathematics, vol. 10, no. 19, p. 3489, 2022, https://doi.org/10.3390/math10193489.
[22] R. B. Albadarneh, I. M. Batiha, A. Adwai, N. Tahat, and A. K. Alomari, “Numerical approach of Riemann-Liouville fractional derivative operator,†International Journal of Electrical and Computer Engineering, vol. 11, no. 6, pp. 5367–5378, 2021, https://doi.org/10.11591/ijece.v11i6.pp5367-5378.
[23] R. B. Albadarneh, I. M. Batiha, A.K. Alomari, and N. Tahat, “Numerical approach for approximating the Caputo fractional-order derivative operator,†AIMS Mathematics, vol. 6, no. 11, pp. 12743–12756, 2021, https://doi.org/10.3934/math.2021735.
[24] R. B. Albadarneh, I. M. Batiha, and M. Zurigat, “Numerical solutions for linear frac- tional differential equations of order 1 < α < 2 using finite difference method (FFDM),†Journal of Mathematics and Computer Science, vol. 16, no. 1, pp. 103–111, 2016, https://www.researchgate.net/profile/Ramzi_Albadarneh/publication/320646492_Numerical_Solutions_for_Linear_Fractional_Differential_Equations_of_Order_1/links/5a320dc70f7e9b2a28f559b4/Numerical-Solutions-for-Linear-Fractional-Differential-Equations-of-Order-1.pdf.
[25] R. B. Albadarneh, M. Zerqat, and I.M. Batiha, “Numerical solutions for linear and non-linear fractional differential equations,†International Journal of Pure and Applied Mathematics, vol. 106, no. 3, pp. 859–871, 2016, https://doi.org/10.12732/ijpam.v106i3.12.
[26] I. M. Batiha, O. Ogilat, I. Bendib, A. Ouannas, I. H. Jebril, and N. Anakira, “Finite-time dynamics of the fractional-order epidemic model: Stability, synchronization, and simulations,†Chaos, Solitons & Fractals: X, vol. 13, p. 100118, 2024, https://doi.org/10.1016/j.csfx.2024.100118.
[27] I. M. Batiha, I. Bendib, A. Ouannas, I. H. Jebril, S. Alkhazaleh, and S. Momani, “On new results of stability and synchronization in finite-time for FitzHugh-Nagumo model using Grönwall inequality and Lyapunov function,†Journal of Robotics and Control (JRC), vol. 5, no. 6, pp. 1897–1909, 2024, https://doi.org/10.18196/jrc.v5i6.23211.
[28] O. A. Almatroud, A. Hioual, A. Ouannas, and I. M. Batiha, “Asymptotic stability results of generalized discrete time reaction diffusion system applied to Lengyel-Epstein and Dagn Harrison models,†Computers & Mathematics with Applications, vol. 170, pp. 25–32, 2024, https://doi.org/10.1016/j.camwa.2024.06.028.
[29] S. Momani and I. M. Batiha, “Tuning of the fractional-order PID controller for some real-life industrial processes using particle swarm optimization,†Progress in Fractional Differentiation and Applications, vol. 8, no. 3, pp. 377–391, 2022, http://dx.doi.org/10.18576/pfda/PFDA-60-20.
[30] T. Hamadneh, A. Zraiqat, H. Al-Zoubi, and M. Elbes, â€Sufficient conditions and bounding properties for control functions using Bernstein expansion,†Applied Mathematics and Information Sciences, vol. 14, no. 6, pp. 985–993, 2020, https://doi.org/10.18576/amis/140605.
[31] A. Zraiqat, “Inclusion and equivalence relations between absolute Nörlund and absolute weighted mean summability methods,†Boletim da Sociedade Paranaense de Matematica, vol. 37, no. 4, pp. 103–117, 2019, https://doi.org/10.5269/bspm.v37i4.32064.
[32] A. Zraiqat and L. K. Al-Hwawcha, “On exact solutions of second-order nonlinear ordinary differential equations,†Applied Mathematics, vol. 6, no. 6, pp. 953–957, 2015, https://doi.org/10.4236/am.2015.66087.
[33] A. Zraiqat and A. K. Al-Madi, “On translativity of the product of Riesz Nörlund summability methods,†Applied Mathematical Sciences, vol. 7, no. 33-36, pp. 1601–1610, 2013, https://doi.org/10.12988/ams.2013.13148.
[34] A. Zraiqat and A. Dababneh, “Study of development of cracks under compressive stresses,†Applied Mathematical Sciences, vol. 7, no. 33-36, pp. 1611–1622, 2013, https://doi.org/10.12988/ams.2013.13149.
[35] T. Gou et al., “A new method for evaluation of fracture network formation capacity of rock,†Fuel, vol. 140, pp. 778–787, 2015, https://doi.org/10.1016/j.fuel.2014.10.017.
[36] S. Kumar, V. Gupta, and D. Zeidan, “An efficient collocation technique based on operational matrix of fractional-order Lagrange polynomials for solving the space-time fractional-order partial differential equations,†Applied Numerical Mathematics, vol. 204, pp. 249–264, 2024, https://doi.org/10.1016/j.apnum.2024.06.014.
[37] A. Idrissi and D. Zeidan, “A homogeneous equilibrium model for the simulation of two-dimensional two-phase flow Riemann problem,†AIP Conference Proceedings, vol. 3094, no. 1, p. 030002, 2024, https://doi.org/10.1063/5.0210152.
[38] F. Harbate, N. Izem, M. Seaid, and D. Zeidan, “High-order relaxation methods for nonequilibrium two phase flow equations,†International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34, no. 3, pp. 1399–1423, 2024, https://doi.org/10.1108/HFF-06-2023-0344.
[39] M. Kamran, E. Bonyah, and M. Alomari, “M-polynomial and NM-polynomial of used drugs against monkeypox,†Journal of Mathematics, vol. 2022, pp. 1–12, 2022, https://doi.org/10.1155/2022/9971255.
[40] M.W. Alomari, “A companion of Dragomir’s generalization of Ostrowski’s inequality and applications in numerical integration,†Ukrains’ kyi Matematychnyi Zhurnal, vol. 64, no. 4, pp. 435–450, 2012, https://umj.imath.kiev.ua/index.php/umj/article/view/2588.
[41] A. Borri, F. Carravetta, and P. Palumbo, “Quadratized Taylor series methods for ODE numerical integration,†Applied Mathematics and Computation, vol. 458, p. 128237, 2023, https://doi.org/10.1016/j.amc.2023.128237.
[42] P. Amodio, F. Iavernaro, F. Mazzia, M.S. Mukhametzhanov, and Ya.D. Sergeyev, “A generalized Taylor method of order three for the solution of initial value problems in standard and infinity floating-point arithmetic,†Mathematics and Computers in Simulation, vol. 141, pp. 24–39, 2017, https://doi.org/10.1016/j.matcom.2016.03.007.
[43] M. A. Arefin, B. Gain, and R. Karim, “Accuracy analysis on solution of initial value problems of ordinary differential equations for some numerical methods with different step sizes,†International Annals of Science, vol. 10, no. 1, pp. 118–133, 2021, https://doi.org/10.21467/ias.10.1.118-133.
[44] A. Baeza, S. Boscarino, P. Mulet, G. Russo, and D. ZorıÌo, “Approximate Taylor methods for ODEs,†Computers & Fluids, vol. 159, pp. 156–166, 2017, https://doi.org/10.1016/j.compfluid.2017.10.001.
[45] A. Baeza, S. Boscarino, P. Mulet, G. Russo, and D. ZorıÌo, “Reprint of: Approximate Taylor methods for ODEs,†Computers & Fluids, vol. 169, pp. 87–97, 2018, https://doi.org/10.1016/j.compfluid.2018.03.058.
[46] H. Carrillo, E. Macca, C. Parés, G. Russo, and D. ZorıÌo, “An order-adaptive compact approximation Taylor method for systems of conservation laws,†Journal of Computational Physics, vol. 438, no. 1, p. 110358, 2021, https://doi.org/10.1016/j.jcp.2021.110358.
[47] G. Corliss, “Solving ordinary differential equations using Taylor series,†ACM Transactions on Mathematical Software, vol. 8, no. 2, pp. 114–144, 1982, https://doi.org/10.1145/355993.355995.
[48] T. Hamadneh, A. Hioual, R. Saadeh, M. A. Abdoon, D. K. Almutairi, T. A. Khalid, and A. Ouannas,
[49] “General methods to synchronize fractional discrete reaction–diffusion systems applied to the glycolysis model,†Fractal and Fractional, vol. 7, no. 11, p. 828, 2023, https://doi.org/10.3390/fractalfract7110828.
[50] Ã. Jorba and M. Zou, “A software package for the numerical integration of ODEs by means of high-order Taylor methods,†Experimental Mathematics, vol. 14, no. 1, pp. 99–117, 2005, https://doi.org/10.1080/10586458.2005.10128904.
[51] T.V. Lakshminarasimhan, “On extensions of Taylor’s formula,†The American Mathematical Monthly, vol. 72, no. 8, pp. 877–881, 1965, https://doi.org/10.2307/2315036.
[52] J. Ndam, “Comparison of the solution of the Van der Pol equation using the modified Adomian decomposition method and truncated Taylor series method,†Journal of the Nigerian Society of Physical Sciences, vol. 2, no. 2, pp. 105–113, 2020, https://doi.org/10.46481/jnsps.2020.44.
[53] K. L. Narayanan, J. Kavitha, R. U. Rani, M. E. Lyons, and L. Rajendran, “Mathematical modelling of amperometric glucose biosensor based on immobilized enzymes: New approach of Taylor’s series method,†International Journal of Electrochemical Science, vol. 17, no. 10, p. 221064, 2022, https://doi.org/10.20964/2022.10.47.
[54] K. Wang and Q. Wang, “Taylor collocation method and convergence analysis for the Volterra–Fredholm integral equations,†Journal of Computational and Applied Mathematics, vol. 260, pp. 294–300, 2014. https://doi.org/10.1016/j.cam.2013.09.050.
[55] L. Euler, â€On the sums of series of reciprocals,†arXiv, pp. 1–8, 2005, https://doi.org/10.48550/arXiv.math/0506415.
[56] C. Maclaurin, A Treatise of Fluxions in Two Books, Ruddimans, 1742, https://books.google.co.id/books?id=9Ig_AAAAcAAJ&hl=id&source=gbs_navlinks_s.
[57] T. M. Apostol, “An elementary view of Euler’s summation formula,†American Mathematical Monthly, vol. 106, no. 5, pp. 409–418, 1999, https://doi.org/10.1080/00029890.1999.12005063.
[58] E. T. Whittaker and G. N. Watson, “A Course of Modern Analysis,†The Mathematical Gazette, vol. 14, no. 196, p. 245, 1982, https://doi.org/10.2307/3606904.
[59] L. C. Andrews and C. Y. Young, Special Functions, CRC Press, 2016, https://www.taylorfrancis.com/chapters/edit/10.1081/E-EOE2-120009525/special-functions-larry-andrews-cynthia-young.
[60] R. L. Burden and J. D. Faires, Numerical Analysis, Cengage Learning, 2011, https://books.google.co.id/books?id=-fgjJF9yAIwC&hl=id&source=gbs_navlinks_s.
[61] F. W. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST Handbook of Mathematical Functions, Cambridge University Press, 2010, https://books.google.co.id/books?id=3I15Ph1Qf38C&hl=id&source=gbs_navlinks_s.
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Iqbal Batiha, Mohammed Alomari, Osama Ogilat, Iqbal H. Jebril, Nidal Anakira, Shaher Momani

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
About the Journal | Journal Policies | Author | Information |
International Journal of Robotics and Control Systems
e-ISSN: 2775-2658
Website: https://pubs2.ascee.org/index.php/IJRCS
Email: ijrcs@ascee.org
Organized by: Association for Scientific Computing Electronics and Engineering (ASCEE), Peneliti Teknologi Teknik Indonesia, Department of Electrical Engineering, Universitas Ahmad Dahlan and Kuliah Teknik Elektro
Published by: Association for Scientific Computing Electronics and Engineering (ASCEE)
Office: Jalan Janti, Karangjambe 130B, Banguntapan, Bantul, Daerah Istimewa Yogyakarta, Indonesia