Control of a Multimode Double-Pendulum Overhead Crane System Using Input Shaping Controllers

(1) Sharifah Yuslinda Syed Hussien Mail (Universiti Teknikal Malaysia Melaka, Malaysia)
(2) * Hazriq Izzuan Jaafar Mail (1) Faculty of Electrical Technology and Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia. 2) Center for Robotics and Industrial Automation, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia, Malaysia)
(3) Rozaimi Ghazali Mail (1) Faculty of Electrical Technology and Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia. 2) Center for Robotics and Industrial Automation, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia)
(4) Liyana Ramli Mail (Universiti Sains Islam Malaysia, Malaysia)
(5) Mohd Khairul Azizat Johari Mail (Johor Port Berhad, Malaysia)
*corresponding author

Abstract


This paper investigates the impact of higher derivative input shaping for minimizing both oscillations, namely hook and payload of a multimode double-pendulum overhead crane (MDPOC) system. The MDPOC has greater nonlinearities and stronger internal couplings, especially when involving two oscillation frequencies with multimode dynamic effects. With a suitable system’s natural frequency and damping ratio of the hook and payload oscillations, multimode zero-vibration (ZV-ZV), multimode zero-vibration derivative (ZVD-ZVD) and multimode zero-vibration derivative-derivative (ZVDD-ZVDD) shapers are successfully designed. More interestingly, two scenarios under a fixed cable length and a payload hoisting are considered which are closer to the real practical crane.  Thus, an average travel length (ATL)-based shaper method is also considered to further verify the effectiveness and robustness of efficient hook and payload oscillation control under payload hoisting. All the multimode input shaping is simulated using the Matlab software. The simulation results of multimode ZVDD-ZVDD shaper successfully reduced in the overall hook and payload oscillations by 97.9% and 97.2%, respectively, compared to the unshaped system, whereas the multimode ATL-ZVDD shaper reduced hook and payload oscillations by 94.8% and 94.0%, respectively. In fact, the multimode ZVDD-ZVDD and multimode ATL-ZVDD shapers demonstrate the superiority in minimizing the hook and payload oscillations compared to the multimode ZV-ZV, multimode ZVD-ZVD, ATL-ZV and ATL-ZVD shapers. This significant reduction in oscillations enhances the precision and safety of real-world crane operations in industrial settings. It has been proven that considering the additional derivative of input shaping results in a higher level of hook and payload oscillations reduction.

Keywords


Double-Pendulum; Input Shaping Controllers; Multimode; Oscillation Reduction; Overhead Crane; Payload Hoisting

   

DOI

https://doi.org/10.31763/ijrcs.v4i3.1520
      

Article metrics

10.31763/ijrcs.v4i3.1520 Abstract views : 682 | PDF views : 200

   

Cite

   

Full Text

Download

References


[1] D. K. Thomsen, R. S-Knudsen, O. Balling and X. Zhang, “Vibration Control of Industrial Robot Arms by Multi-Mode Time-Varying Input Shaping,†Mechanism and Machine Theory, vol. 155, p. 104072, 2021, https://doi.org/10.1016/j.mechmachtheory.2020.104072.

[2] J. A. G. L. Junior, J. M. Balthazar, M. A. Ribeiro, F. C. Janzen and A. M. Tusset, “Dynamic Model of a Robotic Manipulator with One Degree of Freedom with Friction Component,†International Journal of Robotics and Control Systems, vol. 3, no. 2, pp. 315-329, 2023, https://doi.org/10.31763/ijrcs.v3i2.984.

[3] B. Ataei, S. Yuan, Z. Ren and K. H. Halse, “Effects of Structural Flexibility on the Dynamic Responses of Low-Height Lifting Mechanism for Offshore Wind Turbine Installation,†Marine Structures, vol. 89, p. 103399, 2023, https://doi.org/10.1016/j.marstruc.2023.103399.

[4] J. Haas, B. Schrage, G. Menze, P. M. Sieberg and D. Schramm, “Oscillation and Vibration Reduction Approaches on a HiL-Steering-Test-Bench,†IEEE/ASME Transactions on Mechatronics, vol. 29, no. 2, pp. 1295-1305, 2024, https://doi.org/10.1109/TMECH.2023.3297949.

[5] Y. Wang, X. Li and Y. Shen, “Study on Mechanical Vibration Control of Limit Cycle Oscillations in the Van der Pol Oscillator by means of Nonlinear Energy Sink,†Journal of Vibration Engineering & Technologies, vol. 12, pp. 811-819, 2024, https://doi.org/10.1007/s42417-023-00877-w.

[6] A. B. Alhassan, R. Chancharoen, B. B. Muhammad and G. Phanomchoeng, "Precise Automation of Rotary Flexible Link Manipulator Using Hybrid Input Shaping With Single State Feedback Fuzzy Logic and Sliding Mode Controllers," IEEE Access, vol. 11, pp. 86711-86726, 2023, https://doi.org/10.1109/ACCESS.2023.3304751.

[7] M. Elouni, H. Hamdi, B. Rabaoui and N. B. Braiek, “Adaptive PID Fault-Tolerant Tracking Controller for Takagi-Sugeno Fuzzy Systems with Actuator Faults: Application to Single-Link Flexible Joint Robot,†International Journal of Robotics and Control Systems, vol. 2, no. 3, pp. 523-546, 2022, https://doi.org/10.31763/ijrcs.v2i3.762.

[8] Z. Guo, J. Zhang and P. Zhang, “Research on the Residual Vibration Suppression of Delta Robots Based on the Dual-Modal Input Shaping Method,†Actuators, vol. 2, no. 3, p. 84, 2023, https://doi.org/10.3390/act12020084.

[9] C. Li, X. Huo and Q. Liu, “A New Robust Command Shaping Method and Its Application in Quadrotor Slung System with Varying Parameters,†IFAC-PapersOnLine, vol. 53, no. 2, pp. 5737-5742, 2020, https://doi.org/10.1016/j.ifacol.2020.12.1603.

[10] H. Ghorbani, K. Alipour, B. Tarvirdizadeh and A. Hadi, “Comparison of Various Input Shaping Methods in Rest-to-Rest Motion of the End-Effecter of a Rigid-Flexible Robotic System with Large Deformations Capability,†Mechanical Systems and Signal Processing, vol. 118, pp. 584-602, 2019, https://doi.org/10.1016/j.ymssp.2018.09.003.

[11] M. Newman, K. Lu and M. Khoshdarregi, “Suppression of Robot Vibrations using Input Shaping and Learning-based Structural Models,†Journal of Intelligent Material Systems and Structures, vol. 32, no. 9, pp. 1001-1012, 2021, https://doi.org/10.1177/1045389X20947166.

[12] S. Baklouti, E. Courteille, P. Lemoine and S. Caro, “Input Shaping for Feed-Forward Control of Cable-Driven Parallel Robots,†Journal of Dynamic Systems, Measurement, and Control, vol. 143, no. 2, p. 021007, 2021, https://doi.org/10.1115/1.4048354.

[13] A. Avazov, F. Colas, J. Beerten and X. Guillaud, “Application of Input Shaping Method to Vibrations Damping in a Type-IV Wind Turbine Interfaced with a Grid-Forming Converter,†Electric Power Systems Research, vol. 210, p. 108083, 2022, https://doi.org/10.1016/j.epsr.2022.108083.

[14] S. Parman and H. Koguchi, “Rest-to-Rest Attitude Maneuvers of a Satellite with Flexible Solar Panels by using Input Shapers,†Computer Assisted Methods in Engineering and Science, vol. 5, no. 4, pp. 421-441, 2023, https://cames.ippt.pan.pl/index.php/cames/article/view/1337.

[15] D. Lim, S. Hong, S. Ha, J. Kim and H. Lee, “Input-Shaping-based Improvement in the Machining Precision of Laser Micromachining Systems,†The International Journal of Advanced Manufacturing Technology, vol. 125, pp. 4415-4424, 2023, https://doi.org/10.1007/s00170-023-10869-5.

[16] Y. Tang et al., “Transient Acceleration Waveform Replication of Electro-Hydraulic Systems using Convex Combined Adaptive Controller with Input Shaping Technique,†ISA Transactions, vol. 150, pp. 243-261, 2024, https://doi.org/10.1016/j.isatra.2024.05.012.

[17] L. Ramli, Z. Mohamed, A. M. Abdullahi, H. I. Jaafar and I. M. Lazim, “Control Strategies for Crane Systems: A Comprehensive Review,†Mechanical Systems and Signal Processing, vol. 93, pp. 1-23, 2017, https://doi.org/10.1016/j.ymssp.2017.03.015.

[18] K. Hong and U. H. Shah, “Control Dynamics and Control of Industrial Cranes,†Springer Singapore, 2019, https://doi.org/10.1007/978-981-13-5770-1.

[19] D. M. Munro, M. E. Govers and M. L. Oliver, “Physical Demands of Overhead Crane Operation,†International Journal of Industrial Ergonomics, vol. 86, p. 103200, 2021, https://doi.org/10.1016/j.ergon.2021.103200.

[20] G. Kim, P. Pham, Q. H. Ngo and Q. C. Nguyen, “Neural Network-based Robust Anti-sway Control of an Industrial Crane Subjected to Hoisting Dynamics and Uncertain Hydrodynamic Forces,†International Journal of Control, Automation and Systems, vol. 19, pp. 1953-1961, 2021, https://doi.org/10.1007/s12555-020-0333-9.

[21] N. Kayhani, H. Taghaddos, A. Mousaei, S. Behzadipour and U. Hermann, “Heavy Mobile Crane Lift Path Planning in Congested Modular Industrial Plants using a Robotics Approach,†Automation in Construction, vol. 122, p. 103508, 2021, https://doi.org/10.1016/j.autcon.2020.103508.

[22] T. Gao, J. Huang and W. Singhose, “Eccentric-load Dynamics and Oscillation Control of Industrial Cranes Transporting Heterogeneous Loads,†Mechanism and Machine Theory, vol. 172, p. 104800, 2022, https://doi.org/10.1016/j.mechmachtheory.2022.104800.

[23] Y. Man and Y. Liu, “Positioning and Antiswing Control of Overhead Crane Systems: A Supervisory Scheme,†Journal of the Franklin Institute, vol. 360, no. 18, pp. 14329-14343, 2023, https://doi.org/10.1016/j.jfranklin.2023.10.038.

[24] C. Yang, J. Huang and W. Singhose, “Dynamic Modeling and Oscillation Control of Industrial Cranes Transporting Upright Slender Flexible Payloads,†Mechanical Systems and Signal Processing, vol. 220, p. 111676, 2024, https://doi.org/10.1016/j.ymssp.2024.111676.

[25] K. Alghanim, A. Mohammed and M. T. Andani, “An Input Shaping Control Scheme with Application on Overhead Cranes,†International Journal of Nonlinear Sciences and Numerical Simulation, vol. 20, no. 5, pp. 561-573, 2019, https://doi.org/10.1515/ijnsns-2018-0152.

[26] A. A. Fadli and E. Khorsid, “A Smooth Optimized Input Shaping Method for Two-Dimensional Crane Systems using Bezier Curves,†Transactions of the Institute of Measurement and Control, vol. 43, no. 11, pp. 2512-2524, 2021, https://doi.org/10.1177/0142331221995305.

[27] S. M. F. U. Rehman, Z. Mohamed, A. R. Husain, H. I. Jaafar, M. H. Shaheed and M. A. Abbasi, “Input Shaping with an Adaptive Scheme for Swing Control of an Underactuated Tower Crane under Payload Hoisting and Mass Variations,†Mechanical Systems and Signal Processing, vol. 175, p. 109106, 2022, https://doi.org/10.1016/j.ymssp.2022.109106.

[28] W. Tang, R. Ma, W. Wang and H. Gao, “Optimization-Based Input-Shaping Swing Control of Overhead Cranes,†Applied Sciences, vol. 13, no. 17, p. 9637, 2023, https://doi.org/10.3390/app13179637.

[29] M. M. Bello, Z. Mohamed, S. M. F. U. Rehman, W. A. Balogun, K. Aibek and S. Gamzat, “Multi-Mode Input Shapers for Oscillation Control of an Overhead Crane with Distributed Mass Payload,†Applications of Modelling and Simulation, vol. 8, pp. 191-200, 2024, http://arqiipubl.com/ojs/index.php/AMS_Journal/article/view/730.

[30] H. I. Jaafar, Z. Mohamed, M. A. Ahmad, N. A. Wahab, L. Ramli and M. H. Shaheed, “Control of an Underactuated Double-Pendulum Overhead Crane using Improved Model Reference Command Shaping: Design, Simulation and Experiment,†Mechanical Systems and Signal Processing, vol. 151, p. 107358, 2021, https://doi.org/10.1016/j.ymssp.2020.107358.

[31] Y. Wu, N. Sun, H. Chen and Y. Fang, "New Adaptive Dynamic Output Feedback Control of Double-Pendulum Ship-Mounted Cranes With Accurate Gravitational Compensation and Constrained Inputs," IEEE Transactions on Industrial Electronics, vol. 69, no. 9, pp. 9196-9205, 2022, https://doi.org/10.1109/TIE.2021.3112978.

[32] G. Rigatos, “Nonlinear Optimal Control for the Underactuated Double-Pendulum Overhead Crane,†Journal of Vibration Engineering & Technologies, vol. 12, pp. 1203-1223, 2024, https://doi.org/10.1007/s42417-023-00902-y.

[33] M. Lie, X. Wu, Y. Zhao and F. Li, “Output feedback control for overhead cranes subject to double-pendulum swing effects and uncertain disturbances,†Transactions of the Institute of Measurement and Control, vol. 46, no. 7, pp. 1350-1361, 2024, https://doi.org/10.1177/01423312231196945.

[34] M. O. Elhabib, H. Wahid, Z. Mohamed and H. I. Jaafar, “Optimal Control of Double Pendulum Crane using FOPID and Genetic Algorithm,†Methods and Applications for Modeling and Simulation of Complex Systems, vol. 1912, pp. 408-420, 2024, https://doi.org/10.1007/978-981-99-7243-2_34.

[35] M. M. Bello, Z. Mohamed, M. O. Efe and H. Ishak, “Modelling and Dynamic Characterisation of a Double-Pendulum Overhead Crane Carrying a Distributed-Mass Payload,†Simulation Modelling Practice and Theory, vol. 134, p. 102953, 2024, https://doi.org/10.1016/j.simpat.2024.102953.

[36] M. R. Mojallizadeh, B. Brogliato and C. Prieur, “Modeling and Control of Overhead Cranes: A Tutorial Overview and Perspectives,†Annual Reviews in Control, vol. 56, p. 100877, 2023, https://doi.org/10.1016/j.arcontrol.2023.03.002.

[37] Y. Zhao, X. Wu, F. Li and Y. Zhang, “Positioning and Swing Elimination Control of the Overhead Crane System with Double-Pendulum Dynamics,†Journal of Vibration Engineering & Technologies, vol. 12, pp. 971-978, 2024, https://doi.org/10.1007/s42417-023-00887-8.

[38] S. Wang, W. Jin and W. Chen, “A Novel Payload Swing Control method based on Active Disturbance Rejection Control for 3D Overhead Crane Systems with Time-Varying Rope Length,†Journal of the Franklin Institute, vol. 361, no. 6, p. 106707, 2024, https://doi.org/10.1016/j.jfranklin.2024.106707.

[39] N. Suksabai and I. Chuckpaiwong, “The Novel Design of the Command Smoother for Sway Suppression of Industrial Overhead Crane Considering Acceleration and Deceleration Limits,†International Journal of Dynamics and Control, vol. 11, pp. 2082-2100, 2023, https://doi.org/10.1007/s40435-023-01156-y.

[40] Q. Zhang, B. Fan, L. Wang and Z. Liao, “Fuzzy Sliding Mode Control on Positioning and Anti-swing for Overhead Crane,†International Journal of Precision Engineering and Manufacturing, vol. 24, pp. 1381-1390, 2023, https://doi.org/10.1007/s12541-023-00828-1.

[41] T. D. Kim, T. Nguyen, D. M. Do and H. X. Le, “Adaptive Neural Network Hierarchical Sliding Mode Control for Six Degrees of Freedom Overhead Crane,†Asian Journal of Control, vol. 25, no. 4, pp. 2736-2751, 2023, https://doi.org/10.1002/asjc.2961.

[42] N. Suksabai and I. Chuckpaiwong, “Input-Shaped Model Reference Control using Sliding Mode Design for Sway Suppression of an Industrial Overhead Crane,†Engineering Journal, vol. 27, no. 2, pp. 1-15, 2023, https://doi.org/10.4186/ej.2023.27.2.1.

[43] X. Cui, K. Chipusu, M. A. Ashraf, M. Riaz and J. Xiahou, “Symmetry-Enhanced LSTM-Based Recurrent Neural Network for Oscillation Minimization of Overhead Crane Systems during Material Transportation,†Symmetry, vol. 16, no. 7, p. 920, 2024, https://doi.org/10.3390/sym16070920.

[44] W. Tang, E. Zhao, L. Sun and H. Gao, “An Active Swing Suppression Control Scheme of Overhead Cranes based on Input Shaping Model Predictive Control,†Systems Science & Control Engineering: An Open Access Journal, vol. 11, no. 1, p. 2188401, 2023, https://doi.org/10.1080/21642583.2023.2188401.

[45] M. Alfares and K. Alhazza, “Comparative Analysis on the Performance of Different Types of Input-and Command-Shaping Controllers in Minimizing Payload Residual Vibration of an Overhead Crane with an Inclined Supporting Track,†International Journal of Mechanical System Dynamics, vol. 4, no. 1, pp. 22–33, 2024, https://doi.org/10.1002/msd2.12095.

[46] S. Arabasi and Z. Masoud, “Frequency-Modulation Input-Shaping Strategy for Double-Pendulum Overhead Cranes Undergoing Simultaneous Hoist and Travel Maneuvers,†IEEE Access, vol. 10, pp. 44954-44963, 2022, https://doi.org/10.1109/ACCESS.2022.3170099.

[47] Y. Huang, H. Li, J. Zhou and L. Meng, “Extra-Insensitive Shaper with Distributed Delays: Design and Vibration Suppress Analysis,†Journal of Vibration and Control, vol. 26, no. 15-16, pp. 1185-1196, 2020, https://doi.org/10.1177/1077546319894490.

[48] M. A. Majeed, M. Alali, K. Alghanim and A. Alfadhli, “Integrated Time-Optimal Rigid-Body and Zero-Vibration Shapers on a Two Degrees of Freedom Overhead Crane System,†Journal of Vibration and Control, 2024, https://doi.org/10.1177/10775463241257743.

[49] Y. Du, C. Wang, J. Lu and Y. Zhou, “Vibration Suppression using Multi-Impulse Robust Shaping Method of Zero Vibration and Derivative,†Journal of Sound and Vibration, vol. 440, pp. 277-290, 2019, https://doi.org/10.1016/j.jsv.2018.10.038.

[50] B. Xu, R. Wang, B. Peng, F. A. Alqurashi and M. Salama, “Automatic Parameter Selection ZVD Shaping Algorithm for Crane Vibration Suppression based on Particle Swarm Optimisation,†Applied Mathematics and Nonlinear Sciences, vol. 7, no. 1, pp. 73-82, 2022, https://doi.org/10.2478/amns.2021.1.00075.

[51] C. Kang, R. Hassan and K. Kim, “Analysis of a Generalized ZVD Shaper Using Impulse Vectors,†International Journal of Control, Automation and Systems, vol. 18, pp. 2088–2094, 2020, https://doi.org/10.1007/s12555-019-0214-2.

[52] B. Lu, Y. Fang and N. Sun, “Enhanced-Coupling Adaptive Control for Double-Pendulum Overhead Cranes with Payload Hoisting and Lowering,†Automatica, vol. 101, pp. 241–251, 2019, https://doi.org/10.1016/j.automatica.2018.12.009.

[53] L. Ramli, Z. Mohamed, M. O. Efe, I. M. Lazim and H. I. Jaafar, “Efficient Swing Control of an Overhead Crane with Simultaneous Payload Hoisting and External Disturbances,†Automation in Construction, vol. 135, p. 106326, 2020, https://doi.org/10.1016/j.ymssp.2019.106326.

[54] W. Zhang, H. Chen, X. Yao and D. Li, “Adaptive Tracking of Double Pendulum Crane with Payload Hoisting/Lowering,†Automation in Construction, vol. 141, p. 104368, 2022, https://doi.org/10.1016/j.autcon.2022.104368.

[55] M. Li, H. Chen and Z. Li, “Input-Limited Optimal Control for Overhead Cranes with Payload Hoisting/Lowering and Double Pendulum Effects,†Nonlinear Dynamics, vol. 111, pp. 11135-11151, 2023, https://doi.org/10.1007/s11071-023-08420-y.

[56] M. J. Maghsoudi, L. Ramli, S. Sudin, Z. Mohamed, A. R. Husain and H. Wahid, “Improved Unity Magnitude Input Shaping Scheme for Sway Control of an Underactuated 3D Overhead Crane with Hoisting,†Mechanical Systems and Signal Processing, vol. 123, pp. 466-482, 2019, https://doi.org/10.1016/j.ymssp.2018.12.056.

[57] A. M. Abdullahi, Z. Mohamed, H. Selamat, H. R. Pota, M. S. Z. Abidin and S. M. Fasih, “Efficient Control of a 3D Overhead Crane with Simultaneous Payload Hoisting and Wind Disturbance: Design, Simulation and Experiment,†Mechanical Systems and Signal Processing, vol. 145, p. 106893, 2020, https://doi.org/10.1016/j.ymssp.2020.106893.

[58] C. Li, Q. Qi, Q. Dong, Y. Yu and Y. Fan, “Research on Fatigue Remaining Life of Structures for a Dynamic Lifting Process of a Bridge Crane,†Journal of Mechanical Science and Technology, vol. 37, pp. 1789-1801, 2023, https://doi.org/10.1007/s12206-023-0319-7.

[59] Y. Wang, T. Yang, M. Zhai, Y. Fang and N. Sun, "Ship-Mounted Cranes Hoisting Underwater Payloads: Transportation Control With Guaranteed Constraints on Overshoots and Swing," IEEE Transactions on Industrial Informatics, vol. 19, no. 10, pp. 9968-9978, 2023, https://doi.org/10.1109/TII.2022.3230706.

[60] H. F. Karasu and M. Demirsoy, “Corrosion Cracking Resistance of Hoisting Ropes,†Materials Testing, vol. 66, no. 3, pp. 347-358, 2024, https://doi.org/10.1515/mt-2023-0219.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Sharifah Yuslinda Syed Hussien, Hazriq Izzuan Jaafar, Rozaimi Ghazali, Liyana Ramli, Mohd Khairul Azizat Johari

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 


About the JournalJournal PoliciesAuthor Information

International Journal of Robotics and Control Systems
e-ISSN: 2775-2658
Website: https://pubs2.ascee.org/index.php/IJRCS
Email: ijrcs@ascee.org
Organized by: Association for Scientific Computing Electronics and Engineering (ASCEE)Peneliti Teknologi Teknik IndonesiaDepartment of Electrical Engineering, Universitas Ahmad Dahlan and Kuliah Teknik Elektro
Published by: Association for Scientific Computing Electronics and Engineering (ASCEE)
Office: Jalan Janti, Karangjambe 130B, Banguntapan, Bantul, Daerah Istimewa Yogyakarta, Indonesia