
(2) Shahrum Shah Abdullah

(3) Mohd Shahrieel Mohd Aras

(4) Mohd Bazli Bahar

(5) Fariz Ali@Ibrahim

*corresponding author
AbstractThe industry has been significantly enhanced by recent developments in UAV collision avoidance systems. They made collision avoidance controllers for self-driving drones both affordable and hazardous. These low-maintenance, portable devices provide continuous monitoring in near-real time. It is inaccurate due to the fact that collision avoidance controllers necessitate trade-offs regarding data reliability. Collision avoidance control research is expanding significantly and is disseminated through publications, initiatives, and grey literature. This paper provides a concise overview of the most recent research on the development of autonomous vehicle collision avoidance systems from 2017 to 2024. In this paper, the state-of-the-art collision avoidance system used in drone systems, the capabilities of the sensors used, and the distinctions between each type of drone are discussed. The pros and cons of current approaches are analyzed using seven metrics: complexity, communication dependency, pre-mission planning, resilience, 3D compatibility, real-time performance, and escape trajectories.
KeywordsCollision Avoidance Control; Performance Comparison; Unmanned Aerial Vehicles
|
DOIhttps://doi.org/10.31763/ijrcs.v4i3.1482 |
Article metrics10.31763/ijrcs.v4i3.1482 Abstract views : 1038 | PDF views : 355 |
Cite |
Full Text![]() |
References
[1] R. Shokirov, N. Abdujabarov, T. Jonibek, K. Saytov, and S. Bobomurodov, “Prospects of the Development of Unmanned Aerial Vehicles (UAVs),†Technical science and innovation, vol. 2020, no. 3, pp. 4-8, 2020, https://doi.org/10.51346/tstu-01.20.3-77-0069.
[2] M. H. Harun, S. S. Abdullah, M. S. M. Aras, M. B. Bahar, “Collision avoidance control for Unmanned Autonomous Vehicles (UAV): Recent advancements and future prospects,†Indian Journal of Geo-Marine Sciences, vol. 50, no. 11, pp. 873-883, 2021, http://op.niscpr.res.in/index.php/IJMS/article/view/66746.
[3] H. Shakhatreh et al., “Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges,†IEEE Access, vol. 7, pp. 48572-48634, 2019, https://doi.org/10.1109/ACCESS.2019.2909530.
[4] M. H. Harun, S. S. Abdullah, M. S. M. Aras and M. B. Bahar, “Sensor Fusion Technology for Unmanned Autonomous Vehicles (UAV): A Review of Methods and Applications,†2022 IEEE 9th International Conference on Underwater System Technology: Theory and Applications (USYS), pp. 1-8, 2022, https://doi.org/10.1109/USYS56283.2022.10072667.
[5] Y. Ke, K. Wang and B. M. Chen, “Design and Implementation of a Hybrid UAV With Model-Based Flight Capabilities,†IEEE/ASME Transactions on Mechatronics, vol. 23, no. 3, pp. 1114-1125, 2018, https://doi.org/10.1109/TMECH.2018.2820222.
[6] S. Huang, R. S. H. Teo, and K. K. Tan, “Collision avoidance of multi unmanned aerial vehicles: A review,†Annual Reviews in Control, vol. 48, pp. 147-164, 2019, https://doi.org/10.1016/j.arcontrol.2019.10.001.
[7] A. Vahidi and A. Eskandarian, “Research advances in intelligent collision avoidance and adaptive cruise control,†IEEE Transactions on Intelligent Transportation Systems, vol. 4, no. 3, pp. 143-153, 2003, https://doi.org/10.1109/TITS.2003.821292.
[8] Z. Liu, Y. Zhang, C. Yuan, L. Ciarletta, and D. Theilliol, “Collision Avoidance and Path Following Control of Unmanned Aerial Vehicle in Hazardous Environment,†Journal of Intelligent and Robotic Systems, vol. 95, pp. 193-210, 2019, https://doi.org/10.1007/s10846-018-0929-y.
[9] A. Mujumdar and R. Padhi, “Evolving philosophies on autonomous obstacle/collision avoidance of unmanned aerial vehicles,†Journal of Aerospace Computing, Information and Communication, vol. 8, no. 2, pp. 17-41, 2011, https://doi.org/10.2514/1.49985.
[10] A. Foka and P. Trahanias, “Real-time hierarchical POMDPs for autonomous robot navigation,†Robotics and Autonomous Systems, vol. 55, no. 7, pp. 561-571, 2007, https://doi.org/10.1016/j.robot.2007.01.004.
[11] R. M. Murray, “Recent research in cooperative control of multivehicle systems,†Journal of Dynamic Systems, Measurement and Control, vol. 129, no. 5, pp. 571-583, 2007, https://doi.org/10.1115/1.2766721.
[12] G. B. Ladd and G. L. Bland, “Non military applications for small UAS platforms,†AIAA Infotech at Aerospace Conference and Exhibit and AIAA Unmanned...Unlimited Conference, pp. 1-5, 2009, https://doi.org/10.2514/6.2009-2046.
[13] L. He, P. Bai, X. Liang, J. Zhang, and W. Wang, “Feedback formation control of UAV swarm with multiple implicit leaders,†Aerospace Science and Technology, vol. 72, pp. 327-334, 2018, https://doi.org/10.1016/j.ast.2017.11.020.
[14] S. S. Esfahlani, “Mixed reality and remote sensing application of unmanned aerial vehicle in fire and smoke detection,†Journal of Industrial Information Integration, vol. 15, pp. 42-49, 2019, https://doi.org/10.1016/j.jii.2019.04.006.
[15] C. A. Wargo, G. C. Church, J. Glaneueski and M. Strout, “Unmanned Aircraft Systems (UAS) research and future analysis,†2014 IEEE Aerospace Conference, pp. 1-16, 2014, https://doi.org/10.1109/AERO.2014.6836448.
[16] X. Wang, V. Yadav and S. N. Balakrishnan, “Cooperative UAV Formation Flying With Obstacle/Collision Avoidance,†IEEE Transactions on Control Systems Technology, vol. 15, no. 4, pp. 672-679, 2007, https://doi.org/10.1109/TCST.2007.899191.
[17] J. López, P. Sanchez-Vilariño, M. D. Cacho, and E. L. Guillén, “Obstacle avoidance in dynamic environments based on velocity space optimization,†Robotics and Autonomous Systems, vol. 131, p. 103569, 2020, https://doi.org/10.1016/j.robot.2020.103569.
[18] T. Guo, N. Jiang, B. Li, X. Zhu, Y. Wang, and W. Du, “UAV navigation in high dynamic environments: A deep reinforcement learning approach,†Chinese Journal of Aeronautics, vol. 34, no. 2, pp. 479-489, 2020, https://doi.org/10.1016/j.cja.2020.05.011.
[19] B. A. Issa and A. T. Rashid, “A Survey of Multi-mobile Robot Formation Control,†International Journal of Computer Applications, vol. 181, no. 48, pp. 12-16, 2019, https://doi.org/10.5120/ijca2019918651.
[20] M. G. Michailidis, M. J. Rutherford, and K. P. Valavanis, “A Survey of Controller Designs for New Generation UAVs: The Challenge of Uncertain Aerodynamic Parameters,†International Journal of Control, Automation and Systems, vol. 18, pp. 801-816, 2020, https://doi.org/10.1007/s12555-018-0489-8.
[21] C. Toth and G. Jóźków, “Remote sensing platforms and sensors: A survey,†ISPRS Journal of Photogrammetry and Remote Sensing, vol. 115, pp. 22-36, 2016, https://doi.org/10.1016/j.isprsjprs.2015.10.004.
[22] C. Gómez and D. R. Green, “Small unmanned airborne systems to support oil and gas pipeline monitoring and mapping,†Arabian Journal of Geosciences, vol. 10, no. 9, 2017, https://doi.org/10.1007/s12517-017-2989-x.
[23] W. Yi, C. Liming, K. Lingyu, Z. Jie and W. Miao, “Research on application mode of large fixed-wing UAV system on overhead transmission line,†2017 IEEE International Conference on Unmanned Systems (ICUS), pp. 88-91, 2017, https://doi.org/10.1109/ICUS.2017.8278323.
[24] J. Keller, D. Thakur, M. Likhachev, J. Gallier and V. Kumar, “Coordinated Path Planning for Fixed-Wing UAS Conducting Persistent Surveillance Missions,†IEEE Transactions on Automation Science and Engineering, vol. 14, no. 1, pp. 17-24, 2017, https://doi.org/10.1109/TASE.2016.2623642.
[25] T. Templin, D. Popielarczyk, and R. Kosecki, “Application of Low-Cost Fixed-Wing UAV for Inland Lakes Shoreline Investigation,†Pure and Applied Geophysics, vol. 175, pp. 3263-3283, 2018, https://doi.org/10.1007/s00024-017-1707-7.
[26] M. Mammarella and E. Capello, “A Tube-based Robust MPC for a Fixed-wing UAV: an Application for Precision Farming,†Arxiv, 2018, https://arxiv.org/abs/1805.04295.
[27] S. Zhao, X. Wang, H. Chen, and Y. Wang, “Cooperative Path Following Control of Fixed-wing Unmanned Aerial Vehicles with Collision Avoidance,†Journal of Intelligent and Robotic Systems, vol. 100, pp. 1569-1581, 2020, https://doi.org/10.1007/s10846-020-01210-3.
[28] Z. Lin, L. Castano, E. Mortimer, and H. Xu, “Fast 3D Collision Avoidance Algorithm for Fixed Wing UAS,†Journal of Intelligent and Robotic Systems, vol. 97, pp. 577-604, 2020, https://doi.org/10.1007/s10846-019-01037-7.
[29] M. Pircher, J. Geipel, K. Kusnierek, and A. Korsaeth, “Development of a hybrid UAV sensor platform suitable for farm-scale applications in precision agriculture,†The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 42, pp. 297-302, 2017, https://doi.org/10.5194/isprs-archives-XLII-2-W6-297-2017.
[30] L. Fahmani, J. Garfaf, K. Boukhdir, S. Benhadou and H. Medromi, “Unmanned Aerial Vehicles Inspection for Overhead High Voltage Transmission Lines,†2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), pp. 1-7, 2020, https://doi.org/10.1109/IRASET48871.2020.9092141.
[31] O. Dundar, M. Bilici, T. Unler, “Design and performance analyses of a ï¬xed wing battery VTOL UAV,†Engineering Science and Technology, an International Journal, vol. 23, no. 5, pp. 1182–1193, 2020, https://doi.org/10.1016/j.jestch.2020.02.002.
[32] H. Wu et al., “Design and experiment of a high payload fixed wing vtol UAV system for emergency response,†The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 43, pp. 1715-1722, 2020, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1715-2020.
[33] S. C. Chapman et al., “Pheno-copter: A low-altitude, autonomous remote-sensing robotic helicopter for high-throughput field-based phenotyping,†Agronomy, vol. 4, no. 2, pp. 279–301, 2014, https://doi.org/10.3390/agronomy4020279.
[34] R. Sugiura, N. Noguchi, and K. Ishii, “Remote-sensing technology for vegetation monitoring using an unmanned helicopter,†Biosystems Engineering, vol. 90, no. 4, pp. 369-379, 2005, https://doi.org/10.1016/j.biosystemseng.2004.12.011.
[35] Z. Songchao, X. Xinyu, S. Zhu, Z. Lixin, J. Yongkui, “Downwash distribution of single-rotor unmanned agricultural helicopter on hovering state,†International Journal of Agricultural and Biological Engineering, vol. 10, no. 5, pp. 14-24, 2017, https://doi.org/10.25165/j.ijabe.20171005.3079.
[36] D. A. Gandhi and M. Ghosal, “Novel Low Cost Quadcopter for Surveillance Application,†2018 International Conference on Inventive Research in Computing Applications (ICIRCA), pp. 412-414, 2018, https://doi.org/10.1109/ICIRCA.2018.8597391.
[37] T. Kumar, M. I. Hasan, and C. Engineering, “Physics of Quadcopter and its Surveillance Application : A Review,†International Journal of Advanced Research in Engineering and Technology, vol. 11, no. 5, pp. 606-609, 2020, https://iaeme.com/MasterAdmin/Journal_uploads/IJARET/VOLUME_11_ISSUE_5/IJARET_11_05_063.pdf.
[38] S. Radiansyah, M. D. Kusrini, “Quadcopter applications for wildlife monitoring,†IOP Conference Series: Earth and Environmental Science, vol. 54, no. 1, p. 012066, 2017, https://doi.org/10.1088/1755-1315/54/1/012066.
[39] D. Cheng and W. Lai, “Application of self-organizing map on flight data analysis for quadcopter health diagnosis system,†International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 42, pp. 241-246, 2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-241-2019.
[40] P. K. Reddy Maddikunta et al., “Unmanned Aerial Vehicles in Smart Agriculture: Applications, Requirements, and Challenges,†IEEE Sensors Journal, vol. 21, no. 16, pp. 17608-17619, 2021, https://doi.org/10.1109/JSEN.2021.3049471.
[41] R. V. Meshcheryakov et al., “An application of swarm of quadcopters for searching operations,†IFAC-PapersOnLine, vol. 52, no. 25, pp. 14-18, 2019, https://doi.org/10.1016/j.ifacol.2019.12.438.
[42] M. Jemmali, A. K. Bashir, W. Boulila, L. K. B. Melhim, R. H. Jhaveri and J. Ahmad, “An Efficient Optimization of Battery-Drone-Based Transportation Systems for Monitoring Solar Power Plant,†IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 12, pp. 15633-15641, 2023, https://doi.org/10.1109/TITS.2022.3219568.
[43] S. Suherman, R. A. Putra and M. Pinem, “Ultrasonic Sensor Assessment for Obstacle Avoidance in Quadcopter-based Drone System,†2020 3rd International Conference on Mechanical, Electronics, Computer, and Industrial Technology (MECnIT), pp. 50-53, 2020, https://doi.org/10.1109/MECnIT48290.2020.9166607.
[44] J. A. Steiner, X. He, J. R. Bourne, and K. K. Leang, “Open-sector rapid-reactive collision avoidance: Application in aerial robot navigation through outdoor unstructured environments,†Robotics and Autonomous Systems, vol. 112, pp. 211-220, 2019, https://doi.org/10.1016/j.robot.2018.11.016.
[45] Y. Yu, W. Tingting, C. Long and Z. Weiwei, “Stereo vision based obstacle avoidance strategy for quadcopter UAV,†2018 Chinese Control And Decision Conference (CCDC), pp. 490-494, 2018, https://doi.org/10.1109/CCDC.2018.8407182.
[46] B. Y. Suprapto, M. A. Heryanto, H. Suprijono, J. Muliadi and B. Kusumoputro, “Design and development of heavy-lift hexacopter for heavy payload,†2017 International Seminar on Application for Technology of Information and Communication (iSemantic), pp. 242-247, 2017, https://doi.org/10.1109/ISEMANTIC.2017.8251877.
[47] M. Aswath and S. Jeevak Raj, “Hexacopter design for carrying payload for warehouse applications,†IOP Conference Series: Materials Science and Engineering, vol. 1012, no. 1, p. 012025, 2021, https://doi.org/10.1088/1757-899X/1012/1/012025.
[48] U. M. Arief et al., “Design of hexacopter UAV system for disinfectant spraying,†IOP Conference Series: Earth and Environmental Science, vol. 700, no. 1, p. 012023, 2021, https://doi.org/10.1088/1755-1315/700/1/012023.
[49] R. Jannoura, K. Brinkmann, D. Uteau, C. Bruns, and R. G. Joergensen, “Monitoring of crop biomass using true colour aerial photographs taken from a remote controlled hexacopter,†Biosystems Engineering, vol. 129, pp. 341-351, 2015, https://doi.org/10.1016/j.biosystemseng.2014.11.007.
[50] L. Yan, Y. Chen, K. Pan, H. Wu and L. Cheng, “IoT UAV Control Based on DIC-PID in Water Quality Measurement Application,†2019 Chinese Control Conference (CCC), pp. 8130-8135, 2019, https://doi.org/10.23919/ChiCC.2019.8866432.
[51] J. W. Durban, H. Fearnbach, L. G. Barrett-Lennard, W. L. Perryman, and D. J. Leroi, “Photogrammetry of killer whales using a small hexacopter launched at sea,†Journal of Unmanned Vehicle Systems, vol. 3, no. 3, pp. 131-135, 2015, https://doi.org/10.1139/juvs-2015-0020.
[52] R. Kitchen et al., “Design and Evaluation of a Perching Hexacopter Drone for Energy Harvesting from Power Lines,†2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1192-1198, 2020, https://doi.org/10.1109/IROS45743.2020.9341100.
[53] J. David et al., “Design and Development of a Hexacopter for the Search and Rescue of a Lost Drone,†Divaportal, 2019, https://hh.diva-portal.org/smash/record.jsf?pid=diva2%3A1367444&dswid=7128.
[54] F. Azevedo et al., “Collision avoidance for safe structure inspection with multirotor UAV,†2017 European Conference on Mobile Robots (ECMR), pp. 1-7, 2017, https://doi.org/10.1109/ECMR.2017.8098719.
[55] L. M. González-deSantos, J. MartÃnez-Sánchez, H. González-Jorge, F. Navarro-Medina, and P. Arias, “UAV payload with collision mitigation for contact inspection,†Automation in Construction, vol. 115, p. 103200, 2020, https://doi.org/10.1016/j.autcon.2020.103200.
[56] N. Belmonte, S. Staulo, S. Fiorot, C. Luetto, P. Rizzi, and M. Baricco, “Fuel cell powered octocopter for inspection of mobile cranes: Design, cost analysis and environmental impacts,†Applied Energy, vol. 215, pp. 556-565, 2018, https://doi.org/10.1016/j.apenergy.2018.02.072.
[57] K. K. Shaw and V. R, “Design and Development of a Drone for Spraying Pesticides, Fertilizers and Disinfectants,†International Journal of Engineering Research and Technology, vol. 9, no. 5, pp. 1181–1185, 2020, https://doi.org/10.17577/IJERTV9IS050787.
[58] U. R. Mogili and B. B. V. L. Deepak, “Review on Application of Drone Systems in Precision Agriculture,†Procedia Computer Science, vol. 133, pp. 502-509, 2018, https://doi.org/10.1016/j.procs.2018.07.063.
[59] A. E. -C. Tan, J. McCulloch, W. Rack, I. Platt and I. Woodhead, “Snow Depth Measurements from an Octo-copter Mounted Radar,†2020 IEEE/MTT-S International Microwave Symposium (IMS), pp. 984-987, 2020, https://doi.org/10.1109/IMS30576.2020.9224003.
[60] K. Weber, G. Heweling, C. Fischer, and M. Lange, “The use of an octocopter UAV for the determination of air pollutants--a case study of the traffic induced pollution plume around a river bridge in Duesseldorf, Germany,†International Journal of Environmental Science, vol. 2, pp. 63-66, 2017, https://www.iaras.org/iaras/filedownloads/ijes/2017/008-0011(2017).pdf.
[61] A. Vijay, V. R. Jisha and R. Emmanuel, “Control and Development of Coaxial Octocopter for Human Transportation in Gazebo,†2019 IEEE 16th India Council International Conference (INDICON), pp. 1-4, 2019, https://doi.org/10.1109/INDICON47234.2019.9029020.
[62] W. Chung and H. Son, “Design and Control of Multibody Multirotor for Faster Flight and Manipulation,†2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 862-867, 2020, https://doi.org/10.1109/AIM43001.2020.9158955.
[63] A. Dixit, A. Misra and S. E. Talole, “Model Predictive Control based Collision Avoidance Controller for Octocopter,†2020 7th International Conference on Signal Processing and Integrated Networks (SPIN), pp. 630-635, 2020, https://doi.org/10.1109/SPIN48934.2020.9071236.
[64] N. Runge et al., “Design, Development, and Testing of an Autonomous Multirotor for Personal Transportation,†Proceedings of the 2020 USCToMM Symposium on Mechanical Systems and Robotics, pp. 53-67, 2020, https://doi.org/10.1007/978-3-030-43929-3_6.
[65] C. H. R. Everett, “Survey of collision avoidance and ranging sensors for mobile robots,†Robotics and Autonomous Systems, vol. 5, no. 1, pp. 5–67, 1989, https://doi.org/10.1016/0921-8890(89)90041-9.
[66] S. U. Kamat and K. Rasane, “A Survey on Autonomous Navigation Techniques,†2018 Second International Conference on Advances in Electronics, Computers and Communications (ICAECC), pp. 1-6, 2018, https://doi.org/10.1109/ICAECC.2018.8479446.
[67] J. Kim, S. Hong, J. Baek, E. Kim, H. Lee, “Autonomous vehicle detection system using visible and infrared camera,†International Conference on Control, Automation and Systems, pp. 630-634, 2012, https://yonsei.elsevierpure.com/en/publications/autonomous-vehicle-detection-system-using-visible-and-infrared-ca.
[68] C. -C. R. Wang and J. -J. J. Lien, “Automatic Vehicle Detection Using Local Features—A Statistical Approach,†IEEE Transactions on Intelligent Transportation Systems, vol. 9, no. 1, pp. 83-96, 2008, https://doi.org/10.1109/TITS.2007.908572.
[69] M. Mizumachi, A. Kaminuma, N. Ono and S. Ando, “Robust Sensing of Approaching Vehicles Relying on Acoustic Cue,†2014 International Symposium on Computer, Consumer and Control, pp. 533-536, 2014, https://doi.org/10.1109/IS3C.2014.144.
[70] Z. Wang, J. Zhan, C. Duan, X. Guan, P. Lu and K. Yang, “A Review of Vehicle Detection Techniques for Intelligent Vehicles,†IEEE Transactions on Neural Networks and Learning Systems, vol. 34, no. 8, pp. 3811-3831, 2023, https://doi.org/10.1109/TNNLS.2021.3128968.
[71] G. Recchia, G. Fasano, D. Accardo, A. Moccia and L. Paparone, “An Optical Flow Based Electro-Optical See-and-Avoid System for UAVs,†2007 IEEE Aerospace Conference, pp. 1-9, 2007, https://doi.org/10.1109/AERO.2007.352759.
[72] F. Kóta, T. Zsedrovits and Z. Nagy, “Sense-and-avoid system development on an FPGA,†2019 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 575-579, 2019, https://doi.org/10.1109/ICUAS.2019.8798265.
[73] A. Mcfadyen, A. Durand-Petiteville and L. Mejias, “Decision strategies for automated visual collision avoidance,†2014 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 715-725, 2014, https://doi.org/10.1109/ICUAS.2014.6842316.
[74] J. Saunders and R. Beard, “Reactive vision based obstacle avoidance with camera field of view constraints,†AIAA Guidance, Navigation and Control Conference and Exhibit, 2008, https://doi.org/10.2514/6.2008-7250.
[75] S. Saha, A. Natraj and S. Waharte, “A real-time monocular vision-based frontal obstacle detection and avoidance for low cost UAVs in GPS denied environment,†2014 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology, pp. 189-195, 2014, https://doi.org/10.1109/ICARES.2014.7024382.
[76] L. Mejias, S. McNamara, J. Lai and J. Ford, “Vision-based detection and tracking of aerial targets for UAV collision avoidance,†2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 87-92, 2010, https://doi.org/10.1109/IROS.2010.5651028.
[77] S. A. S. Mohamed, M.-H. Haghbayan, J. Heikkonen, H. Tenhunen and J. Plosila, “Towards real-time edge detection for event cameras based on lifetime and dynamic slicing,†Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2020), pp. 584-593, 2020, https://doi.org/10.1007/978-3-030-44289-7_55.
[78] T. J. Lee, D. H. Yi, and D. I. D. Cho, “A monocular vision sensor-based obstacle detection algorithm for autonomous robots,†Sensors, vol. 16, no. 3, p. 311, 2016, https://doi.org/10.3390/s16030311.
[79] A. U. Haque and A. Nejadpak, “Obstacle Avoidance Using Stereo Camera,†Arxiv, 2017, https://doi.org/10.48550/arXiv.1705.04114.
[80] D. Falanga, S. Kim and D. Scaramuzza, “How Fast Is Too Fast? The Role of Perception Latency in High-Speed Sense and Avoid,†IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1884-1891, 2019, https://doi.org/10.1109/LRA.2019.2898117.
[81] W. Hartmann, S. Tilch, H. Eisenbeiss, K. Schindler, “Determination of the UAV position by automatic processing of thermal images,†International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 39, pp. 111–116, 2012, https://doi.org/10.5194/isprsarchives-XXXIX-B6-111-2012.
[82] F. Nashashibi and A. Bargeton, “Laser-based vehicles tracking and classification using occlusion reasoning and confidence estimation,†2008 IEEE Intelligent Vehicles Symposium, pp. 847-852, 2008, https://doi.org/10.1109/IVS.2008.4621244.
[83] H. Cho and M. Tseng, “A support vector machine approach to CMOS-based radar signal processing for vehicle classification and speed estimation,†Mathematical and Computer Modelling, vol. 58, no. 1–2, pp. 438-448, 2013, https://doi.org/10.1016/j.mcm.2012.11.003.
[84] F. Zhang, J. Chen, H. Li, Y. Sun, and X. S. Shen, “Distributed active sensor scheduling for target tracking in ultrasonic sensor networks,†Mobile Networks and Applications, vol. 17, pp. 582-593, 2012, https://doi.org/10.1007/s11036-011-0311-9.
[85] H. Li, D. Miao, J. Chen, Y. Sun and X. Shen, “Networked Ultrasonic Sensors for Target Tracking: An Experimental Study,†GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference, pp. 1-6, 2009, https://doi.org/10.1109/GLOCOM.2009.5425343.
[86] L. Korba, S. Elgazzar and T. Welch, “Active infrared sensors for mobile robots,†IEEE Transactions on Instrumentation and Measurement, vol. 43, no. 2, pp. 283-287, 1994, https://doi.org/10.1109/19.293434.
[87] C. Blanc, R. Aufrère, L. Malaterre, J. Gallice, and J. Alizon, “Obstacle detection and tracking by millimeter wave radar,†IFAC Proceedings Volumes, vol. 37, no. 8, pp. 322-327, 2004, https://doi.org/10.1016/S1474-6670(17)31996-1.
[88] B. Korn and C. Edinger, “UAS in civil airspace: Demonstrating “sense and avoid†capabilities in flight trials,†2008 IEEE/AIAA 27th Digital Avionics Systems Conference, pp. 4.D.1-1-4.D.1-7, 2008, https://doi.org/10.1109/DASC.2008.4702835.
[89] M. P. Owen, S. M. Duffy and M. W. M. Edwards, “Unmanned aircraft sense and avoid radar: Surrogate flight testing performance evaluation,†2014 IEEE Radar Conference, pp. 0548-0551, 2014, https://doi.org/10.1109/RADAR.2014.6875652.
[90] E. B. Quist and R. W. Beard, “Radar odometry on fixed-wing small unmanned aircraft,†IEEE Transactions on Aerospace and Electronic Systems, vol. 52, no. 1, pp. 396-410, 2016, https://doi.org/10.1109/TAES.2015.140186.
[91] Y. K. Kwag and C. H. Chung, “UAV based collision avoidance radar sensor,†2007 IEEE International Geoscience and Remote Sensing Symposium, pp. 639-642, 2007, https://doi.org/10.1109/IGARSS.2007.4422877.
[92] F. Khan, S. Azou, R. Youssef, P. Morel, E. Radoi and O. A. Dobre, “An IR-UWB Multi-Sensor Approach for Collision Avoidance in Indoor Environments,†IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1-13, 2022, https://doi.org/10.1109/TIM.2022.3150582.
[93] S. A. S. Mohamed, M. -H. Haghbayan, T. Westerlund, J. Heikkonen, H. Tenhunen and J. Plosila, “A Survey on Odometry for Autonomous Navigation Systems,†IEEE Access, vol. 7, pp. 97466-97486, 2019, https://doi.org/10.1109/ACCESS.2019.2929133.
[94] Y. A. Nijsure, G. Kaddoum, N. Khaddaj Mallat, G. Gagnon and F. Gagnon, “Cognitive Chaotic UWB-MIMO Detect-Avoid Radar for Autonomous UAV Navigation,†IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 11, pp. 3121-3131, 2016, https://doi.org/10.1109/TITS.2016.2539002.
[95] S. Kemkemian, M. Nouvel-Fiani, P. Cornic and P. Garrec, “MIMO radar for sense and avoid for UAV,†2010 IEEE International Symposium on Phased Array Systems and Technology, pp. 573-580, 2010, https://doi.org/10.1109/ARRAY.2010.5613309.
[96] A. Moses, M. J. Rutherford, M. Kontitsis, and K. P. Valavanis, “UAV-borne X-band radar for collision avoidance,†Robotica, vol. 32, no. 1, pp. 97-114, 2014, https://doi.org/10.1017/S0263574713000659.
[97] J. Zhang and S. Singh, “LOAM: LiDAR odometry and mapping in real-time,†Robotics: Science and systems, vol. 2, no. 9, pp. 1-9, 2014, https://doi.org/10.15607/RSS.2014.X.007.
[98] A. Nüchter, K. Lingemann, J. Hertzberg, H. Surmann, “6D SLAM- 3D mapping outdoor environments,†Journal of Field Robotics, vol. 24, no. 8-9, pp. 699-722, 2007, https://doi.org/10.1002/rob.20209.
[99] J. Zhang and S. Singh, “Visual-lidar odometry and mapping: low-drift, robust, and fast,†2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 2174-2181, 2015, https://doi.org/10.1109/ICRA.2015.7139486.
[100] C. H. Tong, S. Anderson, H. Dong, T. D. Barfoot, “Pose interpolation for laser-based visual odometry,†Journal of Field Robotics, vol. 31, no. 5, pp. 731-757, 2014, https://doi.org/10.1002/rob.21537.
[101] A. Tahir, J. Böling, M. H. Haghbayan, H. T. Toivonen, and J. Plosila, “Swarms of Unmanned Aerial Vehicles — A Survey,†Journal of Industrial Information Integration, vol. 16, p. 100106, 2019, https://doi.org/10.1016/j.jii.2019.100106.
[102] S. K. Chaulya and G. M. Prasad, “Mine Transport Surveillance and Production Management System,†Sensing and Monitoring Technologies for Mines and Hazardous Areas, pp. 87-160, 2016, https://doi.org/10.1016/B978-0-12-803194-0.00002-7.
[103] J. M. Armingol et al., “Chapter 2 - Environmental perception for intelligent vehicles,†Intelligent Vehicles, pp. 23-101, 2017, https://doi.org/10.1016/B978-0-12-812800-8.00002-3.
[104] L. Zheng, P. Zhang, J. Tan and F. Li, “The Obstacle Detection Method of UAV Based on 2D Lidar,†IEEE Access, vol. 7, pp. 163437-163448, 2019, https://doi.org/10.1109/ACCESS.2019.2952173.
[105] Z. Ma, O. Postolache and Y. Yang, “Obstacle Avoidance for Unmanned Vehicle based on a 2D LIDAR,†2019 International Conference on Sensing and Instrumentation in IoT Era (ISSI), pp. 1-6, 2019, https://doi.org/10.1109/ISSI47111.2019.9043674.
[106] M. Faria, A. S. Ferreira, H. Pérez-Leon, I. Maza, and A. Viguria, “Autonomous 3D exploration of large structures using an UAV equipped with a 2D LIDAR,†Sensors, vol. 19, no. 22, p. 4849, 2019, https://doi.org/10.3390/s19224849.
[107] A. Moffatt, E. Platt, B. Mondragon, A. Kwok, D. Uryeu and S. Bhandari, “Obstacle Detection and Avoidance System for Small UAVs using a LiDAR,†2020 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 633-640, 2020, https://doi.org/10.1109/ICUAS48674.2020.9213897.
[108] J. Villa, J. Aaltonen and K. T. Koskinen, “Path-Following With LiDAR-Based Obstacle Avoidance of an Unmanned Surface Vehicle in Harbor Conditions,†IEEE/ASME Transactions on Mechatronics, vol. 25, no. 4, pp. 1812-1820, 2020, https://doi.org/10.1109/TMECH.2020.2997970.
[109] C. Aakash and V. Manoj Kumar, “Path Planning of an UAV with the Help of Lidar for Slam Application,†IOP Conference Series: Materials Science and Engineering, vol. 912, no. 6, p. 062013, 2020, https://doi.org/10.1088/1757-899X/912/6/062013.
[110] A. C. B. Chiella, H. N. Machado, B. O. S. Teixeira, and G. A. S. Pereira, “Gnss/lidar-based navigation of an aerial robot in sparse forests,†Sensors, vol. 19, no. 19, p. 4061, 2019, https://doi.org/10.3390/s19194061.
[111] S. Zhao and X. Wang, “A Novel Collision Avoidance Method for Fixed-wing Unmanned Aerial Vehicles,†2020 39th Chinese Control Conference (CCC), pp. 6738-6743, 2020, https://doi.org/10.23919/CCC50068.2020.9189306.
[112] A. Rodionova, Y. V. Pant, K. Jang, H. Abbas and R. Mangharam, “Learning-to-Fly: Learning-based Collision Avoidance for Scalable Urban Air Mobility,†2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), pp. 1-8, 2020, https://doi.org/10.1109/ITSC45102.2020.9294425.
[113] S. Mu, P. Zhou, D. Duan, and J. Tang, “Formation control of a second-order UAVs system under switching topology with obstacle/collision avoidance,†Aerospace Systems, vol. 3, pp. 219-227, 2020, https://doi.org/10.1007/s42401-020-00056-9.
[114] A. Agrawal, A. Gupta, J. Bhowmick, A. Singh, and R. Nallanthighal, “A Novel Controller of Multi-Agent System Navigation and Obstacle Avoidance,†Procedia Computer Science, vol. 171, pp. 1221-1230, 2020, https://doi.org/10.1016/j.procs.2020.04.131.
[115] Z. Ren, C. Hu, H. Wu, B. Sun and Y. Guo, “Obstacle Avoidance-based Control System Design of UAV with Suspended Payload,†2020 39th Chinese Control Conference (CCC), pp. 6839-6844, 2020, https://doi.org/10.23919/CCC50068.2020.9188446.
[116] B. Lindqvist, S. S. Mansouri, A. -a. Agha-mohammadi and G. Nikolakopoulos, “Nonlinear MPC for Collision Avoidance and Control of UAVs With Dynamic Obstacles,†IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 6001-6008, 2020, https://doi.org/10.1109/LRA.2020.3010730.
[117] T. Baca, D. Hert, G. Loianno, M. Saska and V. Kumar, “Model Predictive Trajectory Tracking and Collision Avoidance for Reliable Outdoor Deployment of Unmanned Aerial Vehicles,†2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6753-6760, 2018, https://doi.org/10.1109/IROS.2018.8594266.
[118] E. D’Amato, M. Mattei, and I. Notaro, “Distributed Reactive Model Predictive Control for Collision Avoidance of Unmanned Aerial Vehicles in Civil Airspace,†Journal of Intelligent and Robotic Systems, vol. 97, pp. 185-203, 2020, https://doi.org/10.1007/s10846-019-01047-5.
[119] H. Huang, H. Zhou, M. Zheng, C. Xu, X. Zhang and W. Xiong, “Cooperative Collision Avoidance Method for Multi-UAV Based on Kalman Filter and Model Predictive Control,†2019 IEEE International Conference on Unmanned Systems and Artificial Intelligence (ICUSAI), pp. 1-7, 2019, https://doi.org/10.1109/ICUSAI47366.2019.9124863.
[120] D. Wang, W. Li, X. Liu, N. Li, and C. Zhang, “UAV environmental perception and autonomous obstacle avoidance: A deep learning and depth camera combined solution,†Computers and Electronics in Agriculture, vol. 175, p. 105523, 2020, https://doi.org/10.1016/j.compag.2020.105523.
[121] X. Yang et al., “Fast Depth Prediction and Obstacle Avoidance on a Monocular Drone Using Probabilistic Convolutional Neural Network,†IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 1, pp. 156-167, 2021, https://doi.org/10.1109/TITS.2019.2955598.
[122] X. Dai, Y. Mao, T. Huang, N. Qin, D. Huang, and Y. Li, “Automatic obstacle avoidance of quadrotor UAV via CNN-based learning,†Neurocomputing, vol. 402, pp. 346-358, 2020, https://doi.org/10.1016/j.neucom.2020.04.020.
[123] S. Back, G. Cho, J. Oh, X. T. Tran, and H. Oh, “Autonomous UAV Trail Navigation with Obstacle Avoidance Using Deep Neural Networks,†Journal of Intelligent and Robotic Systems: Theory and Applications, vol. 100, pp. 1195-1211, 2020, https://doi.org/10.1007/s10846-020-01254-5.
[124] A. Singla, S. Padakandla and S. Bhatnagar, “Memory-Based Deep Reinforcement Learning for Obstacle Avoidance in UAV With Limited Environment Knowledge,†IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 1, pp. 107-118, 2021, https://doi.org/10.1109/TITS.2019.2954952.
[125] Y. Yaguchi and K. Tamagawa, “A waypoint navigation method with collision avoidance using an artificial potential method on random priority,†Artificial Life and Robotics, vol. 25, pp. 278-285, 2020, https://doi.org/10.1007/s10015-020-00583-w.
[126] S. Mohammad, H. Rostami, A. K. Sangaiah, and J. Wang, “Obstacle avoidance of mobile robots using modified potential field algorithm,†EURASIP Journal on Wireless Communications and Networking, vol. 2019, 2019, https://doi.org/10.1186/s13638-019-1396-2.
[127] F. Wang, Z. Lu, Q. Liu, Y. Zhu, J. Zhang and G. Shi, “Research on formation collision avoidance of aircraft cooperative penetration based on improved potential field method,†2020 3rd International Conference on Unmanned Systems (ICUS), pp. 552-557, 2020, https://doi.org/10.1109/ICUS50048.2020.9274982.
[128] X. Fu, J. Pan, H. Wang, and X. Gao, “A formation maintenance and reconstruction method of UAV swarm based on distributed control,†Aerospace Science and Technology, vol. 104, p. 105981, 2020, https://doi.org/10.1016/j.ast.2020.105981.
[129] X. Zhu, Y. Liang and M. Yan, “A Flexible Collision Avoidance Strategy for the Formation of Multiple Unmanned Aerial Vehicles,†IEEE Access, vol. 7, pp. 140743-140754, 2019, https://doi.org/10.1109/ACCESS.2019.2944160.
[130] X. Zheng, S. Galland, X. Tu, Q. Yang, A. Lombard, and N. Gaud, “Obstacle Avoidance Model for UAVs with Joint Target based on Multi-Strategies and Follow-up Vector Field,†Procedia Computer Science, vol. 170, pp. 257-264, 2020, https://doi.org/10.1016/j.procs.2020.03.038.
[131] A. Behjat, S. Paul, and S. Chowdhury, “Learning reciprocal actions for cooperative collision avoidance in quadrotor unmanned aerial vehicles,†Robotics and Autonomous Systems, vol. 121, p. 103270, 2019, https://doi.org/10.1016/j.robot.2019.103270.
[132] C. Y. Tan, S. Huang, K. K. Tan, and R. S. H. Teo, “Three Dimensional Collision Avoidance for Multi Unmanned Aerial Vehicles Using Velocity Obstacle,†Journal of Intelligent and Robotic Systems, vol. 97, pp. 227-248, 2020, https://doi.org/10.1007/s10846-019-01055-5.
[133] A. Marchidan and E. Bakolas, “Collision avoidance for an unmanned aerial vehicle in the presence of static and moving obstacles,†Journal of Guidance, Control, and Dynamics, vol. 43, no. 1, pp. 96–110, 2020, https://doi.org/10.2514/1.G004446.
[134] K. Wang, Z. Meng, L. Wang, Z. Wu, and Z. Wu, “Practical obstacle avoidance path planning for agriculture UAVs,†Advances and Trends in Artificial Intelligence. From Theory to Practice, vol. 11606, pp. 196-203, 2019, https://doi.org/10.1007/978-3-030-22999-3_18.
[135] Y. Hu, Y. Yao, Q. Ren, and X. Zhou, “3D multi-UAV cooperative velocity-aware motion planning,†Future Generation Computer Systems, vol. 102, pp. 762-774, 2020, https://doi.org/10.1016/j.future.2019.09.030.
[136] J. W. Hu, M. Wang, C. H. Zhao, Q. Pan, and C. Du, “Formation control and collision avoidance for multi-UAV systems based on Voronoi partition,†Science China Technological Sciences, vol. 63, pp. 65-72, 2020, https://doi.org/10.1007/s11431-018-9449-9.
[137] Y. Wu, J. Gou, X. Hu, and Y. Huang, “A new consensus theory-based method for formation control and obstacle avoidance of UAVs,†Aerospace Science and Technology, vol. 107, p. 106332, 2020, https://doi.org/10.1016/j.ast.2020.106332.
[138] P. S. Krishnan and K. Manimala, “Implementation of optimized dynamic trajectory modification algorithm to avoid obstacles for secure navigation of UAV,†Applied Soft Computing, vol. 90, p. 106168, 2020, https://doi.org/10.1016/j.asoc.2020.106168.
[139] Y. Cai and J. Juang, “Path Planning and Obstacle Avoidance of UAV for Cage Culture Inspection,†Journal of Marine Science and Technology, vol. 28, no. 5, pp. 444–455, 2020, https://jmstt.ntou.edu.tw/journal/vol28/iss5/14/.
[140] J. Sock, J. Kim, J. Min and K. Kwak, “Probabilistic traversability map generation using 3D-LIDAR and camera,†2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 5631-5637, 2016, https://doi.org/10.1109/ICRA.2016.7487782.
[141] T. Q. Tran, A. Becker, and D. Grzechca, “Environment mapping using sensor fusion of 2d laser scanner and 3d ultrasonic sensor for a real mobile robot,†Sensors, vol. 21, no. 9, p. 3184, 2021, https://doi.org/10.3390/s21093184.
[142] C. Park, S. Lee, H. Kim, and D. Lee, “Aerial Object Detection and Tracking based on Fusion of Vision and Lidar Sensors using Kalman Filter for UAV,†International journal of advanced smart convergence, vol. 9, no. 3, pp. 232-238, 2020, https://doi.org/10.7236/IJASC.2020.9.3.232.
[143] J. M. Buchholz, “Multirotor UAS Sense and Avoid with Sensor Fusion by,†Doctoral Dissertations and Master's Theses, 2019, https://commons.erau.edu/edt/496/.
[144] H. P. Liu and F. C. Sun, “Fusion tracking in color and infrared images using joint sparse representation,†Science China Information Sciences, vol. 55, pp. 590-599, 2012, https://doi.org/10.1007/s11432-011-4536-9.
[145] P. Carrasco, F. Cuesta, R. Caballero, F. J. Perez-Grau, and A. Viguria, “Multi-sensor fusion for aerial robots in industrial GNSS-denied environments,†Applied Sciences, vol. 11, no. 9, p. 3921, 2021, https://doi.org/10.3390/app11093921.
[146] Q. Li, L. Chen, M. Li, S. -L. Shaw and A. Nüchter, “A Sensor-Fusion Drivable-Region and Lane-Detection System for Autonomous Vehicle Navigation in Challenging Road Scenarios,†IEEE Transactions on Vehicular Technology, vol. 63, no. 2, pp. 540-555, 2014, https://doi.org/10.1109/TVT.2013.2281199.
[147] C. V. Poulton et al., “Long-Range LiDAR and Free-Space Data Communication With High-Performance Optical Phased Arrays,†IEEE Journal of Selected Topics in Quantum Electronics, vol. 25, no. 5, pp. 1-8, 2019, https://doi.org/10.1109/JSTQE.2019.2908555.
[148] L. Xiao, R. Wang, B. Dai, Y. Fang, D. Liu, and T. Wu, “Hybrid conditional random field based camera-LIDAR fusion for road detection,†Information Sciences, vol. 432, pp. 543-558, 2018, https://doi.org/10.1016/j.ins.2017.04.048.
[149] J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. L. Waslander, “Joint 3D Proposal Generation and Object Detection from View Aggregation,†2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1-8, 2018, https://doi.org/10.1109/IROS.2018.8594049.
[150] N. Balemans, P. Hellinckx, S. Latré, P. Reiter and J. Steckel, “S2L-SLAM: Sensor Fusion Driven SLAM using Sonar, LiDAR and Deep Neural Networks,†2021 IEEE Sensors, pp. 1-4, 2021, https://doi.org/10.1109/SENSORS47087.2021.9639772.
[151] P. Wei, L. Cagle, T. Reza, J. Ball, and J. Gafford, “LiDAR and camera detection fusion in a real-time industrial multi-sensor collision avoidance system,†Electronics, vol. 7, no. 6, p. 84, 2018, https://doi.org/10.3390/electronics7060084.
[152] S. Majumder and D. K. Pratihar, “Multi-sensors data fusion through fuzzy clustering and predictive tools,†Expert Systems with Applications, vol. 107, pp. 165-172, 2018, https://doi.org/10.1016/j.eswa.2018.04.026.
[153] R. O. Chavez-Garcia and O. Aycard, “Multiple Sensor Fusion and Classification for Moving Object Detection and Tracking,†IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 2, pp. 525-534, 2016, https://doi.org/10.1109/TITS.2015.2479925.
[154] J. W. Starr and B. Y. Lattimer, “Evidential Sensor Fusion of Long-Wavelength Infrared Stereo Vision and 3D-LIDAR for Rangefinding in Fire Environments,†Fire Technology, vol. 53, pp. 1961-1983, 2017, https://doi.org/10.1007/s10694-017-0666-y.
[155] Z. Liu et al., “Robust Target Recognition and Tracking of Self-Driving Cars With Radar and Camera Information Fusion Under Severe Weather Conditions,†IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 7, pp. 6640-6653, 2022, https://doi.org/10.1109/TITS.2021.3059674.
[156] M. H. Harun, S. S. Abdullah, M. S. M. Aras and M. B. Bahar, “Sensor Fusion Technology for Unmanned Autonomous Vehicles (UAV): A Review of Methods and Applications,†2022 IEEE 9th International Conference on Underwater System Technology: Theory and Applications (USYS), pp. 1-8, 2022, https://doi.org/10.1109/USYS56283.2022.10072667.
[157] Z. Zhang, S. Zhao, and X. Wang, “Research on collision avoidance of fixed-wing UAV,†Proceedings of the 2019 4th International Conference on Automation, Control and Robotics Engineering, pp. 1-6, 2019, https://doi.org/10.1145/3351917.3351933.
[158] Y. Miao, Y. Tang, B. A. Alzahrani, A. Barnawi, T. Alafif and L. Hu, “Airborne LiDAR Assisted Obstacle Recognition and Intrusion Detection Towards Unmanned Aerial Vehicle: Architecture, Modeling and Evaluation,†IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 7, pp. 4531-4540, 2021, https://doi.org/10.1109/TITS.2020.3023189.
[159] S. Ponte, G. Ariante, U. Papa, and G. Del Core, “An embedded platform for positioning and obstacle detection for small unmanned aerial vehicles,†Electronics, vol. 9, no. 7, p. 1175, 2020, https://doi.org/10.3390/electronics9071175.
[160] S. Senthilkumar et al., “Design, Dynamics, Development and Deployment of Hexacopter for Agricultural Applications,†2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA), pp. 1-6, 2021, https://doi.org/10.1109/ICAECA52838.2021.9675753.
[161] I. Saric, A. Masic, and M. Delic, “Hexacopter Design and Analysis,†New Technologies, Development and Application IV, pp. 74–81, 2021, https://doi.org/10.1007/978-3-030-75275-0_9.
[162] J. Ding et al., “Object Detection in Aerial Images: A Large-Scale Benchmark and Challenges,†IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 11, pp. 7778-7796, 2022, https://doi.org/10.1109/TPAMI.2021.3117983.
[163] M. ki, J. cha and H. Lyu, “Detect and avoid system based on multi sensor fusion for UAV,†2018 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1107-1109, 2018, https://doi.org/10.1109/ICTC.2018.8539587.
[164] M. Nazarahari and H. Rouhani, “Sensor fusion algorithms for orientation tracking via magnetic and inertial measurement units: An experimental comparison survey,†Information Fusion, vol. 76, pp. 8–23, 2021, https://doi.org/10.1016/j.inffus.2021.04.009.
[165] T. Nguyen, M. Cao, S. Yuan, Y. Lyu, T. H. Nguyen, and L. Xie, “VIRAL-Fusion : A Visual-Inertial-Ranging-Lidar Sensor Fusion Approach,†Arxiv, 2021, https://doi.org/10.48550/arXiv.2010.12274.
[166] A. P. Shetty, “GPS-LiDAR sensor fusion aided by 3D city models for UAVs,†Graduate Dissertations and Theses at Illinois, 2017, https://www.ideals.illinois.edu/items/102554.
[167] X. Guan, R. Lyu, H. Shi, and J. Chen, “A survey of safety separation management and collision avoidance approaches of civil UAS operating in integration national airspace system,†Chinese Journal of Aeronautics, vol. 33, no. 11, pp. 2851–2863, 2020, https://doi.org/10.1016/j.cja.2020.05.009.
[168] H. Sang, Y. You, X. Sun, Y. Zhou, and F. Liu, “The hybrid path planning algorithm based on improved A* and artificial potential field for unmanned surface vehicle formations,†Ocean Engineering, vol. 223, p. 108709, 2021, https://doi.org/10.1016/j.oceaneng.2021.108709.
[169] S. Patel, A. Sarabakha, D. Kircali, E. Kayacan, “An intelligent hybrid artificial neural network based approach for control of aerial robots,†Journal of Intelligent & Robotic Systems, vol. 97, pp. 387–398, 2020, https://doi.org/10.1007/s10846-019-01031-z.
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Mohd Shahrieel Mohd Aras

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
About the Journal | Journal Policies | Author | Information |
International Journal of Robotics and Control Systems
e-ISSN: 2775-2658
Website: https://pubs2.ascee.org/index.php/IJRCS
Email: ijrcs@ascee.org
Organized by: Association for Scientific Computing Electronics and Engineering (ASCEE), Peneliti Teknologi Teknik Indonesia, Department of Electrical Engineering, Universitas Ahmad Dahlan and Kuliah Teknik Elektro
Published by: Association for Scientific Computing Electronics and Engineering (ASCEE)
Office: Jalan Janti, Karangjambe 130B, Banguntapan, Bantul, Daerah Istimewa Yogyakarta, Indonesia