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1. Introduction  

Modern complex technical systems have different sensors; they are used, in particular, to control 

and fault diagnosis. Clearly, the more sensors are used, the simpler solution is obtained. Additional 

physical sensors result in extra expenses; besides, they are of no high reliability. Here, virtual sensors 

are of interest. There are many papers considering different problems in the design and application 

of virtual sensors. Most of these papers are intended to solve different practical applications of virtual 

sensors: for health monitoring of automotive engines [1]; for active reduction of noise in active 

control systems [3]; for electronic nose devises [5]; for hiding the fault from the controller point of 

view [7]; in walking legged robots [8]; for failure diagnosis in aircraft [9]; in the process of fault 

detection in industrial motor [10]; for fault detection, isolation and data recovery in a bicomponent 

mixing machine [11]; in humidity sensor systems [14]; in the sensor-cloud platform [17]; for a tunnel 

furnace [27]. In [16], [18]-[21], [28], virtual sensors are used for fault tolerant control for different 

types of dynamic systems (descriptor, parameter varying, subject to actuator saturation, etc.). A new 

architectural paradigm for remotely deployed sensors whereby a sensor’s software is separated from 
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the hardware is presented in [24]. In [2], [13], different theoretical aspects of using virtual sensors in 

linear systems are considered. A detailed procedure to design virtual sensors for linear systems is 

suggested in [4]. The main gap of all considered papers is that they design virtual sensors of full 

dimension for systems described by linear models; besides, such sensors are subjected to external 

disturbance.  

The main contribution of the research is that a procedure to design virtual sensors of minimal 

dimension for nonlinear systems with non-smooth nonlinearities estimating prescribed components of 

the state vector and insensitive to the external disturbance is developed. This allows to reduce 

complexity of the virtual sensors in comparison with cited above papers where such sensors of full 

dimension are constructed. Besides, the limitations imposed on the initial system are relaxed that allow 

to extend a class of systems for which the virtual sensors can be constructed. 

The set of the prescribed components depends on the problem of control or fault diagnosis under 

consideration. Here we consider the problem of sensor fault identification based on sliding mode 

observers. The use of virtual sensors allows to improve a solution of this problem. 

2. The Model Design 

The problem of virtual sensor design will be solved for systems described by a continuous-time 

model as in (1). 

 
�̇�(𝑡) = 𝐹𝑥(𝑡) + 𝐺𝑢(𝑡) + 𝑃𝜙(𝐴𝑥(𝑡), 𝑢(𝑡)) + 𝐿𝜌(𝑡) 
𝑦(𝑡) = 𝐻𝑥(𝑡) 

(1) 

and discrete-time model shown in (2). 

 
𝑥(𝑡 + 1) = 𝐹𝑥(𝑡) + 𝐺𝑢(𝑡) + 𝑃𝜙(𝐴𝑥(𝑡), 𝑢(𝑡)) + 𝐿𝜌(𝑡) 
𝑦(𝑡) = 𝐻𝑥(𝑡) 

(2) 

where 𝑥(𝑡) ∈ 𝑅𝑛, 𝑢(𝑡) ∈ 𝑅𝑚 и 𝑦(𝑡) ∈ 𝑅𝑙 are state, control, and output vectors, 𝐹, 𝐺, 𝐻, 𝐶, 𝑃, and 𝐿 

are known matrices; it is assumed that the disturbance 𝜌(𝑡) ∈ 𝑅𝑝 is an unknown bounded function 

of time; for simplicity, we assume that the only type of nonlinearity described by the term 

𝜙(𝐴𝑥(𝑡), 𝑢(𝑡)) is in the system, 𝐴 is the matrix, the function 𝜙 maybe non-smooth.  

The problem is as follows: given 𝑣(𝑡) = 𝐻𝑣𝑥(𝑡) for known matrix 𝐻𝑣, construct a virtual sensor 

of minimal dimension estimating the variable 𝑣(𝑡). Assume for simplicity that 𝐻𝑣 is a row matrix. 

To design the virtual sensor, so-called logic-dynamic approach is used, which allows to solve 

the problem for nonlinear systems by linear methods. According to this approach, the problem is 

solved in three steps: in the first step, the nonlinear term is removed from (1) and (2), and the linear 

model of minimal dimension invariant with respect to the disturbance and estimating the variable 

𝑣(𝑡) under some additional conditions is designed; at the second step, a possibility to take into 

account the nonlinear term and to estimate the given variable is checked; finally, the transformed 

nonlinear term is added to the linear model. 

The linear model of minimal dimension invariant with respect to the disturbance 𝜌(𝑡) designed 

at the first step is given by (3). 

 
�̇�(𝑡) = 𝐹∗𝑧(𝑡) + 𝐾∗𝑦(𝑡) + 𝐺∗𝑢(𝑡) 
𝑣(𝑡) = 𝐶𝑧(𝑡) + 𝑄𝑦(𝑡) 

(3) 

for the continuous-time case, as in (4). 

 
𝑧(𝑡 + 1) = 𝐹∗𝑧(𝑡) + 𝐾∗𝑦(𝑡) + 𝐺∗𝑢(𝑡) 
𝑣(𝑡) = 𝐶𝑧(𝑡) + 𝑄𝑦(𝑡) 

(4) 
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for the discrete-time one, where𝑧(𝑡) ∈ 𝑅𝑘, 𝑘 < 𝑛, is the state vector, 𝐹∗, 𝐺∗, 𝐶, 𝑄, and 𝐾∗ are matrices 

to be determined. 

It is assumed that the relation 𝑧(𝑡) = 𝛹𝑥(𝑡) is true where 𝛹 is some constant matrix to be 

determined. It is known [29] that it meets the following Equations (5). 

 𝛹𝐹 = 𝐹∗𝛹 + 𝐾∗𝐻,      𝐺∗ = 𝛹𝐺 (5) 

The first additional condition appears due to Equation (6). 

 𝑣(𝑡) = 𝐻𝑣𝑥(𝑡) = 𝐶𝑧(𝑡) + 𝑄𝑦(𝑡) (6) 

Since 𝑧(𝑡) = 𝛹𝑥(𝑡) and 𝑦(𝑡) = 𝐻𝑥(𝑡), it follows (7). 

 𝐻𝑣 = 𝐶𝛹 +𝑄𝐻 = (𝐶 𝑄) (
𝛹
𝐻
) (7) 

This equation has a solution if and only if the matrix 𝐻𝑣 can be expressed via the matrices 𝛹 and 𝐻 

that is equivalent to (8). 

 rank (
Ψ
H
) = rank(

Ψ
H
Hv

) (8) 

The second additional condition appears due to the nonlinear term. This term in the nonlinear 

model is of the form (9). 

 𝑃∗𝜙(𝐴∗ (
𝑧(𝑡)
𝑦(𝑡)

) , 𝑢(𝑡)) (9) 

where 𝑃∗ = 𝛹𝑃, the matrix 𝐴∗ satisfies the condition (10) [30], [31]. 

 𝐴 = 𝐴∗ (
𝛹
𝐻
) (10) 

This equation has a solution if and only if, as in (11). 

 rank (
𝛹
𝐻
) = rank(

𝛹
𝐻
𝐴
) (11) 

To simplify the solution of Equations (5), the matrix 𝐹∗ will be sought in a canonical form 

different from the continuous-time and discrete-time models. Consider at first the discrete-time case.  

2.1. Discrete-time Model 

To construct a model (4), the matrix 𝐹∗ is sought in the identification canonical form (12). 

 𝐹∗ =

(

 
 

0 1 0 ⋯ 0
0 0 1 ⋯ 0
0 0 0 ⋯ 0
⋯ ⋯ ⋯ ⋱ ⋯
0 0 0 ⋯ 0)

 
 

 (12) 

It was shown that such a form always exists [29]. This matrix has zero eigenvalues; therefore, 

it is stable. Therefore there is no need to use special feedback for achieving stability in the linear 

discrete-time model (4). Besides, it enables to obtain simple equations for matrices describing the 

models (4) as follows [29]. Using (12), one obtains from (5) the following Equations (13). 

 𝛹𝑖𝐹 = 𝛹𝑖+1 + 𝐾∗𝑖𝐻,   𝑖 = 1, . . . , 𝑘 − 1,   𝛹𝑘𝐹 = 𝐾𝑘𝐻 (13) 
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the i-th rows of the matrices 𝛹 and 𝐾∗, 𝑖 = 1, . . . , 𝑘, are denoted by 𝛹𝑖 and 𝐾∗𝑖, respectively. 

The model (4) is insensitive to 𝜌(𝑡) when 𝛹𝐿 = 0; as a result, Equations (13) are transformed 

into (14). 

 (𝛹1 −𝐾∗1 … −𝐾∗𝑘)(𝑉
(𝑘)   𝐿(𝑘)) = 0 (14) 

where as in (15). 

 𝑉(𝑘) = (

𝐹𝑘

𝐻𝐹𝑘−1

⋮
𝐻

),   𝐿
(𝑘)
= (

𝐿 𝐹𝐿 … 𝐹𝑘−1𝐿
0 𝐻𝐿 … 𝐻𝐹𝑘−2𝐿
⋮ ⋮ ⋱ ⋮
0 0 … 0

) (15) 

Note that the equality (𝛹1 −𝐾∗1 … −𝐾∗𝑘)𝑉
(𝑘) = 0 allows to construct the model (4), the 

equality (𝛹1 −𝐾∗1 … −𝐾∗𝑘)𝐿
(𝑘) = 0 ensures insensitivity to the disturbance.  

This equation should be solved for minimal 𝑘 starting from 𝑘 = 1. Then the rows of matrix 𝛹 

are found from (11); as a result, the first step has been finished. In the second step, the conditions (8) 

and (11) are checked; if they are fulfilled, the matrices 𝐶, 𝑄, and 𝐴∗ are found from (7) and (10), 

respectively; 𝑃∗ = 𝛹𝑃. The nonlinear term (9) is added to the linear model (4); as a result, the 

nonlinear model has been designed in the form (16). 

 𝑧(𝑡 + 1) = 𝐹∗𝑧(𝑡) + 𝐾∗𝑦(𝑡) + 𝐺∗𝑢(𝑡) + 𝑃∗𝜙(𝐴∗ (
𝑧(𝑡)
𝑦(𝑡)

) , 𝑢(𝑡)) (16) 

If conditions (8) and (11) are not fulfilled, one finds another solution of (14) with former or 

incremented dimension 𝑘. If (14) is not satisfied for all 𝑘 < 𝑛, the virtual sensor invariant with 

respect to the disturbance cannot be designed; one has to use the robust methods [30].  

2.2. Continuous-time Model 

To construct a model (3), the matrix 𝐹∗ is sought in the purely diagonal Jordan canonical form 

with different eigenvalues 𝜆1, . . . , 𝜆𝑘, so that the form as in (17) is obtained. 

 𝐹∗ = (

𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆𝑘

) (17) 

Clearly, the matrix (17) with 𝜆𝑖 < 0 ensures stability of the continuous-time model. Here 𝑘 

independent equations present the equation 𝛹𝐹 = 𝐹∗𝛹 + 𝐾∗𝐻 as shown in (18). 

 𝛹𝑖𝐹 = 𝜆𝑖𝛹𝑖 +𝐾∗𝑖𝐻,    𝑖 = 1, . . . , 𝑘 (18) 

Take into account insensitivity to the disturbance when 𝛹𝐿 = 0. Define the matrix 𝐿0 of 

maximal rank satisfying the condition 𝐿0𝐿 = 0. As a result, 𝛹 = 𝑁𝐿0 for some matrix 𝑁, and (18) 

can be rewritten in the form (19). 

 (𝑁𝑖   − 𝐾∗𝑖) (
𝐿0(𝐹 − 𝜆𝑖𝐼𝑛)

𝐻
) = 0,   𝑖 = 1, . . . , 𝑘 (19) 

where 𝐼𝑛 is the identical matrix. 

To design the virtual sensor for continuous-time systems, one chooses some 𝜆𝑖 < 0 and finds 

𝛹𝑖 = 𝑁𝑖𝐿0 form (19) such that the matrix 𝛹 satisfies the conditions (8) and (11); then matrices 𝐶, 𝑄, 

and 𝐴∗ are found from (7) and (10) respectively. If the matrix 𝛹 does not exist, the virtual sensor 

invariant with respect to the disturbance cannot be designed, and one has to use robust methods [30]. 

The nonlinear model has been designed in the form (20). 



138 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 4, No. 2, 2023, pp. 134-143 

 

 

Alexey Zhirabok (Virtual Sensors Design for Nonlinear Dynamic Systems) 

 

 �̇�(𝑡) = 𝐹∗𝑧(𝑡) + 𝐾∗𝑦(𝑡) + 𝐺∗𝑢(𝑡) + 𝑃∗𝜙(𝐴∗ (
𝑧(𝑡)
𝑦(𝑡)

) , 𝑢(𝑡)) (20) 

The next algorithm demonstrates the main steps to design the virtual sensor; to be specific, 

consider the discrete-time system.  

2.3. Algorithm  

1. Solve the equation (14) for minimal 𝑘 stating from 𝑘 = 1, find the matrices 𝛹1 and 𝐾∗, and the 

other rows of the matrix 𝛹 based on (13). 

2. Check the conditions (8) and (11); if they both are satisfied, find the matrices 𝐶, 𝑄, and 𝐴∗ from 

(7) and (10), respectively. Otherwise, find another solution of (14) with former or incremented 𝑘. 

If (8) or (11) is not satisfied for all 𝑘 < 𝑛, the virtual sensor invariant with respect to the disturbance 

cannot be designed; one has to use the robust methods [30]. 

3. Set 𝐺∗ = 𝛹𝐺, 𝑃∗ = 𝛹𝑃, and construct the model (16).  

3. Stability 

Because of the matrix 𝐹∗ choice, the linear models are stable. In some cases, the nonlinear term 

does not change stability, consider this in detail.  

Introduce the estimation error 𝑒(𝑡) = 𝛹𝑥(𝑡) − 𝑧(𝑡) and write down the equation for 𝑒(𝑡) taking 

into account relations (5) (consider for simplicity the continuous-time case only), so that obtained 

(21). 

 
�̇�(𝑡) = 𝛹(𝐹𝑥(𝑡) + 𝐺𝑢(𝑡) + 𝑃𝜙(𝐴𝑥(𝑡), 𝑢(𝑡))) − 

         − (𝐹∗𝑧(𝑡) + 𝐾∗𝑦(𝑡) + 𝐺∗𝑢(𝑡) + 𝑃∗𝜙(𝐴∗ (
𝑧(𝑡)
𝑦(𝑡)

) , 𝑢(𝑡))) = 𝐹∗𝑒(𝑡) − 𝛥𝜙(𝑡) 
(21) 

where shown in (22). 

 𝛥𝜙(𝑡) = 𝛹𝑃𝜙(𝐴𝑥(𝑡), 𝑢(𝑡)) − 𝑃∗𝜙(𝐴∗ (
𝑧(𝑡)
𝑦(𝑡)

) , 𝑢(𝑡)) (22) 

It is assumed that the function 𝑃𝜙(𝐴𝑥, 𝑢) satisfies the Lipschitz condition about 𝑥 uniformly for 𝑢 

obtained as in (23). 

 ||𝑃𝜙(𝐴𝑥, 𝑢) − 𝑃𝜙(𝐴𝑥′, 𝑢)|| ≤ 𝑀||𝑥′ − 𝑥|| (23) 

where 𝑀 > 0 is some constant. Then 𝛥𝜙(𝑡) satisfies similar condition as well: ||𝛥𝜙(𝑡)|| ≤
𝑀∗||𝑒(𝑡)|| for some 𝑀∗ > 0. Since the matrix 𝐹∗ is stable, the symmetric positive definite matrices 𝑃 

and 𝑊 exist such that obtained as in (24). 

 𝐹∗
𝑇𝑃 + 𝑃𝐹∗ = −𝑊 (24) 

Consider Lyapunov candidate function 𝑉(𝑡) = 𝑒𝑇(𝑡)𝑃𝑒(𝑡) and take its derivative using (23) and 

(24) so obtain a new form (25). 

 

�̇�(𝑡) = (𝐹∗𝑒(𝑡) − 𝛥𝜙(𝑡))
𝑇𝑃𝑒(𝑡) + 𝑒𝑇(𝑡)𝑃(𝐹∗𝑒(𝑡) − 𝛥𝜙(𝑡)) 

       = 𝑒𝑇(𝑡)(𝐹∗
𝑇𝑃 + 𝑃𝐹∗)𝑒(𝑡) + 2𝑒

𝑇(𝑡)𝑃𝛥𝜙(𝑡) 
       = −𝑒𝑇(𝑡)𝑊𝑒(𝑡) + 2𝑒𝑇(𝑡)𝑃𝛥𝜙(𝑡) 
       ≤ −||𝑒(𝑡)||2(𝜆 ∗ 𝑚𝑎𝑥𝑚𝑖𝑛 

(25) 

Clearly, if as in (26). 



ISSN 2775-2658 
International Journal of Robotics and Control Systems 

139 
Vol. 4, No. 2, 2023, pp. 134-143 

  

 

Alexey Zhirabok (Virtual Sensors Design for Nonlinear Dynamic Systems) 

 

 𝑀∗ <
𝜆𝑚𝑖𝑛
2𝜆𝑚𝑎𝑥

 (26) 

then �̇�(𝑡) < 0, and the observer is stable. Note that this approach is considered in [15]. If (26) is not 

satisfied, stability can be achieved by methods suggested in [15].  

4. Virtual Sensor Location 

The choice of the matrix 𝐻𝑣 depends on the problem under consideration. Consider as an 

example the problem of sensor fault identification based on sliding mode observers. Note that to 

solve this problem, the methods suggested in [6], [12], [23], [26] provide only approximate solutions 

to this problem since the final expressions contain the derivative �̇�(𝑡) where the unknown function 

𝑑(𝑡) describes the fault. 

The method suggested in [6] assumes that a new state vector being a filtered version of 𝑦(𝑡) is 

introduced and special system of the dimension 𝑛 + 𝑙 is constructed. Then, based on this system, the 

sliding mode observer is designed under some restrictions imposed on the original systems. 

A new method of solving this problem was developed in [22], [31], [32]. Similar to the 

developed above method of virtual observer design, it is based on the model of minimal dimension 

invariant with respect to the disturbance. In contrast to the methods suggested in [6], [12], [22], it 

allows to design sliding mode observer of the dimension 𝑘 < 𝑛 which does not contain the derivative 

�̇�(𝑡) and provides the exact solution. 

Note that to design a sliding mode observer by method [22], the additional condition 𝑅∗𝐷 = 0 

should be taken into account; otherwise, siding motion cannot be obtained. Here 𝐷 is the matrix 

describing the fault in the sensor according to (27). 

 𝑦(𝑡) = 𝐻𝑥(𝑡) + 𝐷𝑑(𝑡) (27) 

To take into account the condition 𝑅∗𝐷 = 0, introduce the matrix 𝐷∗ of maximal rank such that 

𝐷∗𝐷 = 0, then 𝑅∗ = 𝑆𝐷∗ for some matrix 𝑆. By analogy with (12), the model is designed based on 

Equation (28). 

 (𝑆 −𝐾∗1 … −𝐾∗𝑘)(𝑉
𝑠(𝑘)   𝐿𝑠(𝑘)) = 0 (28) 

where shown in (29). 

 𝑉𝑠(𝑘) = (

𝐷∗𝐹
𝑘

𝐻𝐹𝑘−1

⋮
𝐻

),   𝐿
𝑠(𝑘)

= (

𝐷∗𝐻𝐿 𝐷∗𝐻𝐹𝐿 … 𝐷∗𝐻𝐹
𝑘−1𝐿

0 𝐻𝐿 … 𝐻𝐹𝑘−2𝐿
⋮ ⋮ ⋱ ⋮
0 0 … 0

) (29) 

As above, this equation is solved for minimal k, and the model and then sliding mode observer are 

designed. 

Rules to choose the virtual sensor 𝐻𝑣 are as follows. Let 𝐷0 be the matrix corresponding to the 

faulty sensor in the extended (with this sensor) output vector 𝑦0(𝑡) and 𝐷0∗ be the matrix of maximal 

rank such that 𝐷0∗𝐷0 = 0. Taking into account (29), we conclude that the matrix 𝐻𝑣 should be chosen 

such that (30). 

 rank(𝐷0∗𝐻) < rank(𝐷0∗ (
𝛹
𝐻𝑣
)) (30) 

since such a choice yields more possibilities to find the matrix 𝑅∗ satisfying the condition 𝑅∗𝐷0 = 0. 

When two variants 𝐻𝑣1 and 𝐻𝑣2 are possible, the first one is preferable if, as in (31). 
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 rank (𝐷0∗1 (
𝛹
𝐻𝑣1

)) > rank(𝐷0∗2 (
𝛹
𝐻𝑣2

)) (31) 

where the matrices 𝐷0∗1 and 𝐻𝑣1 correspond to the first variant, 𝐷0∗2 and 𝐻𝑣2 to the second, 

respectively. 

Another variant of the matrix 𝐻𝑣 choice can be motivated as follows. The simplest solutions of 

fault diagnosis problems are when all components of the state vector 𝑥(𝑡) are available. This yields 

the rule in the form (32). 

 rank (
𝐻
𝐻𝑣
) = 𝑛 (32) 

5. Example  

Consider the general electric servo actuator described by equations (33). 

 
�̇�1(𝑡) = 𝑘1𝑥2(𝑡) + 𝜌(𝑡) 
�̇�2(𝑡) = 𝑘2𝑥2(𝑡) + 𝑘3𝑥3(𝑡) + 𝑘7𝑠𝑖𝑔𝑛(𝑥2(𝑡)) 
�̇�3(𝑡) = 𝑘4𝑥2(𝑡) + 𝑘5𝑥3(𝑡) + 𝑘6𝑢(𝑡) 

(33) 

where 𝑥1(𝑡) is the output rotation angle at the reducer output shaft; 𝑥2(𝑡) is the output rotation 

velocity at the motor output shaft; 𝑥3(𝑡) is the current through the servo actuator windings; 𝑢(𝑡) is a 

voltage. The coefficients 𝑘1 ÷ 𝑘6 depend on the parameters of the servo actuator. The servo actuator 

is described by matrices and nonlinearities as in (34). 

 
𝐹 = (

0 𝑘1 0
0 𝑘2 𝑘3
0 𝑘4 𝑘5

),   𝐺 = (
0
0
𝑘6

),   𝐻 = (
1 0 0
0 0 1

),   𝑃 = (
0
𝑘7
0
),   𝐿 = (

1
0
0
) 

𝜙(𝑥, 𝑢) = 𝑠𝑖𝑔𝑛(𝐴𝑥(𝑡)),   𝐴 = (0 1 0) 

(34) 

The problem is to design the virtual sensor for 𝑣(𝑡) = 𝑥2(𝑡). Since the system contains a non-

smooth nonlinearity, the known methods cannot be used in this case. It can be shown that (35). 

 𝐻𝑣 = (0 1 0),   𝐿0 = (
0 1 0
0 0 1

) (35) 

Equation (19) has a solution with 𝜆 = 𝑘2: 𝑁 = (1 0), 𝐽∗ = (0 𝑘3 0), and 𝛹 = 𝑁𝐿0 =
(0 1 0). One can check that (8) and (11) are fulfilled, and Equations (7) and (10) with 𝐴′ = 𝐴 

gives 𝐺∗ = 0, 𝑃∗ = 𝑘7, 𝐴∗ = (1 0 0), 𝐻𝑣 = 1, 𝑄 = 0. The linear model is described by the 

Equation (36). 

 �̇�∗(𝑡) = 𝑘2𝑥∗(𝑡) + 𝑘3𝑦2(𝑡),    𝑣(𝑡) = 𝑥∗(𝑡) (36) 

The nonlinear term is given by 𝑃∗𝛹(𝑥∗(𝑡)) = 𝑘7𝑠𝑖𝑔𝑛(𝑥∗(𝑡)). The nonlinear model is described by 

Equation (37). 

 �̇�∗(𝑡) = 𝑘2𝑥∗(𝑡) + 𝑘2𝑦2(𝑡) + 𝑘7𝑠𝑖𝑔𝑛(𝑥∗(𝑡)),    𝑣(𝑡) = 𝑥∗(𝑡) (37) 

since 𝑘2 < 0, the model is stable and can be used as a virtual sensor.  

Simulation results with 𝑘1 = 𝑘3 = 𝑘6 = 𝑘7 = 1 and, 𝑘2 = 𝑘4 = 𝑘5 = −1 are given in Fig. 1. 
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Fig. 1. The behavior of the variables 𝑥2(𝑡) and 𝑣(𝑡) 

6. Conclusion 

In this paper, the problem of virtual sensor design has been studied for systems described by 

nonlinear models with non-smooth nonlinearities under external disturbance. To solve the problem, 

the logic-dynamic approach has been used. The significance of this approach is that it allows to solve 

the problem for nonlinear systems by methods of linear algebra and to design the virtual sensor of 

minimal dimension insensitive to the disturbance. The limitation of the approach is that it is not 

applicable to non-stationary systems. The problem of virtual sensor location has been solved for the 

problem of sensor fault identification based on sliding mode observers. New knowledge contributed 

by the paper is a method to study the system with non-smooth nonlinearities and to achieve the 

invariance with respect to the disturbance based on the different canonical forms. The future research 

direction is the virtual sensor design for hybrid nonlinear dynamic systems.  
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