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ABSTRACT

A microgrid is a small-scale power grid comprising distributed generators
(DGs), distributed storage systems, and loads. It will lose contribution from
the main grid if it shifts to islanded mode due to pre-planned or unforeseen
disturbances. To restore the terminal voltages of all the distributed generators
to the reference value, this paper presents three coordinated secondary control
strategies. First, motivated by the synchronization control theory of multia-
gent systems, a distributed control technique is developed where each of the
DGs is considered an agent and they exchange information via a communi-
cation network. second, a two-level control technique is designed in which a
global controller is employed to monitor the overall performance of the DGs
by transmitting corrective signals to the local controllers of the agents. In this
technique, all the communication is between the global controller and the lo-
cal controllers without any direct communication between the agents. Third,
decentralized control is provided in which each DG is separately controlled
by its local controller that operates based on the local feedback measurements.
Simulations are carried out on an islanded microgrid consisting of four DGs
to illustrate our design approach.

This is an open access article under the CC-BY-SA license.

1. Introduction

Integration of DGs into microgrids is one of the most important ways to cope with the ever-
growing energy demand and lessen the increasing pressure due to environmental problems around
the world. Microgrids integrate a large number of renewable energy sources (such as biomass, solar
photovoltaic, wind power, e.t.c), energy storage systems, and local loads to form a small-scale power
distribution network. In essence, microgrids can operate in two modes, i.e., the grid-connected and
the autonomous/islanded modes. In the grid-connected mode, the microgrid is linked to the utility
grid at the point of common coupling by closing the isolation switch. However, when the microgrid
goes to the islanded operation by disconnecting from the utility grid due to disturbances, it should
not only keep its own frequency and voltage to some reference levels but also transmit the real and
reactive power among the DGs and local loads. Another challenge in the distribution networks is the
increasing penetration of DGs which results in a number of technical challenges such as frequency
deviation, power quality, protection, voltage regulation, and stability. A hierarchical control structure
has been proposed for the MG to tackle these challenges [3], [4].

http://dx.doi.org/10.31763/ijrcs.v2i2.612 ijrcs@ascee.org

http://pubs2.ascee.org/index.php/ijrcs
http://creativecommons.org/licenses/by-sa/4.0/
http://dx.doi.org/10.31763/ijrcs.v2i2.612
mailto:ijrcs@ascee.org


ISSN: 2775-2658 International Journal of Robotics and Control Systems
Vol. 2, No. 2, 2022, pp. 262-276

263

The hierarchical control approach for the microgrid is generally divided into primary, secondary,
and tertiary control levels. The primary control is based on the control of each individual DG unit. In
other to tackle the problems associated with primary control such as frequency and voltage deviation,
secondary control is needed to bring back the frequency and voltage to their reference values. In the
tertiary control, the optimal power operation is considered. Nonetheless, in this paper, the secondary
control is studied.

The secondary control of the islanded MG has been investigated extensively. In [4]-[8], a cen-
tralized control method was proposed, comprising a complex communication architecture for the
secondary control. In such methods, a central controller is used to collect the operating information
of the entire network and send back control signals to each DG as their local control. In [1], a com-
bined local and centralized control for active and reactive power of PV inverters was investigated.
The active and reactive power of PV units is controlled by the rules based on piece-wise linear func-
tions with tunable parameters optimized by the central controller. In [2], a unified controller has been
proposed to restore the voltages of DGs integrated into an autonomous microgrid to a certain level.
To achieve this, the load flow algorithm was modified to enable sensitivity analysis and its conver-
gence was improved using the Levenberg–Marquardt approach. In [3], a centralized control technique
based on a multiperiod optimal power flow algorithm for calculating the reference values of DGs has
been proposed to handle the unbalanced operation of the microgrid. In [4], a centralized coordinated
model predictive control scheme was designed for a microgrid with high penetration of DGs to sta-
bilize all the bus voltages. In [5], a rule-based model predictive control was used to coordinate the
optimal operation of DG units in distributed networks. A dual-stage control has been realized in [6] to
suppress voltage fluctuation of DGs. However, centralized control requires complex communication
networks, and single-point failures will lead to the failure of the entire communication, which will
lessen the reliability of the microgrid. To mitigate these drawbacks, the distributed control approach
that requires a sparse communication network could be a better alternative. In this control strategy,
there is communication among the local controllers of neighboring DGs, and no central controller is
required.

Owing to the flexibility and high efficiency of multi-agent systems, distributed cooperative con-
trol of the multi-agent systems has attracted enormous attention in the recent past. In [7], adaptive
distributive control has been designed for a time-varying group formation tracking of linear MAS. In
[8], a distributed optimal control of linear MAS on digraph has been developed. In [9], a distributed
optimal sliding mode control was designed for a linear MAS on directed topologies. The consensus
control of MAS without a leader, where the final value of the agents depends on the initial values
of the agents has been extensively studied [10], [11], [12], [13]. When all the agents need to follow
the desired trajectory, the leader-follower consensus which commands the agents follow its motion is
implemented [14], [15], [16], [17], [18]. The synchronization problem for multi-agent systems with
nonlinear dynamics has been presented in [19], [20]. The synchronization problem in the case of
linear dynamics is studied in [21], [22].

Recently, the authors in [23] developed a distributed discrete-time secondary control for optimal
power-sharing of multiple DG distributed networks. In [24], an event-triggered cooperative secondary
control for voltage restoration of DGs is presented. In this method, the data transmission burden is
generally reduced. In [25], a distributed finite-time consensus control of DGs is presented to restore
the voltages of the DGs to a certain reference value. In [26], a leader-follower-based distributed
secondary control of multiple DGs are discussed. In [27], the authors addressed accurate power allo-
cation and distributed secondary control of DGs. In [28], a stochastic distributed secondary control
scheme is proposed to achieve synchronization of the voltages of the DGs.

It should be noted that both centralized and distributed control schemes require communication
networks [29]. When the communication link between any neighbors is failed, it can bring the whole
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Fig. 1. Schematic diagram of an islanded microgrid with M DGs and M loca loads.

system down. In addition, excessive communication delays can also deteriorate the system’s per-
formance. In [30], a decentralized coordination control of DGs is proposed to minimize renewable
power curtailment. In [31], decentralized resilient control of an islanded microgrid was presented. In
[32], the authors implemented an optimal decentralized control for active/reactive power regulation,
minimizing power losses, and maintaining the voltages of the DGs within certain limits. In [33], the
authors designed a decentralized control for a distribution network to maintain the microgrid volt-
age and share active power with DGs. In [34], decentralized optimization is formulated based on
mixed-integer programming to minimize power fluctuation in a distributed network. In [35], the au-
thors investigated the impact of increasing decentralized generation on the reliability of a distributed
network. Integrating a significant number of DGs can seriously reduce the reliability of the network.
The authors concluded that by implementing effective power control schemes, the reliability of the
network can be improved.

In this work, we are developing control methods for secondary control of multiple distributed
generators (DGs) connected to a standalone microgrid. Specifically, three techniques were addressed:

1. Distributed control technique in which the local controller of each DG communicates with
their neighbors based on a multiagent system to achieve the voltage synchronization.

2. Two-level control technique in which the local controllers operate independently but coordi-
nate accordingly with a central controller to supervise their performance toward restoring the
voltage of each DG to a certain reference value.

3. Decentralized control technique in which the local controllers have maximum freedom so
that each DG is controlled by its own local controller only without any central coordinator.

2. Preliminaries and problem formulation

2.1. Algebraic graph

A directed graph G = (V,E,A) is composed of a set of nodes, V = {v1, . . . ,vM}, a set of
edges, E ⊆ V × V, and an adjacency matrix A = [aij] with weights aij = 1 if (vi, vj) ∈ E
and aij = 0 otherwise. Define the diagonal matrix B = diag(b1, . . . ,bM) as the interconnection
between followers and the leader (reference). bi > 0 for i = 1, 2, . . . ,M if an agent i is receiving
information from the leader (v0) and ai = 0 otherwise. The laplacian matrix L = [lij] of the graph
G is define by lij = −aij, i 6= j and lij =

∑M
j=1,j 6=i aij, i 6= j.

2.2. Dynamic model of the islanded microgrid

Fig. 1 depicts the schematic diagram of an islanded microgrid with M DGs. A local load is
connected to each of the DGs and integrated by an MG network model. Hence, the model of the
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islanded microgrid is usually composed of the DG model and microgrid network model. The dynamic
model of an ith DG is derived based on the following assumption [36], [25]:

1. Power losses in transmission lines are negligible.

2. The inverter dynamics is neglected since it is much faster than its controller.

3. The DGs are receiving sufficient power from their DC sources.

Then the nonlinear state-space model of each of the DG in this study is given by:

[
V̇i
V̈i

]
=

[
0 1
0 0

] [
Vi
V̇i

]
+

[
0
fi

]
+

[
0

1/(τQikVi)

]
uVi (1)

f1i(Vi, Vk)=−
τQi + kVi
τQikVi

V̇i −
kQi

(
Q1i +

∑
k∈Ni

|Bik|

)
τQikVi

Vi
2

+
kQi

τQikVi

∑
k∈Ni

|Bik|ViVk cos(δi − δk)

−
1 + kQiQ2i

τQikVi
Vi −

kQi

(
Q3i −Qdi

)
− V d

τQikVi
. (2)

where Vi is the terminal voltage of each DG, Vk is the voltage of the neighboring DGs, KQi is
the droop control gain, KVi is the voltage control gain, Qi is the reactive power, and Bik is the
conductance of the lines between any two DGs.

Equation (1) can be linearized by the following controller.

uVi = τQikVi [−fi + ui] (3)

where ui is the stabilising input of each DG. The linear state-space model of the ith DG is thus:[
V̇i
V̈i

]
=

[
0 1
0 0

] [
Vi
V̇i

]
+

[
0
1

]
ui (4)

Equation (4) can be rewritten as:

ẋi = Aixi +Biui, i = 1, 2, . . . ,M

yi = Cixi (5)

where

xi =

[
Vi
V̇i

]
; Ai =

[
0 1
0 0

]
; Bi =

[
0
1

]
; Ci =

[
1 0

]
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3. Distributed Control

In this section, we investigate a type of MAS in which communication between control system
components, such as actuators, controllers, and sensors, takes place via a shared channel or across a
communication network. An output feedback law is developed for the distributed MAS to achieve the
leader-following consensus e.g limx→∞ ‖xi − xM+1‖ =, ∀ i = 1, 2, . . . ,M . Moreover, uM+1 = 0.
The local neighbor-hood tracking error for is defined as

zi =
M+1∑
j=1

aij(xi − xj), i = 1, 2, . . . ,M (6)

while the global tracking error is defined as

z = (L ⊗ Ip)(x− 1̄⊗ xM+1) (7)

where z = [zT1 , z
T
2 , . . . , z

T
M ]T . Recall that uM+1 = 0, then the time derivative of (7) is

ż = (IM ⊗A)z + (L ⊗B)U (8)

where U = [uT1 , u
T
2 , . . . , u

T
M ]T . It is worth noting that limx→∞ ‖xi − xM+1‖ =, ∀ i = 1, 2, . . . ,M ,

can be realised if and only if (8) is asymptotically stable. The following distributed control law is
designed:

ui = CiKzi, i = 1, 2, . . . ,M (9)

where K is a feedback gain. In the subsequent section

Theorem 1. Let Q = QT ≥ 0, R = RT > 0, c > 0, and the controller be given as (9). If there exists
a positive matrix P satisfying

ATP + PA+Q− PBR−1BTP = 0 (10)

and the feedback gain matrix is defied asK = R−1BTP , the system (8) is asymptotically with respect
to the performance index

J =

∫ ∞
0

1

2
(zT Q̄z + UT R̄U)dt (11)

where

R̄ = c−1L ⊗R
Q̄ = IM ⊗ (Q− PBR−1BTP ) + cL ⊗ PBR−1BTP (12)

Proof. Define a candidate Lyapunov function as follows:

L(z) = zT (IM ⊗ P )z (13)

The time derivative of L(z) gives

L̇(z) =
1

2
zT (IM ⊗ (PBR−1BTP −Q))z

+
1

2
zT (IM ⊗ (ATP + PA))z

− zT (cL ⊗ PBR−1BTP )z (14)
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Substituting the expression of Q̄ into (14) yields:

L̇(z) = −1

2
(Q̄+ cL ⊗ PBR−1BTP ) (15)

Therefore, the system (8) is asymptotically stable since. Q = QT ≥ 0, R = RT > 0, c > 0. The
conditions that guarantee Q̄ ≥ 0 can be proved as follows:

Let ζ(z, U) = 1
2(UT + zT (IM ⊗ cKT ))R̄(U + (IM ⊗ cK)z). By using the expressions of K, Q̄

and R̄ that were defined before, one gets

ζ(z, U) =
1

2
UT R̄U +

1

2
zT (cL ⊗ PBR−1BTP )z

+ zT (L ⊗ PB)U

=
1

2
UT R̄U +

1

2
zT Q̄z + zT (L ⊗ PB)U

+
1

2
(IM ⊗ (PBR−1BTP −Q))z (16)

Substituting (10) into (16) yields:

ζ(z, U) =
1

2
UT R̄U +

1

2
zT Q̄z + zT (L ⊗ PB)U

+
1

2
zT (IM ⊗ (ATP + PA))z

=
1

2
UT R̄U +

1

2
zT Q̄z + zT (L ⊗ PB)U

+ zT (IM ⊗ (PA))z

=
1

2
UT R̄U +

1

2
zT Q̄z

+ zT (IM ⊗ P )((IM ⊗A)z + (L ⊗B)U) (17)

Using the tracking error in (8), (17) can be expressed as

ζ(z, U) =
1

2
UT R̄U +

1

2
zT Q̄z + zT (IM ⊗ P )ż

=
1

2
UT R̄U +

1

2
zT Q̄z + L̇(z, U) (18)

From (11), we have

J =

∫ ∞
0

1

2
(zT Q̄z + UT R̄U)dt

=

∫ ∞
0

ζ(z, U)dt−
∫ ∞
0

L̇(z, U)dt

=

∫ ∞
0

ζ(z, U)dt+ L(0)− lim
t→∞

(L(z)) (19)
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where L(0) is the initial value of L(z). It is worth noticing that ζ(z, U) ≥ 0 always holds, and
ζ(z, U) = 0 can be achieved by the control law in (9). Hence, it can be deduced from (19) that the
minimum value of J is obtained as:

J = L(0)− lim
t→∞

(L(z)) (20)

The value of the coupling coefficient c and the condition that Q̄ ≥ 0 can be derived as follows:

From (15), and noting that Q ≥ 0, we can have that

Q̄ ≥ (cL − IM )⊗ PBR−1BTP (21)

Hence, Q̄ ≥ 0 can be guaranteed by the condition c ≥ 1
σmin(L) .

4. Decentralised Two-level Control

In this section, a two-level control configuration is used to achieve the secondary voltage coor-
dination control of the DGs instead of agent-to-agent communication. The secondary voltage coor-
dination is accomplished by noticing the group performance and sending the same signal to all the
agents.

The two-level control structure comprises a global controller and a local controller. The local op-
timal control action of each agent is measured by the local controllers. The global controller observes
the group performance and provides proper compensatory signals to maintain the global behavior.

The system (5) can be written as an interconnection of M subsystems as follows:

ẋi = Aixi +Biui +
M∑
j=1

Πijxj , i = 1, 2, . . . ,M (22)

where
∑M

j=1 Πijxj is the interconnection vector from other susbsystems xj .

4.1. Local Controller

It is assumed that each subsystem is aiming to find an optimal local controller (uli) which min-
imises a relevant quadratic cost function

Ji =

∞∫
to

{‖xi(to)‖2Qi
+ uli(to)‖2Ri

}dt (23)

Assume Πij = 0, i, j = 1, 2, . . . ,M and the system (22) reduces to

ẋi = Aixi +Biui, i = 1, 2, . . . ,M (24)

The optimum control law for minimizing (23) subject to the constraints given by (24) can be
written as

ui = −K̂ixi = −R̂−1i BT
i P̂ixi (25)

where P̂i is the solution of the local algebraic Riccati equation

P̂iAi +ATi P̂i − P̂iBiR̂−1i BT
i P̂i + Q̂i = 0 (26)
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The closed-loop decoupled subsystem

ẋi = (Ai −BiR̂−1i BT
i P̂ )xi (27)

It has the property that xi(t) = xi(0) exp(αt)←− 0 as t←−∞.

4.2. Global Controller

The global (central) controller ug gives corrective controls to counter the interactions between the
subsystems. The control input to each subsystem comprises of two components

ui = uli + ugi (28)

where

ugi = −
M∑
j=1

Hij (29)

where Hij is a gain matrix for the feedback signals from the jth subsystem to the ith subsystem.
Substituting (28) into (22) gives:

ẋi = (Ai −BiK̂i)xi +
M∑
j=1

[Πij −BiHij ]xj (30)

Assuming that Πij are determined through the relation

BΠ = BpK (31)

where Bp is the required perturbation in B, K̂ = diag[K̂1 K̂2 . . . K̂M ], and Π = Πij i, j =
1, 2, . . . ,M . Then (30) may be written as

ẋ = (A+ T )xi − (B + Bp)Kx (32)

where A = diag[A1 A2 . . . AM ], B = diag[B1 B2 . . . BM ]. It is worth mentioning that −Bp
involves the states of the other subsystems. The objective now is finding Bp to result in bounded
performance without changing K.

Theorem 2. Let W ∈ Rm×m be a skew solution of the matrix equation

W (A+ Π) + (A+ Π)TW + ΠT P̂A−AT P̂Π = 0 (33)

and the matrix P ∈ Rm×m given by

P = (W − P̂Π)(A+ Π)−1 (34)

be such that (P + P̂ ) is positive definite. Then Bp defined by

Bp = −(P + P̂ )−1PB (35)

leads to the cont function Ĵ = xT (P + P̂ )x for the overall system (32). Moreover, a bound on the
suboptimality index ε = (Ĵ − J∗)/J∗ is given by

ε =
Ĵ − J∗

J∗
(36)
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5. Decentralised Controller

In this section, instead of using local controllers and a global compensatory controller to steer the
system (22) to global performance, the objective in this sequel is to solve the DGs control problem
via decentralized controllers with sufficient conditions to guarantee the stability of the overall system.

The system (22) can be described as:

ẋ = Ax+Bu+ Π′ (37)

where Π′ = Π′′x

Π′′ =


0 A12 A13 · · ·A1M

A21 0 A2M
...

...
AM1 0


The system (37) can be rewritten as

ẋ = Ãx+Bu (38)

where

Ã = A+ Π′′ =


A1 A12 A13 · · ·A1M

A21 A2 A2M
... · · ·

...
AM1 AM2 · · · AM


The subsystems of system (37) can be decoupled by assuming the interaction vectors Πi are equal

to zero

ẋi = Aixi +Biui, i = 1, 2, . . . ,M (39)

Each subsystem can be exponentially stabilised with degree γ and minimizes their associated cost
function J̃i of the form

J̃i =

∫ ∞
0

eγt(xiQ̃ixi + uiR̃iui)dt (40)

with an optimum control law of the form

ui = −K̃ixi = −R̃−1i BT
i P̃ixi (41)

where P̃i is the solution of the local algebraic Riccati equation

P̃iAi +ATi P̃i − P̃iBiR̃−1i BT
i P̃i + γP̃i + Q̃i = 0 (42)

The closed-loop decoupled subsystems are given by:

ẋi = (Ai −BiR̃−1i BT
i P̃i)xi (43)

It is worth noticing that (43) has the property that xi(t)e(γt) −→ 0 as t −→ ∞. Based on (41),
the closed-loop form of system (37) is described by:

ẋ = (A−BR̃−1BT P̃ )x+ Π′ (44)

Π′ = Π′′x
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where R̃−1 = diag(R̃−1i ), P̃ = diag(P̃i) and the solution is

P̃A+AT P̃ − 2P̃BR̃−1BT P̃ + γP̃ + Q̃ = 0 (45)

The interconnection vector Π′ will disrupt the stability of the system, and it is requisite to deter-
mine sufficient conditions to ensure the stability of the overall system.

Theorem 3. The overall system (37) can be exponentially stabilised with degree γ in decentralised a
form by the control law

Proof. Choose a Lyapunov function candidate for the overall system (37) as

L̃(x) = xQ̃x (46)

Taking the time derivative of L̃(x) along (44) yields:

˙̃L(x) = xT (AT P̃ − P̃BR̃−1BT P̃ )x+ Π′T P̃ x

+ xT (P̃A− P̃BR̃−1BT P̃ )x+ xT P̃Π′ (47)

Using (44), then (47) will be

˙̃L(x) = xT (P̃A+AT P̃ − P̃BR̃−1BT P̃ )x

+ xTΠ′′T P̃ x+ xT P̃Π′′x (48)

By substituting (45) into (48), we get

˙̃L(x) = −xTΘx (49)

where

Θ = γP̃ +G− (P̃Π′′ + Π′′T P̃ )

G = Q̃+ P̃BR̃−1BT P̃

˙̃L(x) should be negative definite for (44) to be stable. Then the matrix Θ should be positive
definite such that

γσmin(Ki) + σmin(Gi) > 2‖Π′′‖σmax(Ki) (50)

6. Simulation Results

In this section, numerical simulations are conducted to verify the performance of the presented
control techniques to achieve the secondary control of the terminal voltages of the DGs integrated
into an islanded microgrid. The parameter of the DGs and the microgrid are obtained from [36].
The reference voltage is set as 320 volts. The communication topology of the DGs under distributed
control is shown in Fig. 2.

The simulation results are presented in Fig. 3 and Fig. 4. The synchronization of the terminal
voltages of the DGs under distributed control is depicted in Fig. 3. The convergence of the terminal
voltages of the Dgs under two-level control is shown in Fig. 4. The performance of the decentralised
controller is shown in Fig. 5.
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Fig. 2. Communication topology of the DGs under distributed control

Fig. 3. Voltage responses of the DGs under distributed control.
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Fig. 4. Voltage responses of the DGs under two-level control.

Fig. 5. Voltage responses of the DGs under decentralised control.
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7. Conclusions

In this paper, three different approaches for secondary control of DGs integrated into an islanded
microgrid were presented. First, a distributed control method was investigated. The controller here
was developed using the synchronization control theory of multi-agent systems to derive the termi-
nal voltages of the DGs to follow the leader. Second, a two-level control approach was formulated.
This controller consists of local controllers for regulatory actions and a global controller to obtain the
desired voltage coordination. Third, a decentralized control was designed to stabilize each DG unit
independently and restore the terminal voltages to the reference value without any communication
between the local controllers. Numerical simulations were provided to demonstrate the performance
of the controllers. Future work will consider cloud-based control for DGs so that the voltage coordi-
nation among them will be achieved by communicating with a shared warehouse.
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