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1. Introduction  

To work with nonlinear systems, the soft computing techniques are interesting 
alternatives; one advantage is their capability of learning using data in a similar way to 
adaptive systems. Soft computing can be seen as a metaphor for the natural world [1]; in 
particular, Artificial Neural Networks (ANN) try to mimic the connections among some 
neurons. The first generation of ANN can be described as some switches interconnected to 
have certain behavior; one example is to decide if is turned on a machine as a logic circuit can 
make in automation applications [2]. Once the activation function for a neuron was not limited 
to give 0 or 1 as in Boolean algebra, it is possible to compute the neuron action according to 
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 Artificial neural networks (ANN) can approximate signals and give 
interesting results in pattern recognition; some works use neural 
networks for control applications. However, biological neurons do 
not generate similar signals to the obtained by ANN.  The spiking 
neurons are an interesting topic since they simulate the real behavior 
depicted by biological neurons. This paper employed a spiking 
neuron to compute a PID control, which is further applied to the Van 
de Vusse reaction. This reaction, as the inverse pendulum, is a 
benchmark used to work with systems that has inverse response 
producing the output to undershoot. One problem is how to code 
information that the neuron can interpret and decode the peak 
generated by the neuron to interpret the neuron's behavior. In this 
work, a spiking neuron is used to compute a PID control by coding in 
time the peaks generated by the neuron. The neuron has as synaptic 
weights the PID gains, and the peak observed in the axon is the coded 
control signal. The neuron adaptation tries to obtain the necessary 
weights to generate the peak instant necessary to control the 
chemical reaction. The simulation results show the possibility of 
using this kind of neuron for control issues and the possibility of 
using a spiking neural network to overcome the undershoot obtained 
due to the inverse response of the chemical reaction. 
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the derivative of the error signal. The synaptic weights can be adapted to minimize the error 
found between the desired output of the neuron and its current response; this is the 
backpropagation training method. In this case, these kinds of neurons are known as the 
second generation of ANN [2]. 

The neurons of the second-generation work in the following way: some input nodes 
represent the dendrites of a real neuron, they collect the input information, then the inputs are 
modified using certain gains that are known are synaptic weights, if these gains are big, they 
produce the excitation of the neuron, and if they are small or negative, then they produce the 
inhibition of the neuron. Now, inside the neuron, the input information affected by the weights 
is added, and if they exceed an internal bias, the neuron is activated; the sum computed inside 
the neuron is similar to the soma in real neurons. Finally, the output signal is carried out 
through the axon; this idea is made by evaluating the addition of the information using a 
nonlinear function [3]. 

When some neurons are organized in parallel, i.e., there exists only one layer of neurons, 
the ANN is known as a perceptron, this kind of ANN is evaluated quickly, and its training is 
also fast, the perceptron is a good proposal for image recognition [4]. When they have 
connected some perceptrons, the ANN is known as a multilayer perceptron or multilayer ANN. 
In the control issue, they have used two neuron layers. The first one is known as the hidden 
layer [5]. The more common activation function for the hidden layer is the hyperbolic tangent 
because they can be handled by positive and negative values. The second later is the output 
layer that has as many neurons as degrees of freedom of the dynamic system, and its 
activation function used to be a linear function.  

Recently, Deep Learning (DL) has appeared thanks to the ideas of Hinton and his working 
team [6]. They affront the problem of adapting a multilayer perceptron if there are used more 
than three layers because the gradient used in the backpropagation vanishes. DL uses ideas 
different from the ANN. It uses Boltzmann machines [7], auto-encoders [8], or convolution 
functions [9] for pre-training. When the system has an acceptable behavior, the new structure 
is quite similar to a classical ANN (second generation). Now a fine-tuning is made using the 
well-known backpropagation [10]. 

The DL can be considered into the fourth industrial revolution, even as the third 
generation of the ANN, but there exists another kind of artificial neuron. In control, issues are 
not common to find DL applications. With the ideas and functions proposed by Izhikevich [11], 
the spiking neurons were easy to compute, and a new paradigm appeared. The idea was to 
obtain activation signals more similar to the real behavior of biological neurons.   

Now, some ideas as to building electronic devices capable of computing spiking neural 
networks have been developed [12]. This paper is shown an application of a PID controller 
where the gains are computed using spiking neurons. A codification is needed to interpret the 
spikes in order to obtain a continuous control signal. The classical codifications are in time, 
taking into consideration when the spike appears [13], or in frequency by averaging the pulses 
obtained into a time interval. 

The system to control is the Van de Vusse reaction. This chemical process presents an 
inverse response. It is a common situation in chemical and biotechnological processes because 
the system input appears with a negative sign in all the differential equations that represent 
the evolution of the concentration in time according to the mathematical model. The Van de 
Vusse reaction has been treated as a benchmark to propose control strategies for systems with 
an inverse response or, in its linear version, systems with non-minimum phases [14][15]. 
Some control techniques have been used for this chemical reaction as the classical 
proportional, integral, and derivative (PID) control [15], state feedback regarding the unstable 
zero [16], internal mode control [17], fuzzy control, and its comparison with type-2 fuzzy 
control [18], and even ANN by approaching a neural model of the chemical reaction [19].  
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The spiking neural networks have also been used for control applications. To control a 
robot, reference [20] was developed an evolving spiking neural network. Reference [21] was 
designed a spiking PID controller for a UAV. To control nonlinear systems, reference [22] is 
shown a more general structure using a supervised learning stage with an evolutionary 
algorithm. In this article, a spiking neuron having as synaptic weights the PID gains are used to 
control the Van de Vusse chemical reaction. In this way, only one neuron is capable of 
obtaining the control signal. The synaptic weights are obtained using the spike prop algorithm, 
a similar technique to the backpropagation. An interesting topic is how to reduce the 
undershoot obtained in the simulation. One way to avoid this situation is by using an anti-
windup term in the control signal. This work presented the spiking PID control application 
using only one spiking neuron to show how it works and to propose alternatives for enhancing 
the neuron behavior. For example, in [21], three neuron layers were used to compute different 
instances in the controller.        

The research contribution is to update the synaptic weights by using a model reference in 
a similar way to the reported in [11], where the control signal is approached after training a 
spiking neuron with the control signal from a linear PID. In this paper is used the difference 
between the output of the chemical reaction and the output of the model is a reference to 
compute the control signal, and then the synaptic weights are updated. One problem is the 
signal coding because the time resolution used to compute the vector time affects the possible 
values decoded after the neuron computation. On the other hand, the undershoot shown by 
the Van de Vusse reaction does not appear in the model reference, and without an anti-windup 
term, it was not possible to reduce this undesirable effect due to the inverse response. 

The rest of the paper is organized as follows: first, in Section 2, the spiking neurons are 
described. Section 3 shows the Van de Vusse reaction. Section 4 presents the training of the 
spiking neurons to control the chemical reaction. Section 5 shows the results and discussion. 
Finally, the conclusions are presented in Section 6. 

2. Spiking Neurons 

To describe the behavior of biological neurons, many biophysical interactions are needed, 

thus in [11] was shown a bifurcation methodology, and now two differential equations are 

capable of reproducing the signals obtained from real neurons. These signals show some 

spikes after a certain internal potential is reached. Fig. 1 shows some spikes in shape obtained 

when an external stimulus makes a rat respond. 

 

Fig. 1. Spikes are obtained from biological neurons. 

The differential equations that can describe the spikes obtained are shown by (1) and (2): 

  
𝑑𝑣(𝑡)

𝑑𝑡
= 0.04𝑣2(𝑡) + 5𝑣(𝑡) + 140 − 𝑢(𝑡) + 𝐼(𝑡),  (1) 

Reaction Stimulus 

Picture by Minami Kawasaki 
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𝑑𝑢(𝑡)

𝑑𝑡
= 𝑎(𝑏𝑣(𝑡) − 𝑢(𝑡)) (2) 

where 𝑣(𝑡) represents the membrane potential of the neuron, 𝑢(𝑡) is the potential membrane 

recovery. These variables are reset when the membrane potential reaches 30mV. This value is 

approximated the same as biological neurons show. Depending on 𝑏 value, the internal 

potential is around -65mV, and according to the membrane potential evolution, the threshold 

potential is around -50mV.  

Once the spike is produced, a reset in the neuron is made, as the graphic in Fig. 1 shows; 

this reset is computed with the auxiliary condition (3): 

  if 𝑣(𝑡) ≥ 30mV, then  {
𝑣(𝑡) ← 𝑐,

𝑢(𝑡) ← 𝑢(𝑡) + 𝑑.
  (3) 

An interesting result is shown in [11], where Izhikevich showed the possible spiking 
shapes when different values of parameters 𝑎, 𝑏, 𝑐, and 𝑑 are used in the neuron model. Also, a 
program that simulates 1000 randomly coupled spiking neurons is presented in his paper. Fig. 
2 shows a simulation of membrane potential described by (1). It is possible to see the peaks 
obtained in the simulation. After each peak, a reset is applied, but as the external stimulus 𝐼(𝑡) 
is maintained, the spikes continue. 

 

Fig. 2. Spikes of the membrane potential and its resets. 

To communicate between neurons, peaks are necessary to simulate the response of a 
previous neuron. As was aforementioned, there are some techniques to code the information 
obtained by the peaks given by neurons. In this way, Fig. 3 shows the spiking neuron response 
when pulses are applied as input. The time when peaks are obtained can be interpreted as the 
neuron response for situations where more than one peak is generated. Usually, the first peak 
is only considered.   
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Fig. 3. Membrane potential using pulses as input. 

The following step is to find when a peak takes place, and if different neurons are used, 
each one gives some information regarding the instant of the first pulse it obtained, talking 
about [11], a simulation or 1000 random connection between spiking neurons is shown in its 
Fig. 3, this result seems not to be relevant initially, only the fast computing to simulate the 
peak was important, but when medical researchers saw that graphic, they interpret alpha 
(10Hz) and gamma (40Hz) rhythms, and when they realized that a random ANN was 
organized alone, these results were very popular. Fig. 4 shows the simulation of two spiking 
neurons, and they are presented as the peak instants. Some points as presented are the 1000 
points commented in [11]. 

 Time to First Spike Coding 

For control issues, for example, to propose spiking PID, it is possible to assign each 
component to a certain code. The coding consists in to give a time window, where the peak 
location corresponds to a certain position into the window that corresponds to a scaled 
output. First, it is necessary to determine some constants, 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 represent the cotes 

for the input, now 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 are cotes for the time window. Finally, to code in time some 
variables like the error 𝑒(𝑡), its derivative named 𝑑𝑒(𝑡) and its integral respect to time 𝑖𝑒(𝑡) is 
possible to use:    

  𝑡𝑒 = 𝑡𝑚𝑖𝑛 +
(𝑒(𝑡) − 𝑥𝑚𝑖𝑛)(𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)
,  (4) 

  𝑡𝑑𝑒 = 𝑡𝑚𝑖𝑛 +
(𝑑𝑒(𝑡) − 𝑥𝑚𝑖𝑛)(𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)
, (5) 
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𝑡𝑖𝑒 = 𝑡𝑚𝑖𝑛 +
(𝑖𝑒(𝑡) − 𝑥𝑚𝑖𝑛)(𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)
. (6) 

 

 

Fig. 4. Peak instants for two spiking neurons. 

In order to have pulses when a signal increases, only some kind of spiking signals must be 
considered. The shape depends on the parameters selected, as was aforementioned. Fig. 2 of 
[11] shows some of them; in this work are proposed six peaks shapes that are shown in Fig. 5, 
where also the parameters used to have these responses are presented. 

In a similar way, the reference signal can be coded in time (𝑡𝑑), now the synaptic weights 
can be computed using a time window and a vector that contains the error coding 𝜏 =
(𝑡𝑒 𝑡𝑑𝑒 𝑡𝑖𝑒), the weights are defined by (7) in order to have a smooth function to compute 
its gradient:   

𝑤 =
𝜃𝑇

𝑁(𝑡𝑓𝑖𝑛 − 𝜏)
𝑒

𝑡𝑓𝑖𝑛−𝜏

𝑇−1 , (7) 

where 𝜃, T and N are parameters to be proposed, 𝑡𝑓𝑖𝑛 can be a new 𝑡𝑚𝑎𝑥 for a new time 

window. Therefore, the spiking neuron can be seen as a neuron that has three inputs defined 
into the vector τ. The weights computing were obtained using element by element operations 
because (7) shows a division and uses an exponential function. These ideas are taken from 
[23]. Thus a gradient can be computed to update the synaptic weights used in the spiking 
neuron. 

Once the initial weights are obtained, the input vector is obtained using: 

𝑦(𝜏) =
𝑡 − 𝜏

𝑇
𝑒

1−(𝑡−𝜏)
𝑇 . (7) 
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And the pondered input is 𝑥 = 𝑤𝑦𝑇. In (7), the time 𝑡 is evaluated until 𝑥 >= 𝜃. In that case, 
the cycle breaks, and 𝑦 is not updated. 

 

Fig. 5. Peaks shapes are recommended for time coding.    

 Weights Updating and Decoding 

The function used to describe the weights is differentiable, now using the gradient is 
computed the change that must be added to the current weights by using (8),  

Δ𝑤 = η𝑦(τ)
𝜃 − 𝜏

𝜏
, (8) 

and the updating of the weights is 𝑤 ← 𝑤 + 𝛥𝑤. This is the procedure always that 𝑥 < 𝜃. 
Similar to the backpropagation algorithm used in ANN, for SNN, the procedure used to be 
called spike prop. In case of x exceeds the threshold used, the variation of the weights is made 
by using: 

  𝑑𝑦 = −(1 + 𝑡𝑑 − 𝑡𝑖𝑛)
1

𝑇
𝑒

1−𝑡𝑑−𝜏
𝑇 , (9) 

  𝛿 =
(𝑡𝑑 − 𝑡𝑖𝑛)

𝑤
𝑑𝑦, (10) 

    𝛥𝑤 = 𝜂𝑦𝛿, (11) 

Being 𝑡𝑖𝑛 the same or a different initial value for a time window, and η is the learning rate. 
Once the weights were updated. The control signal u(t) can be decoded by proposing a signal 
interval with the cotes (𝑢𝑚𝑖𝑛 𝑢𝑚𝑎𝑥) and using:  

 𝑢(𝑡) = 𝑢𝑚𝑖𝑛 +
𝑡𝑖𝑛−𝑡𝑚𝑖𝑛

𝑡𝑚𝑎𝑥−𝑡𝑚𝑖𝑛
(𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛). (12) 
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3. Van de Vusse reaction 

A benchmark to work with non-minimum-phase systems because they show an inverse 
response is the Van de Vusse chemical reaction.  The process consists of the production of 
cyclopentenyl B from cyclopentadiene A by using acid-catalyzed electrophilic addition of water 
[24]. This reaction is described by (13) and (14) 

𝑑𝐶𝐴(𝑡)

𝑑𝑡
= (𝐶𝐴𝑖𝑛 − 𝐶𝐴(𝑡))𝑢(𝑡) − 𝑘1𝐶𝐴(𝑡) − 𝑘3𝐶𝐴

2(𝑡), (13) 

𝑑𝐶𝐵(𝑡)

𝑑𝑡
= −𝐶𝐵(𝑡)𝑢(𝑡) + 𝑘1𝐶𝐴(𝑡) − 𝑘2𝐶𝐵(𝑡), (14) 

where 𝐵 is the cyclopentenyl taken as the process output [23]. The process input is the 
dilution rate 𝑢(𝑡) which is the quotient 𝐹(𝑡)/𝑉(𝑡), being 𝐹(𝑡) the inlet flow and 𝑉(𝑡) the liquid 
volume inside the reactor, this input 𝑢(𝑡) use to be used for control simplification in chemical 
processes [25]. 

According to [17], this chemical reaction has the following characteristics: 

 Input multiplicity, in this way, the Van de Vusse reaction is not controlled affine. 

 The reaction has a sign change producing a non-minimum phase behavior. 

 Asymmetric response due to nonlinearities in the model. 

 A delay due to measuring instruments is often not taken into account. 

A scheme that represents the Van de Vusse reaction is shown in Fig. 6, where the PID 
control is obtained by using a spiking neuron, being the error, its derivative, and its integral 
coded in time, and they represent peaks as Fig 2.1 in [23]. 

In this kind of system, the inverse response makes the system reacts in the opposite 
direction to the input at the beginning of the response, this can be seen as a delay in the 
response, and anti-windup action can be applied to reduce this undesired effect. 

 

Fig. 6. Van de Vusse reaction scheme. 

The control scheme is shown in Fig. 7, where the control gains are updated to have the 
desired response. Reference [26] were necessary 4ms to adapt the synaptic weights in a leaky 
integrate and fire spiking model. The application they showed was a haptic interface using 
quaternion spike neurons. 

The spiking control is obtained by computing the PID gains in order to follow a model 
reference, the spike prop algorithm obtains information from the process output and the 
model reference, then a change for the synaptic weights is obtained using (8) or (11) 
according to the threshold value 𝜃, with these new gains the spiking neuron computes the 
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control signal 𝑢(𝑡) using (12), and the signals like the derivative of error or the process output 
are coded in time to interpret the information into the spiking neuron. 

 

Fig. 7. Spike PID control scheme. 

4. Results and Discussion 

The spiking PID computed its gains between samples, it was determined as a limit of 
iterations to train the neuron in 35 iterations, after the simulation, it was obtained an average 
of 28.387 iterations to compute the PID gains, and the standard deviation was 4.2698 
iterations. Fig. 8 plotted the membrane potential evolution through iterations until converge. 

 

Fig. 8. Iterations convergence between samples. 

 The sampling time used was 0.02 min, i.e., 1.2 s, the time used to compute 35 iterations was 
645ms with a standard deviation of 4.2 ms, the machine used was a computer with 4GB in 
RAM and a processor of intel core™ 2.3GHz. However, they were necessary around 28.387 
iterations to compute the control gains instead of the limit of 35. The control simulation is 
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shown in Fig. 9, where it is possible to appreciate oscillations at the beginning of the 
simulation. They are due to the changes obtained in the gains because the spiking neuron tries 
to obtain a certain PID. As time increase, the gains converge in order to eliminate the steady-
state error. The Van de Vusse reaction has an inverse response, and it can be seen that when 
the oscillations in the simulation are small, the gains are obtained to generate an undesired 
undershoot. One alternative is to saturate the control gains, the control signal, or even an early 
stop in the spiking neuron adaptation to avoid the overfitting. In this work, the time window in 
the peaks coding was used to regulate the undershoot. However, it was necessary to consider 
if the settling time or the undershoot is the most important characteristic in the simulation. 
The learning rate 𝜂 also reduces the settling time but increases the initial oscillations. 

 

Fig. 9. The Spiking PID control simulation of the Van de Vusse reaction. 

  The PID gains are computed each sampling time, they are updated at most 35 times 
between samples, and their evolution is shown in Fig. 10. Table 1 are shown the initial 
conditions and parameters used in the simulation. 

This work was used five synaptic connections were as inputs to the spiking neuron. They 
are the reference signal, the error as the difference between the process output and the 
reference signal, their derivative and integral, and a measure about the undershoot in order 
to adapt the time window. In [17], an interesting result about the control of the Van de Vusse 
reaction is shown in Fig. 6, where was used a nonlinear control strategy, and the different 
results were obtained by varying the parameter 𝑘1 in the model equations (13) and (14). 

5. Conclusions 

Spiking neurons are an interesting topic because they simulate the real behavior depicted 
by biological neurons. To obtain peaks by stimulating the neurons was easy using the model 
shown in [11]; now, each response obtained by a real neuron is possible. An important issue 
is to decode the peaks given as neuron responses. This work was used time coding to 
interpret the signal obtained from the neuron. 
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Fig. 10. PID gains evolution (synaptic weights) through time. 

Table 1.  Process initial conditions 

Variable, parameter 
Description 

Value Unit 

𝑘1 5/6 min-1 

𝑘2 5/3 min-1 

𝑘3 1/6 mol min-1 

𝐶𝐴𝑖𝑛 3 mol l-1 

𝐶𝐴 1.117 mol l-1 

𝐶𝐵 10 mol l-1 

Η 0.002 --- 

Θ 0.2 --- 

 

In a similar way to the backpropagation algorithm used to train ANN, some algorithms use 
similar ideas as the spike prop and the quick prop. In this paper, the PID gains are proposed 
by reducing the output error inside a spiking neuron. To adapt the PID gains, which are the 
synaptic weights of the spiking neuron, a reference model was used to change the closed-loop 
behavior. A small learning rate can reduce the initial oscillation in the simulation, but 
sometimes are necessary more iteration for the weight adaptation. Thus the learning rate 
was selected in order to require less than 35 iterations. 

As control application was used, the Van de Vusse reaction, a benchmark used to work 
with systems with an inverse response due to its non-minimum-phase characteristic. The 
results are possible to see the control simulation. The main drawbacks are the oscillation 
obtained until the convergence of the parameters is achieved and the undershooting due to 
the inverse response must be reduced by aggregating another control technique, for example 
an anti-windup term.  
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The main drawback was that the vector time used to code the information has a 
determined sampling time which determines the resolution of the control signal when it is 
decoded in the final stage. Future work is planned to use an SNN to process more information 
in order to have a neural model of the Van de Vusse reaction to propose a new control 
strategy, using the quick prop as an adaptation algorithm.  
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