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1. Introduction  

Chaotic systems have played a crucial role in the understanding of phenomena that governed 
the development of science and technology. During the last three decades, intensive research 
into chaos has resulted in a deeper understanding of the interactions between physical, 
biological, economic, physiological, and social sciences. The plethora of literature has 
convincingly demonstrated the applications of chaos in various disciplines, including 
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 The inherent property of invariance to structural and parametric 
uncertainties in sliding mode control makes it an attractive control 
strategy for chaotic dynamics control. This property can effectively 
constrain the chaotic property of sensitive dependence on initial 
conditions. In this paper, the trajectories of two identical four-
dimensional hyperchaotic systems with fully-known parameters are 
globally synchronized using the integral sliding mode control 
technique. Based on the exponential reaching law and the Lyapunov 
stability principle, the problem of synchronizing the trajectories of the 
two systems was reduced to the control objective of asymptotically 
stabilizing the synchronization error state dynamics of the coupled 
systems in the sense of Lyapunov. To verify the effectiveness of the 
control laws, the model was numerically tested on a hyperchaotic 
system with a wide parameter space in a master-slave configuration. 
The parameters of the hyperchaotic system were subsequently varied 
to evolve a topologically non-equivalent hyperchaotic system that was 
identically coupled. In both cases, the modeled ISM control laws 
globally synchronized the dynamics of the coupled systems after 
transient times, which sufficiently proved the invariance property of 
the ISMC. This study offers an elegant technique for the modeling of an 
ISMC for hyperchaotic coupling systems. As an open problem, this 
synchronization technique holds promises for applications in robot 
motion control, chaos-based secure communication system design, and 
other sensitive nonlinear system control.  
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economics, medicine, finances, security studies, telecommunications. Chaos theory has been 
applied to robotics. As the understanding of chaos deepens, higher dimension chaotic systems 
have been evolved, even as the frontiers of applications and hypotheses expanded considerably 
over the last three decades. Essentially, in order to be useful, chaos must be controlled. Thus, 
various control techniques have been applied to the control and synchronization of chaos. These 
techniques include adaptive control, fuzzy control, hybrid feedback control, backstepping 
control, contraction control, among others. Synchronization is very useful in telecommunication 
science and occurs when two chaotic systems are coupled such that, in spite of the exponential 
divergence of their nearby trajectories, synchrony of the trajectories is still achieved as t → ∞, 
provided conditions related to the coupling strength, parameter region of the systems are 
satisfied, in addition to satisfying a necessary condition for master-slave synchronization which 
is that the non-driven slave subsystem must be asymptotically stable in the sense of Lyapunov 
[1]. 

Sliding mode control (SMC) has emerged as a robust control technique for systems 
constraint by uncertainties and unpredictability. SMC is a control technique that is based on the 
design of switching laws to drive system trajectories to a user-chosen hyperplane in the state 
space [2]. It is attractive due to its property of invariance to parametric and non-parametric 
uncertainties. The global response of SMC consists of two phases known as the reaching phase 
and the sliding phase. In the reaching phase, the system’s states are constrained to reach a 
predetermined sliding surface in finite time.  On this surface, the controlled system is adaptively 
altered to a sliding mode, resulting in the system sliding towards the origin along the sliding 
surface for a duration known as the sliding phase [3]. 

SMC has been applied to a variety of systems, including super-switching control [4], 
unmanned vehicle [5], single input, multi-output systems (SIMO) [6], stepper motor control [7], 
machine infinite bus system [8], MIMO system [9][10], stepper motor drive system [11], two-
link flexible manipulator [12], autonomous vehicle [13] and secure communication [14]. In 
practice, invariance cannot be guaranteed in the reaching phase. Thus, several studies have 
proposed some improvement in the reaching law [15]–[19]. A new SMC design known as 
integral SMC (ISMC) was proposed in [20]. ISMC essentially circumvents the challenges posed 
by the reaching phase and offers dexterous application in complex systems. In succeeding years, 
several researchers have applied ISMC to a variety of control problems, including the Euler-
Lagrange system [21], chaos synchronization [22], two-wheel vehicle [23], underactuated 
rotary hook system [24]. 

This research contributes to the application of the ISMC technique to synchronize the 
dynamics of wide parameter spaced hyperchaotic systems, which are traditionally more 
sensitive than other hyperchaotic systems due to their large Lyapunov exponents. The rest of 
the paper is organized as follows: Section 2 describes the selected hyperchaotic system. Section 
3 presents the design of the switching surface and integral sliding mode controller. Section 4 
unveiled the numerical simulation results, while the conclusion and future work is given in 
Section 5. 

2. Methods 

In this section, the architecture of the proposed ISMC system is presented. The algebraic 
structure of the hyperchaotic system and its 3-D phase portrait are presented.  

 The architecture of the ISMC system and algebraic structure of the hyperchaotic 
system 

The architecture of the proposed controller comprises the master and slave systems, 
synchronization error system, nonlinear functions (which provides the nonlinearity), and the 
sliding manifold on which the trajectories slide. The architecture is shown in Fig. 1. 
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Fig. 1. The architecture of the ISMC system 

The hyperchaotic system used in the study was first reported in [25]. The hyperchaotic 
system is well-suited for studying the robustness of integral sliding mode controllers due to its 
huge parameter space and unstable dynamics [26]–[29]. The algebraic structure of the system 
is represented by four-coupled ordinary differential equations of the form: 

                

                 �̇�1 = −𝛼1(𝑥1 + 𝑥2) + 𝛼2𝑥3

                      �̇�2 = −𝛼3𝑥1𝑥3 + 𝛼4𝑥2 + 𝛼5𝑥4

�̇�3 = 𝛼6𝑥1𝑥2 + 𝛼7

                                    �̇�4 = −𝛼8𝑥1 − 𝛼9𝑥2 − 𝛼10𝑥3 − 𝛼11𝑥4

                                               (1) 

Where 𝛼1, 𝛼2, 𝛼3 … 𝛼11 are system parameters and 𝑥1, 𝑥2, … 𝑥4 are the state variables. When 
𝛼1 = 20, 𝛼2 = 1, 𝛼3 = 10, 𝛼4 = 5, 𝛼5 = 1, 𝛼6 = 10, 𝛼7 = 10, 𝛼8 = 0.01, 𝛼9 = 0.8, 𝛼10 = 0.01 
𝛼11 = 0.01. The following time series of the state trajectories shown in Fig. 2 are generated. 

 

Fig. 2. State trajectories of the 4-D hyperchaotic system  

3. Integral sliding mode controller and sliding surface design and analysis 

In this section, we summarized the results for the global synchronization of the two 
hyperchaotic systems. Specifically, we obtained parameter ranges that assure the global 
stability of the system dynamics in the presence of known-parameter variations. The results can 
also be applied to the synchronization of non-identical systems.  
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       Consider system (1) as the master system. Let the identical-parameter controlled slave 
system be represented in the form: 

            

                �̇�1 = −𝛼1(𝑦1 + 𝑦2) + 𝛼2𝑦3 + 𝑢𝑠𝑚
1

                      �̇�2 = −𝛼3𝑦1𝑦3 + 𝛼4𝑦2 + 𝛼5𝑦4 + 𝑢𝑠𝑚
2

�̇�3 = 𝛼6𝑦1𝑦2 + 𝛼7 + 𝑢𝑠𝑚
3

                                    �̇�4 = −𝛼8𝑦1 − 𝛼9𝑦2 − 𝛼10𝑦3 − 𝛼11𝑦4 + 𝑢𝑠𝑚
4

                                              (2) 

Where 𝑢𝑠𝑚
1 , 𝑢𝑠𝑚

2 , 𝑢𝑠𝑚
3  and 𝑢𝑠𝑚

4  are the ISMC laws to be derived, and 𝑦1, 𝑦2, 𝑦3 and 𝑦4 are state 
variables. Let the synchronization error between the master and slave systems be of the form: 

                                                                 𝑒𝑖 = 𝑦𝑖 − 𝑥𝑖 ,    𝑖 = 1,2, … ,4.                                                         (3) 

Given that the initial conditions of the master and slave systems, i.e., 𝑥𝑖(0) ≠ 𝑦𝑖(0),  the 
coupled systems can be synchronized such that lim

𝑡⟶∞
‖𝑒(𝑡)‖ = 0, ∀𝑒𝑖. The synchronization error 

system is given by  

                �̇�1 = −𝛼1(𝑒1 + 𝑒2) + 𝛼2𝑒3 + 𝑢𝑠𝑚
1

                                          �̇�2 = −𝛼3(𝑦1𝑦3 − 𝑥1𝑥3) − 𝛼4𝑒2 − 𝛼5𝑒4 + 𝑢𝑠𝑚
2

          �̇�3 = 𝛼6(𝑦1𝑦2 − 𝑥1𝑥2) + 𝑢𝑠𝑚
3

                                     �̇�4 = −𝛼8𝑒1 − 𝛼9𝑒2 − 𝛼10𝑒3 − 𝛼11𝑒4 + 𝑢𝑠𝑚
4

                            (4) 

Synchronization of the systems involves two known steps viz: the selection of an appropriate 
switching surface which can guarantee the convergence of the system dynamics such that the 
error state dynamics asymptotically stabilizes in the sense of Lyapunov. Secondly, the 
derivation of suitable control law guarantees the existence of the sliding mode 𝑠(𝑡) = 0. We 
define the integral sliding surface of each error state variable is defined as follows: 

 
𝑠1 = 𝑒1 + ∫ 𝜉1 𝑒1

𝑡

0

(𝜏)𝑑𝜏 

𝑠2 = 𝑒2 + ∫ 𝜉2𝑒2

𝑡

0

(𝜏)𝑑𝜏 

𝑠3 = 𝑒3 + ∫ 𝜉3 𝑒3

𝑡

0

(𝜏)𝑑𝜏 

𝑠4 = 𝑒4 + ∫ 𝜉4 𝑒4

𝑡

0

(𝜏)𝑑𝜏 

(5) 

The system trajectories glide on the sliding manifold if it satisfies the condition                                            
�̇�𝑖 = 0, (𝑖 = 1,2, … ,4). Thus, differentiating (5) results in the following: 

�̇�1 = �̇�1 + 𝜉1 𝑒1 

                                                                            �̇�2 = �̇�2 + 𝜉2𝑒2                                                                        (6) 

�̇�3 = �̇�3 + 𝜉3 𝑒3 

�̇�4 = �̇�4 + 𝜉4 𝑒4 

The Hurwitz condition is satisfied if 𝜉𝑖 (1,2, … 4) are positive constants. We set the following 
exponential reaching laws [22] 

�̇�1 = −𝛾1sgn(𝑠1) − Φ1 𝑠1 

�̇�1 = −𝛾1sgn(𝑠1) − Φ1 𝑠1 

                                                                  �̇�2 = −𝛾2sgn(𝑠2) − Φ2 𝑠2                                                 (7) 

�̇�3 = −𝛾3sgn(𝑠3) − Φ3 𝑠3 

�̇�4 = −𝛾4sgn(𝑠4) − Φ4 𝑠4 

Where 𝛾𝑖 > 0; Φ𝑖 > 0 are positive constants to be determined. Comparing (6) and (7) gives 
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�̇�1 + 𝜉1 𝑒1 = −𝛾1sgn(𝑠1) − Φ1 𝑠1 

                                                           �̇�2 + 𝜉2𝑒2 = −𝛾2sgn(𝑠2) − Φ2 𝑠2                                          (8) 

�̇�3 + 𝜉3 𝑒3 = −𝛾3sgn(𝑠3) − Φ3 𝑠3 

�̇�4 + 𝜉4 𝑒4 = −𝛾4sgn(𝑠4) − Φ4 𝑠4 

By inserting (4) into (8), we have 

−𝛼1(𝑒1 + 𝑒2) + 𝛼2𝑒3 + 𝜉1 𝑒1 + 𝑢𝑠𝑚
1 = −𝛾1sgn(𝑠1) − Φ1 𝑠1 

          −𝛼3(𝑦1𝑦3 − 𝑥1𝑥3) − 𝛼4𝑒2 − 𝛼5𝑒4 + 𝜉2𝑒2 + 𝑢𝑠𝑚
2 = −𝛾2sgn(𝑠2) − Φ2 𝑠2                           (9) 

                                          𝛼6(𝑦1𝑦2 − 𝑥1𝑥2) + 𝜉3 𝑒3 + 𝑢𝑠𝑚
3 = −𝛾3sgn(𝑠3) − Φ3 𝑠3 

               −𝛼8𝑒1 − 𝛼9𝑒2 − 𝛼10𝑒3 − 𝛼11𝑒4 + 𝜉4 𝑒4 + 𝑢𝑠𝑚
4 = −𝛾4sgn(𝑠4) − Φ4 𝑠4 

 Theorem 

If the following ISMC laws (10) are applied to the master and slave systems (1) and (2) for 
all initial conditions 𝑥𝑖(0), (𝑖 = 1,2, … ,4) ≠ 𝑦𝑖(0), (𝑖 = 1,2, … ,4) , then error state dynamics will 
asymptotically converge on the sliding surface 𝑠(𝑡) = 0 in the sense of Lyapunov, i.e. 
lim

𝑡⟶∞
‖𝑒(𝑡)‖ = 0, ∀𝑒𝑖. Furthermore, the coupled dynamics of the master-slave systems are 

completely synchronized as 𝑡 → ∞, ∀ 𝑥𝑖(0), (𝑖 = 1,2, … ,4) ≠ 𝑦𝑖(0), (𝑖 = 1,2, … ,4). 

                 𝑢𝑠𝑚
1 = 𝛼1(𝑒1 + 𝑒2) − 𝛼2𝑒3 − 𝜉1 𝑒1 − 𝛾1sgn(𝑠1) − Φ1 𝑠1 

                 𝑢𝑠𝑚
2 = 𝛼3(𝑦1𝑦3 − 𝑥1𝑥3) + 𝛼4𝑒2 + 𝛼5𝑒4 − 𝜉2𝑒2 − 𝛾2sgn(𝑠2) − Φ2 𝑠2                         (10) 

                 𝑢𝑠𝑚
3 =  −𝛼6(𝑦1𝑦2 − 𝑥1𝑥2) − 𝜉3 𝑒3 − 𝛾3sgn(𝑠3) − Φ3 𝑠3 

                 𝑢𝑠𝑚
4 = 𝛼8𝑒1 + 𝛼9𝑒2 + 𝛼10𝑒3 + 𝛼11𝑒4 − 𝜉4 𝑒4 − 𝛾4sgn(𝑠4) − Φ4 𝑠4 

Proof: 

Based on the Lyapunov stability theory [30], we consider a quadratic Lyapunov function 
candidate given as follows: 

 
𝑉(𝑠1, 𝑠2, 𝑠3, 𝑠4) =

1

2
(𝑠1

2 + 𝑠2
2 + 𝑠3

2 + 𝑠4
2) (11) 

where V is positive definite on 𝑅4.  Through partial derivative, (11) is transformed  

                                                �̇�(𝑠1, 𝑠2, 𝑠3, 𝑠4) = 𝑠1�̇�1 + 𝑠2�̇�2 + 𝑠3�̇�3 + 𝑠4�̇�4                                          (12) 

By inserting (7) in (12) and using the convention 𝑠1sgn(𝑠1) = |𝑠1|, we have 

       �̇�(𝑠1, 𝑠2, 𝑠3, 𝑠4) = −𝛾1|𝑠1| − 𝜉1 𝑠1
2 − 𝛾2|𝑠2| − 𝜉2 𝑠2

2 − 𝛾3|𝑠3| − 𝜉3𝑠3
2 − 𝛾4|𝑠4| − 𝜉4 𝑠4

2         (13) 

Equation (13) is negative definite on 𝑅4. Thus, the theorem is satisfied, and the trajectories 
of the synchronization error dynamics will asymptotically converge to the origin because �̇� ≤ 0 

and this also implies that 𝑉(0)̇ ≤ 0. Compactly, (13) can be rendered in the form 

 
�̇�(𝑠1, 𝑠2, 𝑠3, 𝑠4) = ∑ 𝑠𝑖

4

𝑖=1

(−𝛾𝑖sgn(𝑠𝑖) − 𝜉𝑖 𝑠𝑖) (14) 

4. Numerical simulation results 

MATLAB 2019a provided the numerical simulation environment. Initial conditions of the 
master and slave systems are [𝑥1(0), 𝑥2(0), 𝑥3(0), 𝑥4(0)] = [5, 8, 10, 15] and 
[𝑦1(0), 𝑦2(0), 𝑦3(0), 𝑦4(0)] = [15, 14, 13, 10]; 𝛾1 = 𝛾2 = 𝛾3 = 𝛾4 = 0.01; 𝜉1 = 𝜉2 = 𝜉3 = 𝜉4 =
1 and Φ1 = Φ2 = Φ3 = Φ4 = 20. For the sliding surface, 𝑠1(0) = 𝑠2(0) = 𝑠3(0) = 𝑠4(0) = 1. 
Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7, and Fig. 8 are the results of the simulation. 
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Fig. 3. Asymptotically-converged dynamics of the synchronization error  

 

Fig. 4. Asymptotically-converged dynamics of the ISMC laws 

 

Fig. 5. Synchronized dynamics of state trajectories of 𝑥1 and 𝑦
1

 

 

Fig. 6. Synchronized dynamics of state trajectories of 𝑥2 and 𝑦
2
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Fig. 7. Synchronized dynamics of state trajectories of 𝑥3 and 𝑦
3

 

 

Fig. 8. Synchronized dynamics of state trajectories of 𝑥4 and 𝑦
4

 

 Robustness test via parameter variation 

In the section, the parameters of the systems were varied to evolve a topologically no-
equivalent case. The resulting plots of the converged error state and controller dynamics are 
shown in Fig. 9 and Fig. 10. 

 

Fig. 9. Asymptotically-converged dynamics of the synchronization error states 

 

Fig. 10. Asymptotically-converged dynamics of the ISMC laws 
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 Discussion  

When the ISMC laws are applied according to the architecture in Fig. 1, the synchronization 
error dynamics converged asymptotically, as shown in Fig. 3. The ISMC laws asymptotically 
converged to the origin in the sense of Lyapunov. Furthermore, each of the state trajectories of 
the identical master and slave systems in Fig. 2 (a) – (d) were synchronized as shown in Fig. 5 – 
Fig. 8. The test of robustness based on known-parameters variation using the ISMC laws 
resulted in the error state trajectories depicted in Fig. 9 and converged ISMC laws depicted in 
Fig. 10. It can be seen from Fig. 9 and Fig. 10 that the controller is invariant in the presence of 
parameter variation. This fact can be extended to the case of parameter uncertainty of the slave 
system. 

5. Conclusion and Future Work 

In this paper, integral sliding mode control laws were derived from synchronizing the state 
trajectories of identical 4-D hyperchaotic systems based on the Lyapunov stability principle. The 
control laws were observed to be invariant to known-parameter variations of the system during 
robustness tests. As an open problem, the synchronization of chaotic systems continues to hold 
promises for applications in robotic motion control, electric drive system, and other traction 
control systems. The modeled ISMC laws can be improved upon so that the transient time that 
elapsed before coupling can be finite-time (i.e., precisely determined) for applications in time-
critical dynamic systems.  
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