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1. Introduction  

It has widely been shown that a beam with dissymmetric boundary conditions, precisely a 
Hinged-Clamped beam, presents a rich dynamic due to interaction between its substructures 
[1]-[9]. If one takes the first three substructures of a nonlinear Hinged-Clamped beam, it can 
be seen that their frequencies are naturally commensurable. The second mode frequency is 
three times the frequency of the first mode : 𝜔2 = 3𝜔1. The frequency of the third mode is 
given by a linear combination of the frequencies of the first and the second mode, namely : 
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𝜔3 = 𝜔1 + 2𝜔2. As a consequence, there is an internal resonance resulting from energy 
transfer between these substructures [5-7]. Lee et al. [7] have shown, for example, that if the 
second mode is excited, it is possible to have the non-excited first mode responding with a 
larger amplitude.  

To the best of our knowledge, minimal studies are available on the influence of 
temperature change on the substructures of a Hinged-clamped beam involving internal 
resonance, whereas several studies have shown that a moderate temperature change can be of 
great influence on structural responses [10]-[12]. Xia et al. [12] stated that changes in the 
vibration characteristics of the structure due to damage might be smaller than changes in ones 
due to variations in temperature. Moreover, it is widely known that structures are 
permanently exposed to the thermal field from accidental or environmental origins that 
induce temperature variation of their members [10]-[24]. Yaobing et al. [13] have paid 
attention to the temperature effects on the nonlinear vibration behavior of Euler-Bernoulli 
beams with different boundary conditions. Effects of uniform temperature rise on the 
structural responses have been investigated through the authors limited their study to single-
mode analysis for the sake of simplicity. They showed that the enhancement of the constraint 
conditions from Hinged-Hinged, Hinged-Fixed to Fixed-Fixed reduces the temperature effects 
on the vibration behaviors and that the hardening behavior tends to increase for positive 
temperature change and to decrease for a negative one. Warminska et al. [16] studied the 
nonlinear dynamics of a reduced multimodal Timoshenko beam subjected to thermal and 
mechanical loadings. They considered the first three modes of a simply supported beam at 
both ends and investigated the influence of temperature on primary resonances around the 
frequencies. Meanwhile, several studies [25]-[29] have shown that although there are 
commensurable linear natural frequencies such as 𝜔3 = 𝜔1 + 2𝜔2 (where 𝜔𝑛 = 𝑛2𝜋2) there 
is no internal resonance in the case of Hinged-Hinged beam because of the vanishing of the 
coupling coefficients leading to internal resonance, unlike the cases of Hinged-Clamped and 
Clamped-Clamped.  

The research contribution is to deal with the nonlinear analysis of a forced geometrically 
nonlinear Hinged-Clamped beam with three modes interactions and submitted to thermal and 
mechanical loadings. The goal is to investigate the effect of temperature change on the steady-
state responses of different modes when the excitation frequency is near the frequency of a 
given mode. It is observed for all substructures and independent of the mode excited a shift 
within the frequency axis of the temperature influenced amplitude response curves on either 
side of the temperature free-response curve. The shift depends on the magnitude and sign of 
the temperature difference. Oscillation amplitudes of the substructures are remarkably 
influenced by thermal effects and diversely respond to temperature change depending on the 
directly excited mode, the sign, and magnitude of temperature difference. For some 
substructures, higher oscillation amplitudes are observed under negative temperature 
difference, while it is observed for others in the presence of positive temperature change and 
for temperature free-response curves for some others.  

The structure of the paper is organized as follows: In section 2, the governing equations of 
the beam for thermoelastic vibration are derived using the extended Hamilton’s principle. The 
PDE of the planar motion is reduced to a coupled nonlinear ordinary differential equations by 
means of modal projection and then by using the Galerkin orthogonalization method. The 
system is solved for amplitudes and phases of the three modes using the multiple scales 
method. The steady-state responses are numerically obtained for different temperature 
changes in section 3. Some numerical results and discussions are presented in section 4 to 
illustrate the influences of temperature variations on the response amplitude of the 
substructures when a given mode is excited. Some concluding remarks are drawn in section 5. 
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2. Mathematical formulation of the thermoelastic problem 

Consider a slender, initially straight hinged-clamped beam shown in Fig. 1. In this study, 𝑢 
and 𝑤 denote the axial and transverse deflections of the beam, respectively. 𝑥 is the distance 
along the undeflected beam, 𝑡 is the time, and 𝑙 is the beam length. 𝑚 = 𝜌𝐴 is the beam’s mass 
per unit length. 𝐸 is the Young modulus, 𝑏 and ℎ are the beam width and thickness, 
respectively. 𝑐𝑢 and  𝑐𝑤 are the viscous damping per unit length. 𝐹(𝑥, 𝑡) is the mechanical load, 
𝐼 = 𝑏ℎ3 12⁄  is the area moment of inertia and, 𝐴 = 𝑏ℎ is the cross-section of the beam. ∆𝑇 is 
the temperature variation, and 𝛼 the coefficient of thermal expansion. In the considered 
model, it is assumed that the temperature increases instantly, and the heat is uniformly 
distributed along the beam length and cross-section.  

 

Fig. 1. Schematic diagram of a Hinged-Clamped beam submitted to simultaneous actions of thermal 
and mechanical loadings 

The thermal stress-strain relation is given as follows: 

                𝛾(∆𝑇) = 𝐸𝐴𝛼∆𝑇                                                                      (1) 

The total strain in the beam is obtained by summing up the thermal and mechanical strains, 
that is: 

𝜀 =
𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2

−
𝛾

𝐸
                                                                        (2) 

The extended Hamilton’s principle reads: 

∫ [𝛿𝑊𝑒 − 𝛿𝑇 − 𝛿𝑈]
𝑡2

𝑡1

𝑑𝑡 = 0                                                                 (3) 

Where 𝑊𝑒 is the work done by external forces, T is the kinetic energy, and U is the elastic 
energy. 

Hamilton’s principle leads to the following PDEs of motion governing the thermoelastic 
behavior of the beam under-considered loadings. 

𝑚
𝜕2𝑢

𝜕𝑡2
+ 𝑐𝑢

𝜕𝑢

𝜕𝑡
− 𝐴

𝜕

𝜕𝑥
{𝐸 [

𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2

] − 𝛾} = 0                                            (4) 

𝑚
𝜕2𝑤

𝜕𝑡2
+ 𝑐𝑤

𝜕𝑤

𝜕𝑡
+ 𝐸𝐼

𝜕4𝑤

𝜕𝑥4
                                                           

                                                            −𝐴
𝜕

𝜕𝑥
{

𝜕𝑤

𝜕𝑥
{𝐸 [

𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2

] − 𝛾}} = 𝐹(𝑥) cos(Ω𝑡)  (5) 
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Where the mechanical load 𝐹(𝑥, 𝑡) has been assumed harmonic with spatial distribution 𝐹(𝑥) 
in the 𝑤 direction, and Ω is the excitation frequency. 

Introducing the quasistatic assumptions, the acceleration and velocity terms in the 𝑢 
direction are neglected [13]. This leads to: 

𝐴
𝜕

𝜕𝑥
{𝐸 [

𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2

] − 𝛾} = 0                                                             (6) 

One obtains the average strain of the system: 

𝛿 =
1

𝑙
∫ [

𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2

−
𝛾

𝐸
] 𝑑𝑥

𝑙

0

 

           =
1

2𝑙
∫ (

𝜕𝑤

𝜕𝑥
)

2

𝑑𝑥
𝑙

0

−
𝛾

𝐸
                                                                        (7) 

Substituting (7) into (5), one obtains the following nonlinear partial differential equations 
of the planar motion. 

𝐸𝐼
𝜕4𝑤

𝜕𝑥4
+ 𝑚

𝜕2𝑤

𝜕𝑡2
= −2𝑐

𝜕𝑤

𝜕𝑡
− 𝐴𝛾

𝜕2𝑤

𝜕𝑥2
 

                                                                                       +
𝐸𝐴

2𝑙

𝜕2𝑤

𝜕𝑥2
∫ (

𝜕𝑤

𝜕𝑥
)

2

𝑑𝑥
𝑙

0

+ 𝐹(𝑥) cos(Ω𝑡)          (8) 

The boundary conditions associated with equation (8) are: 

𝑤(0, 𝑡) =
𝜕2𝑤

𝜕𝑥2
(0, 𝑡) = 0                                                                         (9𝑎) 

𝑤(𝑙, 𝑡) =
𝜕𝑤

𝜕𝑥
(𝑙, 𝑡) = 0                                                                         (9𝑏) 

Introducing the following non-dimensional quantities: 

𝑤∗ =
𝐿

𝑟2
𝑤 ; 𝑥∗ =

𝑥

𝐿
 ;  𝑡∗ =

𝑡

𝜏
 ; 𝐿 =

𝑙

2
 ;  𝑙∗ =

𝑙

𝐿
= 2 ; 𝑟 = (

𝐼

𝐴
)

1 2⁄

 ;  𝜀 =  
𝑟2

𝐿2
 ; 𝐹∗ =

𝐿7

𝑟6𝐸𝐴
𝐹 ;  

𝜏 = (
𝐸𝑟4

𝑚𝐿4)

1 2⁄

 ; 𝑐∗ =
𝑐

2𝐴𝑟3
(𝑚𝐸)−1 2⁄  ;   𝜈 = 1 4⁄  ,                                                 (10) 

and substituting (10) into (8) and (9) and omitting the asterisks, one obtains: 

𝜕4𝑤

𝜕𝑥4
+

𝜕2𝑤

𝜕𝑡2
= 𝜀 (−2𝑐

𝜕𝑤

𝜕𝑡
− 𝛾𝑇∆𝑇

𝜕2𝑤

𝜕𝑥2
+ 𝜈

𝜕2𝑤

𝜕𝑥2
∫ (

𝜕𝑤

𝜕𝑥
)

2

𝑑𝑥
𝑙

0

+ 𝐹 cos(Ω𝑡))         (11) 

𝑤(0, 𝑡) =
𝜕2𝑤

𝜕𝑥2
(0, 𝑡)                                                                                 (10𝑎) 

𝑤(𝑙, 𝑡) =
𝜕𝑤

𝜕𝑥
(𝑙, 𝑡) = 0                                                                        (10𝑏) 

3. Method 

Equations (11) can be solved approximately by Galerkin’s method. The deflection is 
approximated by  

𝑤(𝑥, 𝑡) =  ∑ 𝑣𝑚(𝑡)𝜑𝑚(𝑥)

∞

𝑚=1

 ,                                                            (12) 

Where 𝑣𝑚 are generalized coordinates and 𝜑𝑚 are eigenfunctions of the following eigenvalue 
problem: 
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𝑑4𝜑

𝑑𝑥4
− 𝜔𝑚

2𝜑𝑚 = 0    𝑎𝑛𝑑 

𝜑𝑚(0) = 0,   
𝑑2𝜑𝑚

𝑑𝑥2
(0) = 0, 

𝜑𝑚(𝑙) = 0,   
𝑑𝜑𝑚

𝑑𝑥
(𝑙) = 0,                                                              (13) 

where 𝜔𝑚 are natural frequencies. 

Substituting equation (12) into equations (11), multiplying by 𝜑𝑛, integrating over the 
length and invoking orthogonality of the eigenfunctions, one obtains a set of ordinary 
nonlinear differential equations   

𝑑2𝑢𝑛

𝑑𝑡2
+ 𝜔𝑛

2𝑢𝑛 = 𝜀 [−2𝑐𝑛

𝑑𝑢𝑛

𝑑𝑡
− 𝛾𝑛

𝑇∆𝑇𝑢𝑛 + 𝐹𝑛 cos(Ω𝑡) + ∑ 𝛼𝑛𝑚𝑝𝑞𝑢𝑚𝑢𝑝𝑢𝑞

∞

𝑚,𝑝,𝑞=1

] , 𝑛

= 1,2, ….                                                                                                                                                               (14) 

Where 

𝑐𝑛 = ∫ 𝑐𝜑𝑛
2𝑑𝑥

𝑙

0

 , 

𝛼𝑛𝑚𝑝𝑞 = 𝜈 ∫ 𝜑𝑛
2

𝑙

0

𝑑2𝜑𝑞

𝑑𝑥2
𝑑𝑥 ∫

𝑑𝜑𝑚

𝑑𝑥

𝑙

0

𝑑𝜑𝑝

𝑑𝑥
𝑑𝑥, 

𝐹𝑛 = ∫ 𝐹(𝑥)
𝑙

0

𝜑𝑛𝜈𝑑𝑥. 

The damping is assumed to be modal. The method of multiple scales can be used to 
construct a uniformly valid asymptotic expansion. According to this method, we assume that 
each 𝑢𝑛 is a function of different time scales which are defined by 

𝑇𝑛 = 𝜀𝑛𝑡 

And can be expanded in the form 

𝑢𝑛(𝑡; 𝜀) = ∑ 𝜀𝑗𝑢𝑛𝑗(𝑇0, 𝑇1, … )

∞

𝑗=0

,      𝑛 = 1,2, …                                      (15𝑎) 

Derivatives with respect to time transform according to 

𝑑

𝑑𝑡
= 𝐷0 + 𝜀𝐷1 + ⋯,                                                                               (15𝑏) 

𝑑2

𝑑𝑡2
= 𝐷0

2 + 𝜀2𝐷0𝐷1 + ⋯,                                                                      (15𝑐) 

Where 

𝐷0 =
𝜕

𝜕𝑇0
  ,    𝐷1 =

𝜕

𝜕𝑇1
 , …                                                                 (15𝑑)  

Substituting equations (15) into equations (14) and equating coefficients of like powers of 
𝜀, we obtain 

𝜀0:  𝐷0
2𝑢𝑛0 + 𝜔𝑛

2𝑢𝑛0 = 0,   𝑛 = 1,2, …                                            (16) 
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   𝜀1:  𝐷1
2𝑢𝑛1 + 𝜔𝑛

2𝑢𝑛1 = −2𝐷0𝐷1𝑢𝑛0 − 2𝑐𝑛𝐷0𝑢𝑛0 − 𝛾𝑛
𝑇∆𝑇𝑢𝑛0                         

                                                         +𝐹𝑛 cos(Ω𝑇0) + ∑ 𝛼𝑛𝑚𝑝𝑞𝑢𝑚0𝑢𝑝0𝑢𝑞0

∞

𝑚,𝑝,𝑞=1

,   𝑛 = 1,2, …   (17) 

The solution of equation (16) can be written as follows 

𝑢𝑛0 = 𝐴𝑛(𝑇1, 𝑇2, … ) exp(𝑖𝜔𝑛𝑇0) + 𝑐𝑐,    𝑛 = 1,2, ….                          (18) 

where 𝑐𝑐 stands for the complex conjugate of the terms to the left. At this point, the 𝐴𝑛 are 
unknown. These are determined from the elimination of secular terms at the next level of the 
approximation. Substituting equations (18) into (17) leads to  

𝐷1
2𝑢𝑛1 + 𝜔𝑛

2𝑢𝑛1

= −2𝑖𝜔𝑛(𝐷1𝐴𝑛 + 𝑐𝑛𝐴𝑛) exp(𝑖𝜔𝑛𝑇0) − 𝛾𝑛
𝑇∆𝑇𝐴𝑛 exp(𝑖𝜔𝑛𝑇0)    

+
1

2
𝐹𝑛 exp(𝑖Ω𝑇0)                                                               

+ ∑ 𝛼𝑛𝑚𝑝𝑞

∞

𝑚,𝑝,𝑞=1

{𝐴𝑚𝐴𝑝𝐴𝑞 exp[𝑖(𝜔𝑚 + 𝜔𝑃 + 𝜔𝑞)𝑇0]

+ 𝐴𝑚𝐴𝑝�̅�𝑞 exp[𝑖(𝜔𝑚 + 𝜔𝑃 − 𝜔𝑞)𝑇0] + 𝐴𝑚�̅�𝑝𝐴𝑞 exp[𝑖(𝜔𝑚 − 𝜔𝑃 + 𝜔𝑞)𝑇0]

+ 𝐴𝑚�̅�𝑝�̅�𝑞 exp[𝑖(𝜔𝑚 − 𝜔𝑃 − 𝜔𝑞)𝑇0]} + 𝑐𝑐,    𝑛

= 1,2, ….                                                                                                                        (19) 

In order to eliminate the secular terms from 𝑢𝑛1, the 𝐴𝑛 must be chosen so that the 
coefficient of exp(𝑖𝜔𝑛𝑇0) is zero. This coefficient will contain 𝐹𝑛 when Ω is near 𝜔𝑛 as well as 
the nonlinear terms associated with any combinations of the form 

𝜔𝑛 ≈ ±𝜔𝑚 ± 𝜔𝑃 ± 𝜔𝑞                                                                 (20) 

The eigenfunction of the eigenvalue problem (13) is 

𝜑𝑛 = 𝐸𝑛[sin(𝛼𝑛𝑥) − 𝑅𝑛sinh (𝛼𝑛𝑥)] 

Where 

𝐸𝑛 = [
1

2
𝑙 (1 − 𝑅𝑛

2 sinh(2𝛼𝑛𝑙) − sin(2𝛼𝑛𝑙)) 4𝛼𝑛⁄ ]
−1 2⁄

 

𝑅𝑛 = sin(𝛼𝑛𝑙) sinh(𝛼𝑛𝑙)⁄ ,   𝛼𝑛𝑙 = 𝜔𝑛
1 2⁄   

And 𝛼𝑛 are the roots of  tan(𝛼𝑛𝑙) = tanh (𝛼𝑛𝑙).  

In the case of 𝑙 = 2, the first three roots and frequencies are  

𝛼1𝑙 = 3.927      𝑎𝑛𝑑    𝜔1 = 15.421 

𝛼2𝑙 = 7.069     𝑎𝑛𝑑    𝜔2 = 49.970 

𝛼3𝑙 = 10.210      𝑎𝑛𝑑    𝜔1 = 104.24 

From the observation of natural frequencies, we can see the relations 𝜔2 ≈ 3𝜔1 and 𝜔3 ≈
𝜔1 + 2𝜔2, which satisfies the condition of internal resonance condition (20). We introduce 
detuning parameters 𝜎12 and 𝜎13 as follows: 

            𝜔2 = 3𝜔1(1 + 𝜀𝜎12),                                                                   (21𝑎) 

𝜔3 = (𝜔1 + 2𝜔2)(1 + 𝜀𝜎13),                                                     (21𝑏) 

where  
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𝜀𝜎12 = 0.0801,   𝜀𝜎13 = −0.0964.       

In this study we consider primary resonances. To express the nearness of Ω to 𝜔𝑠, we 
introduce a detuning parameter 𝜎2 as follows: 

Ω = 𝜔𝑠(1 + 𝜀𝜎2), for 𝑠 = 1,2, …                                                              (22) 

Substituting the resonance conditions (21) and (22) into equations (19), and eliminating 
the secular terms, we have the following solvability conditions  

−2𝑖𝜔1(𝐴′
1 + 𝑐1𝐴1) − 𝛾1

𝑇∆𝑇𝐴1 + 𝐴1 ∑ 𝛾1𝑗𝐴𝑗�̅�𝑗

∞

𝑗=1

+ 𝑞3�̅�1
2

𝐴2 exp(𝑖3𝜔1𝜎12𝑇1)

+ 𝑞7�̅�2
2

𝐴3 exp(𝑖(𝜔1 + 2𝜔2)𝜎13𝑇1)

+
1

2
𝐹1𝛿1𝑠 exp(𝑖𝜎2𝜔1𝑇1) = 0                                                                                     (23𝑎) 

−2𝑖𝜔2(𝐴′
2 + 𝑐2𝐴2) − 𝛾2

𝑇∆𝑇𝐴2 + 𝐴2 ∑ 𝛾2𝑗𝐴𝑗�̅�𝑗

∞

𝑗=1

+ 𝑞6𝐴1
3 exp(−𝑖3𝜔1𝜎12𝑇1)

+ 𝑞8�̅�1�̅�2𝐴3 exp(𝑖(𝜔1 + 2𝜔2)𝜎13𝑇1)

+
1

2
𝐹2𝛿2𝑠 exp(𝑖𝜎2𝜔2𝑇1) = 0                                                                                      (23𝑏) 

−2𝑖𝜔3(𝐴′
3 + 𝑐3𝐴3) − 𝛾3

𝑇∆𝑇𝐴3 + 𝐴3 ∑ 𝛾3𝑗𝐴𝑗�̅�𝑗

∞

𝑗=1

+ 𝑞9𝐴1𝐴2
2 exp(−𝑖(𝜔1 + 2𝜔2)𝜎13𝑇1)

+
1

2
𝐹3𝛿3𝑠 exp(𝑖𝜎2𝜔3𝑇1) = 0                                                                                     (23𝑐) 

−2𝑖𝜔𝑛(𝐴′
𝑛 + 𝑐𝑛𝐴𝑛) − 𝛾𝑛

𝑇∆𝑇𝐴𝑛 + 𝐴𝑛 ∑ 𝛾𝑛𝑗𝐴𝑗�̅�𝑗

∞

𝑗=1

+
1

2
𝐹𝑛𝛿𝑛𝑠 exp(𝑖𝜎2𝜔𝑛𝑇1) = 0,    𝑛 ≥ 4                                                                     (23𝑑) 

The coefficients 𝛾𝑛𝑗 and 𝑞𝑘 can be found in [6], and 𝛿3𝑠 is the Kronecker delta.  

To solve equations (23), we write 𝐴𝑛 in the polar form 

𝐴𝑛 =
1

2
𝑎𝑛 exp(𝑖𝜔1𝛽𝑛) ,     𝑛 = 1,2, …                                           (24) 

Where 𝑎𝑛 and 𝛽𝑛 are real. Then we separate the result into its real and imaginary parts and 
obtain 

𝑛 = 1,2,3: 

𝜔1(𝑎′
1 + 𝑐1𝑎1) −

1

8
(𝑞3𝑎1

2𝑎2𝑠𝑖𝑛𝜇1 + 𝑞7𝑎2
2𝑎3𝑠𝑖𝑛𝜇3) −

1

2
𝐹1𝛿1𝑠𝑠𝑖𝑛𝜇2 = 0            (25𝑎) 

𝜔1
2𝑎1𝛽′1 +

1

8
(𝑞1𝑎1

3 + 𝑞2𝑎1𝑎2
2 + 𝑞3𝑎1

2𝑎2𝑐𝑜𝑠𝜇1 + 𝑞7𝑎2
2𝑎3𝑐𝑜𝑠𝜇3 + 𝑞10𝑎1𝑎3

2

+ 𝑎1 ∑ 𝛾1𝑗𝑎𝑗
2

∞

𝑗=4

) −
1

2
𝛾1

𝑇

∆𝑇𝑎1 +
1

2
𝐹1𝛿1𝑠𝑐𝑜𝑠𝜇2

= 0                                                                                                                                  (25𝑏) 
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𝜔2(𝑎′
2 + 𝑐2𝑎2) +

1

8
(𝑞6𝑎1

3𝑠𝑖𝑛𝜇1 − 𝑞8𝑎1𝑎2𝑎3𝑠𝑖𝑛𝜇3) −
1

2
𝐹2𝛿2𝑠𝑠𝑖𝑛𝜇2 = 0                                 (25𝑐) 

𝜔1𝜔2𝑎2𝛽2
′

+
1

8
(𝑞4𝑎2

3 + 𝑞5𝑎1
2𝑎2 + 𝑞6𝑎1

3𝑐𝑜𝑠𝜇1 + 𝑞8𝑎1𝑎2𝑎3𝑐𝑜𝑠𝜇3 + 𝑞11𝑎2𝑎3
2 + 𝑎2 ∑ 𝛾2𝑗𝑎𝑗

2

∞

𝑗=4

)

−
1

2
𝛾2

𝑇

∆𝑇𝑎2 +
1

2
𝐹2𝛿2𝑠𝑐𝑜𝑠𝜇2

= 0                                                                                                                                                                  (25𝑑) 

𝜔3(𝑎′
3 + 𝑐3𝑎3) +

1

8
𝑞9𝑎1𝑎2

2𝑠𝑖𝑛𝜇3 −
1

2
𝐹3𝛿3𝑠𝑠𝑖𝑛𝜇2 = 0                                                                   (25𝑒) 

𝜔1𝜔3𝑎3𝛽3
′ +

1

8
(𝑞9𝑎1𝑎2

2𝑐𝑜𝑠𝜇3 + 𝑞12𝑎1
2𝑎3 + 𝑞13𝑎2

2𝑎3 + 𝑞14𝑎3
3 + 𝑎3 ∑ 𝛾3𝑗𝑎𝑗

2

∞

𝑗=4

) −
1

2
𝛾3

𝑇

∆𝑇𝑎3

+
1

2
𝐹3𝛿3𝑠𝑐𝑜𝑠𝜇2

= 0                                                                                                                                                                   (25𝑓) 

 𝑛 ≥ 4: 

𝑎′
𝑛 + 𝑐𝑛𝑎𝑛 −

1

2
𝐹𝑛𝛿𝑛𝑠𝑠𝑖𝑛𝜇2 = 0                                                                                                              (25𝑔) 

𝜔1𝜔𝑛𝑎𝑛𝛽𝑛
′ −

1

2
𝛾𝑛

𝑇

∆𝑇𝑎𝑛 +
1

8
𝑎𝑛 ∑ 𝛾𝑛𝑗𝑎𝑗

2

∞

𝑗=1

+
1

2
𝐹𝑛𝛿𝑛𝑠𝑐𝑜𝑠𝜇2 = 0,                                                  (25ℎ) 

Where  

𝜇1 = 𝜔1(3𝜎12𝑇1 − 3𝛽1 + 𝛽2),                                                             (26𝑎) 

𝜇2 = 𝜔𝑠𝜎2𝑇1 − 𝜔1𝛽𝑠,                                                                             (26𝑏) 

𝜇3 = (𝜔1 + 2𝜔2)𝜎13𝑇1 + 𝜔1𝛽3 − 2𝜔1𝛽2 − 𝜔1𝛽1,                                         (26𝑐) 

We consider the case of interest 𝑠 = 1,2,3. These cases are discussed separately. 

Case I: Ω ≈ 𝜔1   (𝑠 = 1) 

It follows from equation (25g) that  

𝑎′
𝑛 + 𝑐𝑛𝑎𝑛 = 0, 𝑛 ≥ 4. 

The amplitudes 𝑎𝑛 decay because 

𝑎𝑛 ∝ exp(−𝑐𝑛𝑇1) ,      𝑛 ≥ 4. 

Since we are interested in the steady-state response, we can disregard 𝑎𝑛  (𝑛 ≥ 4). then 
equations (25a)-(25f) can be reduced to a set of autonomous ordinary differential equations 
in amplitudes 𝑎𝑛 and phase 𝜇𝑛 for 𝑛 = 1,2,3. letting 𝑎′1 = 𝑎′2 = 𝑎′3 = 𝜇′1 = 𝜇′2 = 𝜇′3 = 0, one 

obtains the following algebraic equations giving the steady-state responses. 

𝜔1𝑐1𝑎1 −
1

8
(𝑞3𝑎1

2𝑎2𝑠𝑖𝑛𝜇1 + 𝑞7𝑎2
2𝑎3𝑠𝑖𝑛𝜇3) −

1

2
𝐹1𝑠𝑖𝑛𝜇2 = 0                                                     (27𝑎) 
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𝜔1
2𝜎2𝑎1 −

1

2
𝛾1

𝑇

∆𝑇𝑎1 +
1

8
(𝑞1𝑎1

3 + 𝑞2𝑎1𝑎2
2 + 𝑞3𝑎1

2𝑎2𝑐𝑜𝑠𝜇1 + 𝑞7𝑎2
2𝑎3𝑐𝑜𝑠𝜇3 + 𝑞10𝑎1𝑎3

2) 

                                                                                                                      +
1

2
𝐹1𝑐𝑜𝑠𝜇2 = 0                     (27𝑏)  

𝜔2𝑐2𝑎2 +
1

8
(𝑞6𝑎1

3𝑠𝑖𝑛𝜇1 − 𝑞8𝑎1𝑎2𝑎3𝑠𝑖𝑛𝜇3) = 0                                                                               (27𝑐) 

3𝜔1𝜔2𝑎2(𝜎2 − 𝜎12) −
1

2
𝛾2

𝑇

∆𝑇𝑎2 

            +
1

8
(𝑞4𝑎2

3 + 𝑞5𝑎1
2𝑎2 + 𝑞6𝑎1

3𝑐𝑜𝑠𝜇1 + 𝑞8𝑎1𝑎2𝑎3𝑐𝑜𝑠𝜇3 + 𝑞11𝑎3
2𝑎2) = 0                    (27𝑑) 

𝜔3𝑐3𝑎3 +
1

8
𝑞9𝑎1𝑎2

2𝑠𝑖𝑛𝜇3 = 0                                                                                                                (27𝑒) 

𝜔1𝜔3𝑎3 [7𝜎2 − 6𝜎12 −
(𝜔1 + 2𝜔2)𝜎13

𝜔1
] −

1

2
𝛾3

𝑇

∆𝑇𝑎3 

              +
1

8
(𝑞9𝑎1𝑎2

2𝑐𝑜𝑠𝜇3 + 𝑞12𝑎1
2𝑎3 + 𝑞13𝑎2

2𝑎3 + 𝑞14𝑎3
3) = 0                                          (27𝑓) 

Case II: Ω ≈ 𝜔2   (𝑠 = 2). 

Proceeding in a similar way, we obtain the following algebraic equations giving the steady-
state responses.  

𝜔1𝑐1𝑎1 −
1

8
(𝑞3𝑎1

2𝑎2𝑠𝑖𝑛𝜇1 + 𝑞7𝑎2
2𝑎3𝑠𝑖𝑛𝜇3) = 0                                (28𝑎) 

𝜔1𝑎1(𝜔2𝜎2 + 3𝜔1𝜎12) −
1

2
𝛾1

𝑇

∆𝑇𝑎1

+
3

8
(𝑞1𝑎1

3 + 𝑞2𝑎1𝑎2
2 + 𝑞3𝑎1

2𝑎2𝑐𝑜𝑠𝜇1 + 𝑞7𝑎2
2𝑎3𝑐𝑜𝑠𝜇3 + 𝑞10𝑎1𝑎3

2)

= 0                                                                                                                                     (28𝑏) 

𝜔2𝑐2𝑎2 +
1

8
(𝑞6𝑎1

3𝑠𝑖𝑛𝜇1 − 𝑞8𝑎1𝑎2𝑎3𝑠𝑖𝑛𝜇3) −
1

2
𝐹2𝑠𝑖𝑛𝜇2 = 0                  (28𝑐) 

𝜔2
2𝑎2𝜎2 −

1

2
𝛾2

𝑇

∆𝑇𝑎2

+
1

8
(𝑞4𝑎2

3 + 𝑞5𝑎1
2𝑎2 + 𝑞6𝑎1

3𝑐𝑜𝑠𝜇1 + 𝑞8𝑎1𝑎2𝑎3𝑐𝑜𝑠𝜇3 + 𝑞11𝑎2𝑎3
2)                    

+
1

2
𝐹2𝑐𝑜𝑠𝜇2 = 0                                                                                                           (28𝑑) 

𝜔3𝑐3𝑎3 +
1

8
𝑞9𝑎1𝑎2

2𝑠𝑖𝑛𝜇3 = 0                                                (28𝑒) 

𝜔3𝑎3[(7𝜔2𝜎2 + 3𝜔1𝜎12) − 3(𝜔1 + 2𝜔2)𝜎13] −
1

2
𝛾3

𝑇

∆𝑇𝑎3

+
3

8
(𝑞9𝑎1𝑎2

2𝑐𝑜𝑠𝜇3 + 𝑞12𝑎1
2𝑎3 + 𝑞13𝑎2

2𝑎3 + 𝑞14𝑎3
3 = 0)                            (28𝑓) 
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Case III: Ω ≈ 𝜔3   (𝑠 = 3). 

The following algebraic equations are obtained when the excitation frequency is near the 
natural frequency of the third mode 

𝜔1𝑐1𝑎1 −
1

8
(𝑞3𝑎1

2𝑎2𝑠𝑖𝑛𝜇1 + 𝑞7𝑎2
2𝑎3𝑠𝑖𝑛𝜇3) = 0                                  (29𝑎) 

𝜔1𝑎1[(𝜔1 + 2𝜔2)𝜎13 + 6𝜔1𝜎12 + 𝜔3𝜎2] −
1

2
𝛾1

𝑇

∆𝑇𝑎1

+
7

8
(𝑞1𝑎1

3 + 𝑞2𝑎1𝑎2
2 + 𝑞3𝑎1

2𝑎2𝑐𝑜𝑠𝜇1 + 𝑞7𝑎2
2𝑎3𝑐𝑜𝑠𝜇3 + 𝑞10𝑎1𝑎3

2)

= 0      (29𝑏) 

𝜔2𝑐2𝑎2 +
1

8
(𝑞6𝑎1

3𝑠𝑖𝑛𝜇1 − 𝑞8𝑎1𝑎2𝑎3𝑠𝑖𝑛𝜇3) = 0                                    (29𝑐) 

3𝜔2𝑎2[𝜎13(𝜔1 + 2𝜔2) + 𝜔3𝜎2 − 𝜔1𝜎12] −
1

2
𝛾2

𝑇

∆𝑇𝑎2

+
7

8
(𝑞4𝑎2

3 + 𝑞5𝑎1
2𝑎2 + 𝑞6𝑎1

3𝑐𝑜𝑠𝜇1 + 𝑞8𝑎1𝑎2𝑎3𝑐𝑜𝑠𝜇3 + 𝑞11𝑎2𝑎3
2)

= 0                                                                                                                                    (29𝑑) 

𝜔3𝑐3𝑎3 +
1

8
𝑞9𝑎1𝑎2

2 𝑠𝑖𝑛𝜇3 −
1

2
𝐹3𝑠𝑖𝑛𝜇2 = 0                           (29𝑒) 

𝜔3
2𝑎3𝜎2 −

1

2
𝛾3

𝑇

∆𝑇𝑎3 +
1

8
(𝑞9𝑎1𝑎2

2 𝑐𝑜𝑠𝜇3 + 𝑞12𝑎1
2𝑎3 + 𝑞13𝑎2

2𝑎3 + 𝑞14𝑎3
3) 

+
1

2
𝐹3𝑐𝑜𝑠𝜇2 = 0         (29𝑓)  

Equations (27)-(29) are systems of nonlinear algebraic equations with six unknowns, 𝑎1, 
𝑎2, 𝑎3, 𝜇1, 𝜇2, 𝜇3 and one parameter 𝜎2. 𝑎𝑖(𝑖 = 1,2,3) are steady states amplitudes of the three 
involved modes while 𝜇𝑖(𝑖 = 1,2,3) represent the corresponding phases. These equation 
systems are solved by the mean of the Newton-Raphson shooting technique for which the 
flowchart is presented in Fig. 2. 

 

Fig. 2. Flowchart of Newton-Raphson shooting technique 
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4. Results and Discussion 

4.1. Temperature-free responses 

At room temperature, the resolution of systems of equations (27)-(29) leads to the 
following results in agreement with the work done by authors of papers [5]-[7]. The frequency 
response curves are presented in figures (2)-(4) for excitation frequency near the frequency of 
the first mode and in figures (5)-(6) for excitation frequency near the frequency of the second 
mode. When the excitation frequency is near the frequency of the first mode, the response 
amplitude is dominated by the first mode (Fig. 3) with a small amplitude for the second mode 
(Fig. 4) and a very weak amplitude for the third mode (Fig. 5). When the second mode is 
excited, Fig. 6 shows that there is a range of excitation frequency for which the response is 
dominated by the first mode (internal resonance). The third mode still presents small 
amplitude (Fig. 7). 

 

Fig. 3. Variation of amplitude a1 of the first mode with excitation frequency when the first mode is 
excited (Ω ≈ 𝜔1) at room temperature, ∆T = 0.  

 

4.2. Responses under temperature change 

Non-free thermal stress responses are presented in this section. In the presence of 
temperature change, nonlinear algebraic systems of equations (27)-(29) are solved by the 
mean of Newton-Raphson shooting technique to investigate the thermal effects on the 
response amplitude of each of the three modes involved when one of the modes is directly 
excited. All figures presenting temperature-influenced responses are depicted alongside the 
corresponding temperature-free response in order to appreciate the temperature effect on 
these responses.    

When the excitation frequency is near the frequency of the first mode, Fig. 8a and Fig. 8b 
present the effect of temperature on the amplitude response of the first mode respectively for 
∆𝑇 = ±30 °𝐶 and ∆𝑇 = ±100 °𝐶. It is globally observed a shift in frequency along the 
frequency axis, to the left for positive temperature difference and to the right for negative one 



296 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 1, No. 3, 2021, pp. 285-307 

 

 

A. N. Ndoukouo (Thermal Effects on the Nonlinear Forced Responses of Hinged-Clamped Beam with Multimodal Interaction) First Author (Title of Paper Shortly) 

 

in comparison to the temperature-free curve (∆𝑇 = 0 °𝐶). These results agree with those 
obtained by authors of papers [10]-[13]. The shift increases with the absolute value of 
temperature difference. There is no notable change, however, in amplitude between 
temperature-free response and responses under the thermal influence in this case.  

Fig. 9a and Fig. 9b present the effect of temperature change on the response amplitude of 
the second mode for temperature difference ∆𝑇 = ±50 °𝐶 and ∆𝑇 = ±100 °𝐶  respectively. 
Similar observation as previously made on the responses of the first mode in terms of a shift in 
frequency domain due to temperature change can be made here. However, there is a change in 
regard to the maximal amplitude reached for different responses. In comparison with the 
temperature-free response curve, amplitudes are larger for negative temperature difference 
and lower for positive one, for the discussed case of the second mode responding when the 
first mode is directly excited. As a quantitative example, figure 8a presents maximal amplitude 
of about 2.5, 1.5, and 0.8 respectively for ∆𝑇 = − 50 °𝐶 , ∆𝑇 = 0 °𝐶, and ∆𝑇 = + 50 °𝐶. These 
values turn into around 4.5, 1.5, and 0.6 respectively for  ∆𝑇 = − 100 °𝐶 , ∆𝑇 = 0 °𝐶, and ∆𝑇 =
+ 100 °𝐶 in Fig. 9b. When the excitation frequency is near the frequency of the second mode, 
Fig. 10a - Fig. 10c show the effect of temperature change on the response amplitude of the first 
mode, Fig. 11a - Fig. 11c present the same results for the second mode, while Fig. 12a and Fig. 
12b depict these results for the third mode.  

For the first mode (Fig. 10a - Fig. 10c), results show the previously described shift in the 
frequency domain of the response amplitude for negative and positive temperature change on 
either side of the thermal free-response curve. Nonetheless, there is a change in amplitude for 
different curves. However, in opposition to the aforementioned case, higher amplitudes are 
observed for positive temperature difference and smaller for negative one as compared with 
room temperature response. Qualitative change is also observed between these response 
amplitude curves, and it can be seen that as positive temperature difference increases, the 
profile of the response curve gradually loses its resonant profile.       

The responses of the second mode of vibration when the same mode is excited in the 
presence of thermal influence are presented in figures 10a-10c. One notes the shift in 
frequency caused by the temperature difference on either side of the room temperature 
response depending on the sign of temperature difference. In addition, from a quantitative 
point of view, it is observed that the temperature free-response curve presents higher 
amplitude over the temperature influenced response curves. This situation is quite different 
from those observed previously. The responses of the third mode (Fig. 12a and Fig. 12b) 
reacting to the second mode directly excited in the presence of temperature change globally 
present the same behavior as described for the response of the second mode, but with weak 
amplitude.  

These results clearly state that temperature influence on the responses of a hinged-
clamped beam undergoing nonlinear vibration under a periodic mechanical excitation is 
important. This influence is diversely observed on the different substructures when 
multimodal interaction is considered. The changes are observed both qualitatively and 
quantitatively and are not the same on the different substructures when one of the modes is 
directly excited. These outcomes show that one should pay more attention when designing 
structural elements involving vibrational behavior under simultaneous actions of mechanical 
excitation and thermal loads. So far, temperature-free analysis has revealed that when 
multimodal interaction is involved in a hinged-clamped beam vibration, there is a possibility of 
internal resonance with modes other than the directly excited mode responding with higher 
amplitude in some frequency interval due to energy transfer in between the interacting 
substructures.   

Actually, it is shown that the effect of temperature mistakenly evaluated as a flat rate in 
several structural and civil engineering designs needs to be paid more attention as far as 
multimodal interaction is involved under the action of mechanical excitation. There is a shift in 
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the frequency domain of the thermal influenced responses on either side of the temperature-
free response curve, depending on the magnitude and sign of the temperature difference. 
Moreover, when a given mode is directly excited, higher amplitudes are obtained as function 
of the responding substructure, the sign, and the magnitude of the temperature difference. It 
has been seen that for some substructures, the larger amplitude is obtained for negative 
temperature difference, while it is observed for positive temperature difference for others and 
for temperature-free responses for some others. This inspires the existence of a very rich 
dynamic of the studied system to be investigated in future work.  

 

Fig. 4. Variation of amplitude a2 of the second mode with excitation frequency when the first mode is 
excited (Ω ≈ 𝜔1) at room temperature, ∆T = 0 

 

Fig. 5. Variation of amplitude a3 of the third mode with excitation frequency when the first mode is 

excited (Ω ≈ 𝜔1) at room temperature, ∆T = 0 
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Fig. 6. Variation of amplitudes a1 and a2 of first and second mode with excitation frequency when the 
second mode is excited (Ω ≈ 𝜔2) at room temperature, ∆T = 0 

 

 

Fig. 7. Variation of amplitude a3 of third mode with excitation frequency when the second mode is 
excited (Ω ≈ 𝜔2) at room temperature, ∆T = 0 
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Fig. 8a. Variation of amplitude a1 of first mode with excitation frequency when the first mode is 
excited (Ω ≈ 𝜔1) at temperatures ∆T = + 30 , ∆T = 0 and ∆T = - 30 

 

 

Fig. 8b. Variation of amplitude a1 of first mode with excitation frequency when the first mode is 
excited (Ω ≈ 𝜔1) at temperatures ∆T = + 100 , ∆T = 0 and ∆T = - 100 
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Fig. 9a. Variation of amplitude a2 of second mode with excitation frequency when the first mode is 
excited (Ω ≈ 𝜔1) at temperatures ∆T = + 50 , ∆T = 0 and ∆T = - 50 

 

 

Fig. 9b. Variation of amplitude a2 of second mode with excitation frequency when the first mode is 
excited (Ω ≈ 𝜔1) at temperatures ∆T = + 100 , ∆T = 0 and ∆T = - 100 
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Fig. 10a. Variation of amplitude a1 of first mode with excitation frequency when the second mode is 
excited (Ω ≈ 𝜔2) at temperatures ∆T = + 100 , ∆T = 0 and ∆T = - 100 

 

 

Fig. 10b. Variation of amplitude a1 of first mode with excitation frequency when the second mode is 
excited (Ω ≈ 𝜔2) at temperatures ∆T = + 200 , ∆T = 0 and ∆T = - 200 
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Fig. 10c. Variation of amplitude a1 of first mode with excitation frequency when the second mode is 
excited (Ω ≈ 𝜔2) at temperatures ∆T = + 300 , ∆T = 0 and ∆T = - 300 

 

Fig. 11a. Variation of amplitude a2 of second mode with excitation frequency when the second mode is 
excited (Ω ≈ 𝜔2) at temperatures ∆T = + 100 , ∆T = 0 and ∆T = - 100 
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Fig. 11b. Variation of amplitude a2 of second mode with excitation frequency when the second mode is 
excited (Ω ≈ 𝜔2) at temperatures ∆T = + 200 , ∆T = 0 and ∆T = - 200 

 

Fig. 11c. Variation of amplitude a2 of second mode with excitation frequency when the second mode is 
excited (Ω ≈ 𝜔2) at temperatures ∆T = + 300 , ∆T = 0 and ∆T = - 300 
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Fig. 12a. Variation of amplitude a3 of third mode with excitation frequency when the second mode is 
excited (Ω ≈ 𝜔2) at temperatures ∆T = + 100 , ∆T = 0 and ∆T = - 100 

 

 

Fig. 12b. Variation of amplitude a3 of third mode with excitation frequency when the second mode is 
excited (Ω ≈ 𝜔2) at temperatures ∆T = + 200 , ∆T = 0 and ∆T = - 200 
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5. Conclusion 

The vibrational behavior of a hinged-clamped beam with multimodal interaction under 
combined actions of periodic mechanical loadings and thermal loads has been investigated. 
Nonlinear PDEs governing the planar motion of the thermoelastic problem has been 
established and reduced to a set of nonlinear non-autonomous ODEs. For the sake of steady-
state solutions, the ODEs have been reduced to three sets of parametric nonlinear algebraic 
equations solved by the mean of the Newton-Raphson technique. Results have been presented 
in terms of temperature effects on the response amplitudes of each of the three considered 
modes when one of them is directly excited. It came out that thermal effects are of great 
influence on the responses of such a system. More precisely, the temperature change affects 
the amplitude response curves by shifting them on either side of the temperature-free 
response curve in the frequency domain, depending on the sign and magnitude of the 
temperature difference. In terms of oscillation amplitude, the influence of temperature is 
diversely observed on the substructures depending on the magnitude and sign of the 
temperature difference but also on the mode directly excited. It is found that higher oscillation 
amplitude is observed for negative temperature difference for some substructures, while it is 
observed for positive one for some others and for temperature free-response curve for others. 
It should, however, be pointed out that for some substructures, temperature change does not 
significantly influence the oscillation amplitude. As a consequence, this study should 
contribute to advising civil and Structural designers that evaluating temperature influence on 
the structural elements engaged in vibrational behavior at a flat rate can produce inefficient 
results. The future work will be dedicated to the investigation of the dynamical aspect of the 
studied system in order to have more insights into the system responses to the combined 
effects of thermal loads and mechanical excitations in the presence of multimodal interaction. 
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