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The electronic implementation, synchronization, and control of
hyperchaos in a five-dimensional (5D) autonomous homopolar disc
dynamo are investigated in this paper. The hyperchaotic behavior is
found numerically using phase portraits and time series in 5D
autonomous homopolar disc dynamo is ascertained on Orcad-PSpice
software. The synchronization of the unidirectional coupled 5D
hyperchaotic system is also studied by using the feedback control
method. Finally, hyperchaos found in 5D autonomous homopolar disc
dynamo is suppressed thanks to the designed single feedback.
Numerical simulations and electronic implementation reveal the
effectiveness of the single proposed control.

This is an open-access article under the CC-BY-SA license.

1. Introduction

Chaotic behavior has many applications in various fields of science. Unfortunately, chaotic
behaviors are a source of instability and disturbance in some dynamic systems. Therefore, it is
interesting to control chaotic behavior in such dynamical systems. Many authors proposed
methods to suppress chaos such as resonant parametric perturbation control [1], generalized
predictive control [2], adaptive control [3, 4], the input-output linearization control [5],
frequency domain analysis control [6, 7], zero spectral radius control [8], optimal control [9],
sliding mode control [10], single feedback control [11] and various other control methods. The
single feedback control technique is concise, simple, and easy to realize. A single feedback

d ' https://doi.org/10.31763 /ijrcs.v1i3.380 @ jjrcs@ascee.org


http://pubs2.ascee.org/index.php/ijrcs
https://doi.org/10.31763/ijrcs.v1i3.380
mailto:ijrcs@ascee.org
mailto:makouol@yahoo.frm
mailto:alexstephanekemnang@gmail.com
mailto:tinguemax@yahoo.fr
mailto:rodriguetchamda@yahoo.fr
mailto:stkingni@gmail.com
mailto:alexstephanekemnang@gmail.com
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

International Journal of Robotics and Control Systems
ISSN 2775-2658 245
Vol. 1, No. 3, 2021, pp. 244-255

control method is used to control hyperchaos in 5D autonomous homopolar disc dynamo [12]
in this paper.

On the other hand, since Pecora and Caroll [13] demonstrated the synchronization between
chaotic coupled dynamical systems, a multitude of papers devoted to the synchronization of
chaotic systems [14-18]. Several types of synchronization known as complete synchronization
[13], offset synchronization [19], generalized synchronization [20-22], projective
synchronization [23-27], modified projective synchronization [28], function projective
synchronization [29] and various other synchronizations. A technique for synchronizing a
chaotic four-dimensional system using a feedback controller, a single variable, has been
proposed and demonstrated in [30]. Recently, the authors of [31] investigated the dynamics,
chaos control, and synchronization in autonomous homopolar dynamo systems. The authors
of [32] studied the existence of Hopf bifurcation and synchronization by using a new fuzzy
controller in a 5D autonomous homopolar disc dynamo system.

Based on contributions from previous works, this paper opted to study analytically and
numerically the feedback synchronization of unidirectional coupled 5D autonomous
homopolar disc dynamo and chaos control using a single controller in this paper. These
constitute a significant contribution to the best of our knowledge and complement of some
earlier works.

The paper is structured in five sections: The rate equations and circuit design of the 5D
autonomous homopolar disc dynamo are described in Section 2. A feedback synchronization
of a unidirectional coupled 5D hyperchaotic system is studied in Section 3. In Section 4, the
single controller is used to control hyperchaos in the 5D hyperchaotic. Section 5 concludes this

paper.

2. Rate equations and circuit design of 5D autonomous homopolar disc dynamo
The rate equations of 5D autonomous homopolar disc dynamo are [12]

E:r(y—x)+w, (1a)
%z—(1+m)y+xz—v, (1b)
%: g[1+mx* —(1+m)xy |, (1c)
dd—VtV:Z(1+m)W+xz—k1x, (1d)
d—V:—mv+ K,Y, (1e)
dt

Where variables X, Y,Z,W,V are the state variables and t are the time, the parameters
g,m,r,k;,K, are positive reals. System (1) exhibits hyperchaotic behavior for given values of

parameters, as shown in Fig. 1. The parameter is r=8, m = 0.04, g = 140.6, k1 = 34, and k, = 12.
The initial conditions of (x,y, z,w,v) are (0.05,—0.5,0.1,—1, 2). The electronic circuit of the
system (1) is implemented on the Orcard-PSpice software and is depicted in Fig. 2.
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Fig. 2. The electronic circuit describing system (1).
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The circuit of Fig. 2 is made of resistors, capacitors, operational amplifiers, and analog
multiplier devices. Resistors and capacitor values are R, = 10kQ, R, = 12.5kQ, R, = 12.5kQ,
Rq =98.154kQ, C; =C, =C(C3=C, =Cs = 1nF, R, =100kQ, R;=100kQ, R, = 6.84kQ,
Ry, = 177.81kQ, R; = 100kQ, R; = 29.41kQ, R, = 100k, R; = 48.08kQ, R,, = 2500kQ, R, =
83.33kQ, Ry =R, =Ry =Rs =R; =10k, Rg =R; = Rg = Rjg = Ry = 10k, Ry, = Ri3 =
Ry4 = Ry5 = 10kQ, V.. = 14.06V. The phase planes obtained from Fig. 2 are depicted in Fig. 3.
The phase planes of Fig. 3 and the one of Fig. 1 confirm each other.

P INEY R Bt JEE RN BT T RN T T an oaw am oaw

Fig. 3. Phase planes of hyperchaotic attractors are obtained from the electronic circuit of the system

(1).

3. Synchronization of unidirectional coupled 5D autonomous homopolar disc
dynamo

The drive and the response 5D hyperchaotic systems are expressed, respectively as

B (5 x) o, =
B (rem)yrxz v, (2b)
% glLeme —(Lem)xy, 20)
d(\j'\t/1=2(1+ M)W, +X,2, — kX, (2d)
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dv

Ql—tlz—mv1 +K, Y, (2e)
dx

d—tzzr(yz—xz)+wz+u1, (3a)
d

%:—(1+m)y2+xzzz—v2, (3b)
dz

d—tZ: g[1+ mx; —(1+ m)xzyz}ruz, (3¢c)
d;\éz =2(1+m)W, +X,Z, — KX, +U;, (3d)
dv

d—tZ: -mv, +k,Y,, (3e)

Where U,,U, and U, are the controllers. The synchronization errors are defined as follows:

e =X-X,6=Y,-Y,,6,=2,—2,€,=W,—W, and & =V, —V,. Its derivatives are given

as
%: r(e,—e)+e, +u,

%:_(u m)e, + Z,e, + X8 —€;,

%: gm(x, +%, )& —(1+m)(y,e +x6,)+U,,
%: 2(1+m)e, + 2,8, + e, — ke +us,

%: —me; +K,e,.

(4a)

(4b)

(4c)

(4d)

(4e)

By choosing the controllers U, =—re, —&,,U, =—€,+(1+m)xe, andu, =-3(1+m)e,,

system (4) becomes

de,

—L=—re,

dt

%: —(1+ m)e2 +2,8 + X6€; —€;,

(5a)

(5b)
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de
d—t3=—e3+gm(x1+x2)e1—(1+m)y2e1, (5¢)
%:—(1+m)e4+22e1+x1e3—k1e1, (5d)
de
d_t5: —me, + ke, . (5e)
The solution of (5a) is €, (t) =g (0)67”. So tlim e (t) =0 and system (5) becomes
d
%:—(1+m)e2+xle3—e5, (6a)
& _ e, (6b)
dt
cL%“:—(H m)e, + X€;, (6¢c)
de
d—tf’: —me; +K,&,. (6d)
The solution of (6b) is &, (t) =g, (0) e"'. Thereafter tlim &;(t)=0 and system (6) is
reduced to
de
d—t2=—(1+m)e2—e5, (7a)
de,
—=—(1+m)e,, 7b
dt ( ). (7b)
de
d_t5: —me, + ke, . (7¢)
The solution of (7b) is e, (t)=e¢, (O)ef(hm)t. Thereafter tlim e,(t)=0 and system (7) is
reduced to:
de,
dt | (-1-m -1)(e e
e " o) E
dey k, —-m)le e
dt

For m=0.04 and k, =12, the eigenvalues of A at the equilibrium point (82 =0,e, 20) are
A, =-0.54+3.42782730020052 j with j?=—-1. So, system (8) is asymptotically stable.
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Therefore, the controllers U, =—re, —€,,U, =—€; + (l+ m) X€, and U; = —3(l+ m)e4 can
synchronize the drive system (2) and the response system (3). The synchronization errors are
depicted in Fig. 4. The controllers U ,U, and U, are activated att>1400. The initial
conditions of systems (2) and (3) are (x1 (0),y1(0),21(0),Wl(O),vl(O)) =
(0.05,-0.5,0.1,—1,2) and (x2(0),,(0),2,(0), w,(0),7,(0)) = (0.5,—0.5,0.1,—1, 2),
respectively. Fig. 4 reveals the effectiveness of the synchronization between system (2) and

system (3).
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Fig. 4. Time series of synchronization errors for r = 8, m = 0.04, g = 140.6, k; = 34,and k; = 12.

4. Hyperchaoscontrol of 5D autonomous homopolar disc dynamo via a single
controller

System (1) with the controller U, becomes

dx

E:r(y—x)+w, (9a)
Yoy ry-v (9b)
%:g[1+mx2—(1+m)xy]+u4, (9¢)
(ij_vtv: 2(1+m)w+xz —kx, (9d)
d—V=—mv+ K, Y. (9e)
dt

By choosing U, =-z—¢ [1+ mx® — (1+ m) xy} , system (9) becomes:

Lucienne Makouo (Synchronization and Chaos Control Using a Single Controller of Five Dimensional Autonomous Homopolar
Disc [)x‘lmmo)



International Journal of Robotics and Control Systems

ISSN 2775-2658 251
Vol. 1, No. 3, 2021, pp. 244-255

%:r(y—x)jtw, (10a)
dt

3—¥:—(1+m)y+ XZ -V, (10b)

dz
—=-Z (10¢)

dt ’

(jj—vtvzz(1+ m)w + xz — kK X, (10d)

av_ —-mv+Kk,y. (10e)

dt
The solution of (10c) is Z (t) =7 (0)64. So limz(t) =0 and system (10) becomes:

t> o
dx
dt
dy X
dt 0 -(1+m) O -1y y
aw | | k, 0 2(1+m) 0 ||w w|
dt | (o K, 0 -m v v
dv
dt
For r =8, m = 0.04, k; = 34, and k, = 12, the eigenvalues of B at the equilibrium point
(X =0,y=0,w=0,v =0) are Asg = —2.96+2.9323028492978j and A5, =—-0.54%

(11)

3.42782730020052j with j2 =-1. So, system (11) is asymptotically stable. Therefore, the
hyperchaotic behavior found in the system (1) is controlled using the controller

u, :—z—g[1+ mx* —(1+ m)xy]

The time evolutions of the state variables and the controller U, are shown in Fig. 5. The

controller U, is activated at t>1300. The initial conditions are (x(0), y(0), z(0), w(0),
v(0))=(0.05,-0.5, 0.1,-1, 2). Fig. 5 demonstrates that the control of hyperchaos system (1) using
the controller u, =-z—-g [1+ mx? —(1+ m) xy] is effective. The electronic implementation

of the controlled system (9) is obtained from the electronic implementation of the system (1)
in Fig. 2 as shown in Fig. 6.

The circuit of Fig. 6 has 32 resistors, 5 capacitors, 13 operational amplifiers, 3 analog
multiplier devices, and 1 switcher. Resistors and capacitor values are R, = 10k(, R, =
12.5kQ, R, =12.5kQ, R; =98.154kQ, C; = C; = (3 = (4 = Cs = InF, R, = 100kQ, Ry =
100kQ, Ry, = 6.84kQ, R, =177.81kQ, R; =100kQ, R;=29.41kQ, R, =100kQ, R,
48.08kQ, R,, = 2500kQ, R, =83.33kQ, Ry =R, =R, =R; = R; = 10kQ, Rg = R; =Ry
Rip = Ry = 10kQ, Ry, = Ri3 = Ry4 = Ri5 = 10kQ, V. = 14.06V.
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Fig. 5. Time evolutions of x, y, w, vand u, forr = 8, m = 0.04, g = 140.6, k; = 34and k, = 12

Fig. 6. The electronic circuit is describing the controlled system (9).
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The time evolutions of the state responses and the output of the single controller generated
from the circuit of the controlled system (9) are shown in Fig. 7. The time evolutions of Fig. 7
and the one of Fig. 5 confirm each other.

[T

T Teas s Shas has Thas S Thas ks 20mn 30ma = s wan yoma - P 100ma

Time Time

Fig. 7. Time evolutions of the controlled system (9) are obtained from Fig. 6.

5. Conclusion

The electronic implementation, synchronization, and control of hyperchaos in five-
dimensional autonomous homopolar disc dynamo were investigated in this paper. The
designed circuit of the five-dimensional autonomous homopolar disc dynamo was realized on
Orcad-PSpice software to ascertain the hyperchaotic behavior found during the numerical
simulations. The synchronization of unidirectional coupled five-dimensional autonomous
homopolar disc dynamo was achieved by using the feedback control method. Finally, it was
theoretically and electronically proven that the proposed single controller can control the
hyperchaotic behavior of the five-dimensional autonomous homopolar disc dynamo.
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