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1. Introduction  

Recently, the Adaptive control technique has witnessed much attention in control theory 
society due to its ability to deal with system uncertain or unknown dynamics [1]-[9]. Generally 
speaking, universal approximator such as neural networks (NNs) and fuzzy logic systems 
(FLSs) tools was a good solution to overcome system uncertainty [10] [11], or fuzzy systems 
as universal approximator [1]-[6]. Various Fuzzy adaptive techniques have been developed in 
the literature classified from SISO to MIMO linear and nonlinear systems. In the design stage of 
fuzzy adaptive control law, direct and indirect approaches have been studied. In the direct, one 
controller consists to approximate the ideal control law with the help of a fuzzy system (see 
Refs. [12] [13] [14] [1]-[9]). However, the indirect resides on the approximation of the 
uncertain nonlinear system using fuzzy systems and based on these approximations. A general 
adaptive controller is built [1-5] [12] [13] [16]-[19]. On the other side, the adaptive technique 
was integrated with fault-tolerant control approach to handle actuator and sensor failures. 
Practically, sensor and/or actuator faults seem unavoidable separately or collectively due to 
their importance. If an actuator or sensor faults occur during the system operation, this can 
lead to a catastrophic behavior and drive the system to instability. Authors in [1] have 
investigated an adaptive fuzzy fault-tolerant control scheme for a class of nonlinear systems 
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with simultaneous actuator and sensor failures. A combination method based on fuzzy systems 
(FSs) and backstepping approach allowed the online estimation of the adaptive parameters 
and guaranteed the boundedness of all signals in the closed-loop system, while in [4], an active 
fault-tolerant control technique has been proposed for a class of second-order nonlinear 
system subjected to state-dependent actuator faults with the presence of unknown control gain 
sign and external disturbances. In [20], adaptive fault-tolerant control is applied on a flexible 
spacecraft with state-dependent actuator failures using simple linear sets of system states and 
errors combination. In [21], the authors proposed a dynamic surface-based control approach 
using the Nussbaum-type function for attitude stabilization of a spacecraft under actuator 
saturation. More results can be found in [22], where an active fault-tolerant control scheme 
has been developed for a class of MIMO nonlinear systems with sensor failures based on 
dynamic surface control (DSC). 

Based on the aforementioned works, a fuzzy adaptive fault-tolerant control strategy is 
proposed for a class on the nonlinear system with actuator faults, exogenous disturbance, and 
uncertainties. A modified controller with new adaptive algorithms are designed and the upper 
and lower bounds of the control gain sign (CGS). An additional robust control term is added to 
circumvent the problem of approximation errors and mollify the tracking curves. 

The main contributions of the proposed controller are summarized below: 

i. The proposed controller, along with a robust term, is superior to the controller 
performance in [14]. 

ii. The actuator faults model is time-varying parameters with bias, drift, loss of accuracy, 
and loss of effectiveness, which make the controller affordable against large faults scale. 

iii.  The exogenous disturbance is handled theoretically instead of approximation. 

The rest of this paper is designed as follows: Problem formulation along with the studied 
class is first described, followed by a brief description of the universal approximation, i.e., fuzzy 
logic systems. Then, the proposed direct adaptive fuzzy fault-tolerant control scheme is 
presented with the corresponding adaptive laws and the stability analysis using Lyapunov 
methodology. A simulation example on the dynamic model of an inverted pendulum is 
performed to evaluate the accuracy of the proposed technique. Finally, some conclusions and 
general comments are given. 

2. Problem Formulation 

A class of SISO nonlinear systems without faults (faults free) can be written under the 
following equations [3] [6] 

 {

�̇�1 = 𝑥2 

⋮
�̇�𝑛 = 𝑓(𝑥1, 𝑥2, … 𝑥𝑛) + 𝑔(𝑥1, 𝑥2, … 𝑥𝑛)𝑢 + 𝑑(𝑡)

𝑦 = 𝑥1

 (1) 

Which can be concise and written as 

 {
𝑦(𝑛) = 𝑓(𝑥) + 𝑔(𝑥)𝑢 + 𝑑(𝑡)

𝑦 = 𝑥1
 (2) 

where  𝑥 = [𝑥1, … , 𝑥𝑛]𝑇 ∈ ℝ𝑛 , is the vector of the system;𝑢 ∈ ℝ is the scalar control input; 𝑦 ∈
ℝ is the scalar system output; 𝑓(𝑥) and 𝑔(𝑥) are unknown smooth nonlinear functions; 𝑑(𝑡) is 
considered as an exogenous disturbance. 

In respect to the dynamic of the system (2), the following assumptions will be made: 
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Assumption 1: the order 𝑛 of the system is known. 

Assumption 2: the state vector is available for measurement. 

Assumption 3: there exists an unknown continuous positive function 𝐷(𝑥) as: |�̇�(𝑥)| ≤ 𝐷(𝑥)  

In this paper, actuator faults are considered with additive and multiplicative models, as 
shown in Table 1 (see in [1]). 

Table 1. Actuators Faults 
Actuators Faults Kinds Conditions Faults Names 

𝒖(𝒕) 

𝑢(𝑡) + 𝑏 �̇�(𝑡) = 0, 𝑏(𝑡𝑓) ≠ 0 𝑏𝑖𝑎𝑠 (𝐿𝑜𝑐𝑘 𝑖𝑛 𝑝𝑙𝑎𝑐𝑒) 

𝑢(𝑡) + 𝑏(𝑡) |𝑏(𝑡)| = 𝜆𝑡  ,0 < 𝜆 ≪ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 𝑡𝑓 𝑑𝑟𝑖𝑓𝑡 

𝑢(𝑡) + 𝑏(𝑡) |𝑏(𝑡)| < �̅�0 , �̇�(𝑡) → 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 𝑡𝑓 𝐿𝑜𝑠𝑠 𝑜𝑓 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

𝑘(𝑡)𝑢(𝑡) 0 < �̅� ≤ 𝑘(𝑡) ≤ 1𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 𝑡𝑓 𝐿𝑜𝑠𝑠 𝑜𝑓 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 

where 𝑡𝑓 denotes the time instant of failure of the 𝑖th sensor/actuator and 𝑏 denotes its 

accuracy coefficient such that 𝑏𝜖[−�̅�0, �̅�0], where �̅�0 > 0. Also 𝑘𝜖[�̅�, 1], where �̅� > 0 denotes 
the minimum sensor and actuator effectiveness, in which 𝑏 and  𝑘 are slowly varying 
respectively within [−�̅�0, �̅�0] and [�̅�, 1]. 

Regarding the faults given in Table 1, then the faulty actuator can be defined by the following 
compact form 

 𝑢𝑓(𝑡) = 𝑘(𝑡)𝑢(𝑡) + 𝑏(𝑡) (2a) 

Meanwhile, the system described in (2a) will take the form below 

 {
𝑦(𝑛) = 𝑓(𝑥) + 𝑔(𝑥)(𝑘(𝑡)𝑢(𝑡) + 𝑏(𝑡)) + 𝑑(𝑡)

𝑦 = 𝑥1
 (2b) 

which can be rewritten in the following compact form 

 {
𝑦(𝑛) = 𝑓(𝑥) + 𝑔(𝑥)𝑢(𝑡) + 𝑓𝑎(𝑥, 𝑢) + 𝑑(𝑡)

𝑦 = 𝑥1
 (2c) 

where 

𝑓𝑎(𝑥, 𝑢) = 𝑔(𝑥)((𝑘 − 1)𝑢(𝑡) + 𝑏(𝑡)) 

The objective is to design an adaptive fuzzy controller for system (2c) under actuator faults, 
exogenous disturbances, and uncertainties so that the system output 𝑦(𝑡) can stably follow a 
referred trajectory 𝑦𝑑(𝑡). Its stability can be defined as all signals in the closed-loop system 
stay bounded.  

Regarding the development of the control law, the following assumptions should also be 
made: 

Assumption 4: the referred trajectory 𝑦𝑑(𝑡) and its time derivatives 𝑦𝑑
(𝑖)

, 𝑖 = 1, … , 𝑛 are 

smooth and bounded. 

Assumption 5: the control gain 𝑔(𝑥) is not equal to zero, and its sign is known; 𝑔(𝑥) > 𝑔 > 0 

with 𝑔 is an unknown constant  

Assumption 6: the estimation error is bounded as |𝜀(𝑥)| ≤ 𝜀�̅� 
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Nevertheless, the tracking error vector can be defined as 

 𝑒 = [𝑒, �̇�, … ; 𝑒(𝑛−1)]
𝑇

∈ ℝ𝑛 (3) 

with 

 𝑒(𝑡) = 𝑦𝑑(𝑡) − 𝑦(𝑡) (4) 

 𝑒(𝑛) = 𝑦𝑑
(𝑛)

− 𝑦(𝑛) (5) 

 𝑒(𝑛) = 𝑦𝑑
(𝑛)

− 𝑓(𝑥) − 𝑔(𝑥)𝑢 − 𝑓𝑎(𝑥, 𝑢) − 𝑑(𝑡) (6) 

If the functions (𝑓(𝑥) , 𝑔(𝑥), 𝑑(𝑡)and 𝐷(𝑥)) are known, then the control objective is achieved, 
and the ideal control law can be considered as: 

 𝑢 = 𝑢∗ =
𝑣 − 𝑓(𝑥) − 𝑓𝑎(𝑥, 𝑢) − 𝑑(𝑡)

𝑔(𝑥)
+

𝐷(𝑥)

2𝑔(𝑥)2

𝑒𝑇𝑃𝑒

𝑒𝑇𝑃𝐵
 (7) 

where 𝑃 is the solution of the Lyapunov-like equation, which will be designed later, and, 

 𝑒(𝑛) = 𝑦𝑑
(𝑛)

− 𝑓(𝑥) − 𝑔(𝑥) (
𝑣 − 𝑓(𝑥) − 𝑓𝑎(𝑥, 𝑢) − 𝑑(𝑡)

𝑔(𝑥)
+

𝐷(𝑥)

2𝑔(𝑥)2

𝑒𝑇𝑃𝑒

𝑒𝑇𝑃𝐵
) (8) 

 𝑒(𝑛) = −𝑘𝑇𝑒 − 𝑔(𝑥) (
𝐷(𝑥)

2𝑔(𝑥)2

𝑒𝑇𝑃𝑒

𝑒𝑇𝑃𝐵
) (9) 

Hence, the dynamic error can be further written as  

 �̇� = 𝐴𝑒 + 𝐵 [−𝑔(𝑥) (
𝐷(𝑥)

2𝑔(𝑥)2

𝑒𝑇𝑃𝑒

𝑒𝑇𝑃𝐵
)] (10) 

where  

𝐴 = [

0 1 ⋯ 0
⋮ ⋮ ⋯ 0
0

−𝑘𝑛

0
−𝑘𝑛−1

⋯ 1
     … −𝑘𝑛

]           𝐵 = [

0
⋮
0
1

] 

The Lyapunov-like equation is defined as 

 𝑉 =
1

2𝑔(𝑥)
𝑒𝑇𝑃𝑒 (11) 

where 𝑃 defines a symmetric positive definite matrix satisfying the Lyapunov-like equation 

 𝐴𝑇𝑃 + 𝑃𝐴 = −𝑄 (12) 

with 𝑄 > 0. 

Finally, the time-derivative of the Lyapunov-like equation along with the error dynamic 
(10) can be rewritten as 

 
�̇� = −

1

2𝑔(𝑥)
𝑒𝑇𝑄𝑒 + 𝑒𝑇𝑃𝐵𝑔(𝑥)−1 [−𝑔(𝑥) (

𝐷(𝑥)

2𝑔(𝑥)2

𝑒𝑇𝑃𝑒

𝑒𝑇𝑃𝐵
)]

−
1

2
𝑒𝑇𝑃𝑒�̇�(𝑥)𝑔(𝑥)−2 

(13) 
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This can be summarized as followed 

 �̇� = −
1

2𝑔(𝑥)
𝑒𝑇𝑄𝑒 + �̇�1 (14) 

 �̇�1 = −
𝐷(𝑥)𝑒𝑇𝑃𝑒

2𝑔(𝑥)2
−

1

2
𝑒𝑇𝑃𝑒�̇�(𝑥)𝑔(𝑥)−2 (15) 

Based on assumption 3, the above equation can be rewritten as 

 �̇�1 ≤ −
𝐷(𝑥)𝑒𝑇𝑃𝑒

2𝑔(𝑥)2
+ |

1

2
𝑒𝑇𝑃𝑒𝑔(𝑥)−2| 𝐷(𝑥) = 0 (16) 

Meanwhile, based on assumption 5, equation 14 can be rewritten as 

 �̇� ≤ −
1

2𝑔(𝑥)
𝑒𝑇𝑄𝑒 ≤ 0 (17) 

Therefore, it can be concluded that the tracking error and its derivatives asymptotically 
converge to zero without any compact set  𝑒(𝑖)(𝑡) → 0 as 𝑡 → ∞ for 𝑖 = 0,1, … , 𝑛 − 1 [1], and 
the system is globally stable. It is tough to implement the ideal control law presented in (7) 
since the nonlinear functions 𝑓 (𝑥), 𝑔 (𝑥), 𝐷(𝑥), and the exogenous disturbance are unknown. 
In this case, our objective is to use fuzzy systems to approach the ideal control law.  

3. Fuzzy Logic Systems 

It is shown and proved that any real continuous function could be approximated using 
fuzzy systems defined on a compact set with arbitrarily high precision [23]. Sugeno et al. [24] 
have proposed a class of fuzzy systems that allows representing general knowledge to be 
expressed in analytical form, describing the system's internal behavior. 

This class of fuzzy systems is called Takagi-Sugeno (TS) fuzzy systems. The input of the 
fuzzy system is defined as 𝑥 = [𝑥1, … , 𝑥𝑛]𝑇 and its output is defined as 𝑦. As for 𝑥𝑖 ∈ 𝑋𝑖 , each  𝑥𝑖 

is associated with 𝑚𝑖, fuzzy sets 𝐹𝑖
𝑗
 in 𝑋𝑖 . There is at least one non-zero degree of membership 

𝜇
𝐹𝑖

𝑗(𝑥𝑖) ≠ 0 where 𝑖 = 1,2, … , 𝑛 and 𝑗 = 1,2, … , 𝑚𝑖 . 

 Another notable characteristic of fuzzy systems is associated with their rules. The fuzzy 
system has 𝑁 = ∏ 𝑚𝑖

𝑛
𝑖=1  fuzzy rules, which have the following form 

 𝑅𝑘: 𝑖𝑓 𝑥1 𝑖𝑠 �̆�1
𝑘   𝑎𝑛𝑑 … 𝑎𝑛𝑑 𝑥𝑛 𝑖𝑠 �̆�𝑛

𝑘   𝑡ℎ𝑒𝑛  𝑦 = 𝑓𝑘(𝑥), 𝑘 = 1, … , 𝑁 (18) 

where �̆�𝑖
𝑘  ∈ {𝐹𝑖

1 , … , 𝐹𝑖
𝑚𝑖    } and 𝑓𝑘(𝑥) is a numerical function on the output space. In 

general, 𝑓𝑘(𝑥) is a polynomial function depending on variable inputs, but it can also be an 
arbitrary function to adequately describe the studied system's behavior.  

First-order and zero-order Takagi-Sugeno fuzzy systems can be distinguished from the 
𝑓𝑘(𝑥). The 𝑓𝑘(𝑥) of the first-order Takagi-Sugeno fuzzy system is the first-order polynomial 
form, as in  

 𝑓𝑘(𝑥) = 𝑎0
𝑘 + ∑ 𝑎𝑖

𝑘𝑥𝑖

𝑛

𝑖=1

 (19) 

Meanwhile, the 𝑓𝑘(𝑥) of the zero-order Takagi-Sugeno fuzzy systems (TS-0) is a polynomial 
of zero-order as in 
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 𝑓𝑘(𝑥) = 𝑎𝑘  (20) 

In this work, a zero-order fuzzy system (TS-0) will be considered. A numerical conclusion 
is subjected to each rule. A weighted average is used to calculate the total output. In this way, 
the time spent on the defuzzification process can be reduced.  

The output of the fuzzy system is given by the following equation [25-28]: 

 𝑦(𝑥) =
∑ 𝜇𝑘(𝑥)𝑓𝑘(𝑥)𝑁

𝑘=1

∑ 𝜇𝑘(𝑥)𝑁
𝑘=1

 (21) 

with 

𝜇𝑘(𝑥) = ∏ 𝜇
�̆�𝑖

𝑘

𝑛

𝑖=1

 

and 

�̆�𝑖
𝑘  ∈ {𝐹𝑖

1 , … , 𝐹𝑖
𝑚𝑖    } 

which represents the degree of confidence or activation rule 𝑅𝑘. 

The equation (21) can be simplified and rewritten as follows: 

 𝑦(𝑥) =
∑ 𝜇𝑘(𝑥)𝑎𝑘𝑁

𝑘=1

∑ 𝜇𝑘(𝑥)𝑁
𝑘=1

 (22) 

Nevertheless, by considering the principle of fuzzy basis functions [25], the output of the 
TS-0 fuzzy system can be written as: 

 𝑦(𝑥) = 𝑤𝑇(𝑥)𝜃 (23) 

where 𝜃 = [𝑎1   …   𝑎 𝑁] is a vector of the fuzzy conclusion rules parameters and 𝑤(𝑥) =
[𝑤1(𝑥) …   𝑤𝑁(𝑥)]𝑇  is each component vector's basic function. The basic function 𝑤𝑁(𝑥) is 
given by:  

 𝑤𝑁(𝑥) =
𝜇𝑘(𝑥)

∑ 𝜇𝑗(𝑥)𝑁
𝑗=1

 , 𝑘 = 1, … , 𝑁 (24) 

4. Adaptive Fuzzy Fault-Tolerant Design 

This section discusses approximating the ideal control law to ensure the system can track 
the desired reference trajectory. A fuzzy system is used to approximate the control law with a 
direct approach to achieve these goals. Based on the universal approximation theory [23] of 
fuzzy systems, the ideal control law can be approximated as 

 𝑢∗ = 𝑤𝑇(𝑥)𝜃∗ + 𝜀(𝑥) (25) 

with 𝜀(𝑥) as the approximation error, 𝑤(𝑥) is a vector of fuzzy basis functions which was 
properly assumed and set in advance by the user, and 𝜃∗ is the optimal parameters' vector. The 
𝜃∗ somehow minimizes |𝜀(𝑥)| as in 

 𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃{𝑠𝑢𝑝𝑥|𝑢∗ − 𝑤𝑇(𝑥)𝜃|} (26) 

The approximation error is assumed to be bounded as follows: 

|𝜀(𝑥)| ≤ 𝜀�̅� 
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with 𝜀�̅� is an unknown positive constant. It should be noted that the fuzzy basis functions 
determine the lower bound of the approximation error 𝜀�̅�. As a result, if these functions are 
better selected, the 𝜀�̅� would be smaller.  

Since the optimal parameters 𝜃∗ are unknown, the synthesis of the controller must be 
estimated. Hence, the 𝜃 is the estimation of the 𝜃∗ which will be calculated from an adaptation 
algorithm. The fuzzy adaptive approximation of the ideal control law is defined as 

 �̂� = 𝑤𝑇𝜃 + 𝑢𝑟 (27) 

Then, the following control law can be considered based on the above equation 

 𝑢 = �̂� = 𝑤𝑇𝜃 + 𝑢𝑟 (28) 

where 𝑢𝑟 is a robust control to deal with the approximation errors. The robust control used in 
this work is defined as  

 𝑢𝑟 = 𝑠𝑖𝑔𝑛(𝑒𝑇𝑃𝐵)𝜀�̂� −
𝜎2

𝑒𝑇𝑃𝐵
 (29) 

The following are the chosen adaption laws that refer to the estimation parameters:  

 �̇� = 𝛾𝑒𝑇𝑃𝐵𝑤(𝑥) (30) 

 𝜀̂�̇� = 𝑛𝑢|𝑒𝑇𝑃𝐵| (31) 

 �̇� = −𝛿0𝜎 (32) 

when 𝜎 is the time-varying parameter with 𝑛𝑓 > 0, 𝛾 > 0, 𝛿0 > 0 

Remark 1 The general design of the proposed approach can be seen in Fig. 1. 

Theorem: 

Consider the faulty system (2c) respecting the assumptions (1-6). The control law defined 
by (28) and (29) with adaptions law (30-32) ensure the following properties: 

 The tracking error and its derivatives converge to zero,𝑒(𝑖)(𝑡) → 0 when 𝑡 →∾ for𝑖 =

0,1, … 𝑛 − 1. 

 The output of the system and its derivatives up to the order  (𝑛 − 1)  and the control 

signal are bounded:  𝑦(𝑡), �̇�(𝑡), … , 𝑦𝑛−1(𝑡), 𝑢(𝑡)𝜖𝐿∾. 

Proof 

 
𝑒(𝑛) = 𝑦𝑑

(𝑛) − 𝑦(𝑛)

= 𝑦𝑑
(𝑛) − 𝑓(𝑥) − 𝑓𝑎(𝑥, 𝑢) − 𝑑(𝑡) − 𝑔(𝑥)𝑢 + 𝑔(𝑥)𝑢∗ − 𝑔(𝑥)𝑢∗ 

(33) 

where 𝑢∗ is the ideal control law, considered as an unknown term introduced just for 
theoretical purpose and its value is unnecessary for the design of the proposed controller. 

 𝑒(𝑛) = 𝑦𝑑
(𝑛) − 𝑓(𝑥) − 𝑓𝑎(𝑥, 𝑢) − 𝑑(𝑡) + 𝑔(𝑥)(𝑢∗ − 𝑢) − 𝑔(𝑥)𝑢∗ (34) 

Replacing equation (7), equation (34) becomes 

 𝑒(𝑛) = −𝑘𝑇𝑒 + 𝑔(𝑥)(𝑢∗ − 𝑢) − 𝑔(𝑥) (
𝐷(𝑥)

2𝑔(𝑥)2

𝑒𝑇𝑃𝑒

𝑒𝑇𝑃𝐵
) (35) 
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Meanwhile, the ideal control law is written as 

 𝑢∗ = 𝑤𝑇𝜃∗ + 𝜀𝑢(𝑥) (36) 

Let the adaptive control term considered as follows 

 𝑢 = �̂� = 𝑤𝑇𝜃 + 𝑢𝑟 (37) 

Then, by combining equation (36) and (37), an equation can be found as below  

  𝑢∗ − 𝑢 = 𝑤𝑇�̃� + 𝜀𝑢(𝑥)−𝑢𝑟 (38) 

where 

 �̃� = 𝜃∗ −  𝜃 (39) 

 𝑒(𝑛) = −𝑘𝑇𝑒 + 𝑔(𝑥)(𝑤𝑇�̃� + 𝜀𝑢(𝑥) − 𝑢𝑟) − 𝑔(𝑥) (
𝐷(𝑥)

2𝑔(𝑥)2

𝑒𝑇𝑃𝑒

𝑒𝑇𝑃𝐵
) (40) 

Then, the dynamics of the error can be written as:  

 �̇� = 𝐴𝑒 + 𝐵 [𝑔(𝑥)(𝑤𝑇�̃� + 𝜀𝑢(𝑥) − 𝑢𝑟) − 𝑔(𝑥) (
𝐷(𝑥)

2𝑔(𝑥)2

𝑒𝑇𝑃𝑒

𝑒𝑇𝑃𝐵
)] (41) 

where                

𝐴 = [

0 1 ⋯ 0
⋮ ⋮ ⋯ 0
0

−𝑘𝑛

0
−𝑘𝑛−1

⋯ 1
     … −𝑘𝑛

]           𝐵 = [

0
⋮
0
1

] 

Until 𝐴 is stable or (|𝑠𝐼 − 𝐴|) = 𝑠(𝑛) + 𝑘1𝑠(𝑛−1) + ⋯ + 𝑘𝑛 is stable, it is known that a symmetric 
positive definite matrix 𝑃 (𝑛, 𝑛) that satisfies the Lyapunov equation is existed. 

   𝐴𝑇𝑃 + 𝑃𝐴 = −𝑄 (42) 

where 𝑄(𝑛 𝑥 𝑛) is a symmetric positive definite matrix. 

The 𝑉 is the Lyapunov-like equation function, then 

 𝑉 =
1

2𝑔(𝑥)
 𝑒𝑇𝑃𝑒 +

1

2𝛾
�̃�𝑇�̃� +

1

2𝑛𝑢
𝜀�̃�

2 +
1

2𝛿0
𝜎2 (43) 

 

�̇� = −
1

2𝑔(𝑥)
 𝑒𝑇𝑄𝑒

+ 𝑒𝑇𝑃𝐵𝑔(𝑥)−1 [𝑔(𝑥)(𝑤𝑇�̃� + 𝜀𝑢(𝑥) − 𝑢𝑟)

− 𝑔(𝑥) (
𝐷(𝑥)

2𝑔(𝑥)2

𝑒𝑇𝑃𝑒

𝑒𝑇𝑃𝐵
)] −

1

2

𝑒𝑇𝑃𝑒

𝑔(𝑥)2
�̇�(𝑥) −

1

𝛾
�̃�𝑇�̇� −

1

𝑛𝑢
𝜀�̃�𝜀̂�̇�

+
1

𝛿0
𝜎�̇� 

(44) 

 �̇� = −
1

2𝑔(𝑥)
 𝑒𝑇𝑄𝑒 −

1

2

𝑒𝑇𝑃𝑒

𝑔(𝑥)2
�̇�(𝑥) + �̇�1 + �̇�2 (45) 

with 
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 �̇�1 = 𝑒𝑇𝑃𝐵𝑤𝑇�̃� −
1

𝛾
�̃�𝑇�̇� (46) 

Then 

 �̇�2 = 𝑒𝑇𝑃𝐵𝜀𝑢(𝑥) − 𝑒𝑇𝑃𝐵𝑢𝑟 −
𝐷(𝑥)𝑒𝑇𝑃𝑒

2𝑔(𝑥)2
−

1

𝑛𝑢
𝜀�̃�𝜀̂�̇� +

1

𝛿0
𝜎�̇� (47) 

Using equation (30) 

 �̇�1 = 0 (48) 

Using assumption 6 

 �̇�2 ≤ |𝑒𝑇𝑃𝐵|𝜀𝑢 − 𝑒𝑇𝑃𝐵𝑢𝑟 −
𝐷(𝑥)𝑒𝑇𝑃𝑒

2𝑔(𝑥)2
−

1

𝑛𝑢
𝜀�̃�𝜀̂�̇� +

1

𝛿0
𝜎�̇� (49) 

Using (29), (31) and (32) 

 �̇�2 ≤ −
𝐷(𝑥)𝑒𝑇𝑃𝑒

2𝑔(𝑥)2
 (50) 

The whole Lyapunov-like equation can be described as   

 �̇� ≤ −
1

2𝑔(𝑥)
 𝑒𝑇𝑄𝑒 −

1

2

𝑒𝑇𝑃𝑒

𝑔(𝑥)2
�̇�(𝑥) −

𝐷(𝑥)𝑒𝑇𝑃𝑒

2𝑔(𝑥)2
 (51) 

Based on assumption 3, the equation becomes: 

 �̇� ≤ −
1

2𝑔(𝑥)
 𝑒𝑇𝑄𝑒 ≤ −

1

2𝑔
 𝑒𝑇𝑄𝑒 ≤ 0 (52) 

Hence, 𝑉𝜖𝐿∞ implies that the signals 𝑒(𝑡), �̃�(𝑡), 𝜀̃(𝑡) and 𝛿(𝑡) are bounded. This also implies 
that the 𝑥(𝑡), 𝑢(𝑡), and �̇�(𝑡) are bounded. By using Babalat's lemma, it can be concluded that 
the tracking error and its derivatives converge asymptotically to zero 𝑒(𝑖)(𝑡) → 0 when 𝑡 → ∞ 
for 𝑖 = 0,1, … , 𝑛 − 1. 

 

Fig. 1. The overall scheme 
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5. Results and Discussion 

In this part, an inverted pendulum model is used to evaluate the proposed method's 
accuracy and prompt. The inverted pendulum mechanism system can be seen in Fig. 2. 
Tracking control is considered for the system. The dynamic equations of such a system are 
provided below as in [25]. 

 

{

�̇�1 = 𝑥2

�̇�2 = 𝑓(𝑥) + 𝑔(𝑥)𝑢 + 𝑑(𝑡)
𝑦 = 𝑥1

 (53) 

with 

 

𝑓(𝑥) =
𝑔𝑠𝑖𝑛𝑥1 − (𝑚𝑙𝑥2

2𝑐𝑜𝑠𝑥1𝑠𝑖𝑛𝑥1) (𝑚𝑝 + 𝑚𝑐)⁄

𝑙(4 3⁄ − 𝑚𝑝𝑐𝑜𝑠2𝑥1 (𝑚𝑝 + 𝑚𝑐)⁄ )
 (54) 

 

𝑔(𝑥) =
𝑐𝑜𝑠𝑥1 (𝑚𝑝 + 𝑚𝑐)⁄

𝑙(4 3⁄ − 𝑚𝑝𝑐𝑜𝑠2𝑥1 (𝑚𝑝 + 𝑚𝑐)⁄ )
 (55) 

where 𝑥1 is rotational movement, 𝑥2 is rotational velocity, 𝑔 = 9.8𝑚/𝑠2 is the gravitational 
acceleration force, 𝑚𝑐  is the cart's mass, 𝑚𝑝 is the pole's mass, 𝑙 is the pole's half-length, and 𝑢 

is the applied force values. Moreover, 𝑚𝑐 = 1𝑘𝑔, 𝑚𝑝 = 0.1𝑘𝑔 and 𝑙 = 0.5𝑚 are the values of 

the selected parameter.  

The control purpose is to force the system to track the given trajectory 𝑦𝑑(𝑡) = sin(𝑡). It 
should be noted that the given reference allows a 1 𝑟𝑎𝑑 maximum swing, while it is limited to 
0.1 rad in [25]. Meanwhile, the exogenous disturbance is given as 𝑑(𝑡) = 0.45sin (3𝑡). 

 

Fig. 2. The used inverted pendulum 

One fuzzy system is used as an approximator for the ideal control law taking the form of 
(23). Two fuzzy system inputs are selected: 𝑥1(𝑡) and 𝑥2(𝑡). Five Gaussian membership 
functions are subjected to each input, and can be defined as  

𝜇𝐹𝑖
1(𝑥𝑖) = exp (−

1

2
(

𝑥𝑖 + 1.8

0.22
)

2

) 

𝜇𝐹𝑖
2(𝑥𝑖) = exp (−

1

2
(

𝑥𝑖 + 1.4

0.22
)

2

) 

𝜇𝐹𝑖
3(𝑥𝑖) = exp (−

1

2
(

𝑥𝑖

0.22
)

2

) 

𝜇𝐹𝑖
4(𝑥𝑖) = exp (−

1

2
(

𝑥𝑖 − 1.4

0.22
)

2

) 
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𝜇𝐹𝑖
5(𝑥𝑖) = exp (−

1

2
(

𝑥𝑖 − 1.8

0.22
)

2

) 

The initial value of the parameter 𝜃(𝑡) was randomly chosen. The various parameters used 
in this simulation were chosen as follows: 𝑘 = [1,2], 𝑃 = [15 5; 5 5], 𝐵 = [0; 1]𝛾 = 100 , 𝛿0 =
10, 𝑛𝑢 = 0.001 

The initial value of 𝜃(0) was randomly selected in the range of (-2 and 2). The initial value 
of 𝜀�̂�(0) = 0 and 𝜎(0) =3. The simulation was conducted with actuator faults instead of sensor 
faults. The time profile of the faults was chosen to be at the initial time of the simulation. The 
actuators fault took the following forms and parameters: 1) Bias (0.005 𝑁. 𝑚); 2) Drift with 
𝜆 = 0.07; 3) Loss of accuracy defined by a square waveform with 0.0087 𝑁. 𝑚 amplitude and 
0.15𝐻𝑧 frequency; 4) 75% loss of effectiveness. 

The simulation results of the angular position 𝑦 = 𝑥1 and the angular velocity �̇� = 𝑥2 are 
shown in Fig. 3 and Fig. 4, respectively. The control input signal 𝑢(𝑡) is shown in Fig. 5. The 
tracking error signal 𝑒(𝑡) is depicted in Fig. 6. We can figure out that the system output 
converges to the desired trajectory in a short time, even in the presence of actuator faults. So, 
the proposed control strategy is capable of tracking precisely. 

 
Fig. 3. 𝑦(𝑡) angular position signal (solid lines) and  𝑦𝑑(𝑡) reference signal (dashed lines) 

 
Fig. 4. �̇�(𝑡) angular velocity signal (solid lines) and  �̇�𝑑(𝑡) reference signal (dashed lines) 
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Fig. 5. Applied control input signal 

 

Fig. 6. Tracking error signal (𝑦𝑑(𝑡) − 𝑦(𝑡)) 

Based on the results (Fig. 3-6), we can figure out the proposed approach reaches a good 
tracking performance against uncertainties, exogenous disturbances, and actuator faults. The 
position of the inverted pendulum 𝑦(𝑡) reaches the desired trajectory 𝑦𝑑(𝑡) in few seconds 
(around 2.5 seconds) as shown in Fig. 3 even in the presence of actuator faults, with acceptable 
angular velocity as depicted in Fig. 4, and the applied effort is smooth without any chattering 
phenomenon and acceptable power (no saturation) as shown in Fig. 5. Finally, the tracking 
error is closer to the origin (see Fig. 6), which implies that the control objective is reached.   

6. Conclusion 

      The effects of time-varying actuator faults and exogenous disturbance on direct adaptive 
fuzzy fault-tolerant control for a class of unknown nonlinear systems are studied in this paper. 
Fuzzy logic systems (FLSs) are used to approach the entire adaptive control rule, including the 
actuator fault and the exogenous disturbance, with one robust controller term to compensate 
for the FLC approximation errors. The controller does not need any mathematical model of the 
plant, and no-fault detection and isolation FDI units are needed. 
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 The boundedness of all signals involved in the closed-loop system and the convergence of 
the tracking error to zero are ensured based on the Lyapunov-like equation and Barbalat's 
lemma. The novelty of this paper resides in the integration of actuator faults and exogenous 
disturbance in the approximation of the whole adaptive controller.  

Furthermore, the considered control gain is taken as a nonlinear function that extended the 
range of the studied systems. Moreover, our method eliminates the need for a priori knowledge 
of the control's gain lower bound and the approximation error's upper bounds. In the 
simulation section, one example applied on an inverted pendulum demonstrates the tracking 
performances of the proposed method.  
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