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1. Introduction 

Security inspection is a top priority for preventing threats and criminal activities in public places, 

such as airports, train stations, and government buildings [1], [2]. One of the most common methods 

used to ensure security in public spaces is the inspection of luggage through X-ray imaging. [3], [4]. 

These inspections allow security personnel to detect contraband items, including weapons, 

explosives, and other hazardous materials hidden in passenger luggage [5]-[7]. X-ray imaging 

facilitates the examination of items inside closed bags or suitcases without the need for manual 

unpacking [8], [9].  However, X-ray screening still poses several challenges. The resulting X-ray 

images are often complex and require accurate interpretation by trained personnel. Furthermore, 
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 Security inspection is a priority for preventing threats and criminal 

activities in public places. X-ray imaging can help with the closed luggages 

checking process. However, interpreting X-ray images is challenging due 

to the complexity and diversity of prohibited items. This paper proposes 

ESI-YOLO, an enhanced YOLOv8-based model for prohibited item 

detection in X-ray security inspection. The model integrates Efficient 

Multi-Scale Attention (EMA) and Wise-IoU (WIoU) loss function to 

improve multi-scale feature representation and detection accuracy. EMA 

improves multi-scale feature representation, while WIoU enhances 

bounding box regression, particularly in cluttered and overlapping 

scenarios. Comprehensive experiments on the CLCXray and PIDray 

datasets validate the effectiveness of ESI-YOLO. A systematic exploration 

for the optimal placement of EMA integration on YOLOv8 architecture 

reveals that the scenario with direct integration in both backbone and neck 

sections emerges as the most effective configuration without introducing 

significant computational complexity. Ablation experiments demonstrate 

the synergistic effect of combining EMA and WIoU in ESI-YOLO, 

outperforming individual component additions. ESI-YOLO demonstrates 

notable advancements over the baseline YOLOv8 model, achieving 

mAP50 improvements of 0.9% on CLCXray and 3.5% on the challenging 

hidden subset of PIDray, with a computational cost of 8.4 GFLOPs. 

Compared to other nano-sized models, ESI-YOLO exhibits enhanced 

accuracy while maintaining computational efficiency, making it a 

promising solution for practical X-ray security inspection systems. 
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because hundreds or thousands of items must be scanned daily, X-ray security screening must be 

both fast and efficient. Manual screening, even when assisted by X-ray images, is often considered 

less effective and time-consuming. Therefore, the increasing pace and scale of security operations 

highlight the need for automation to support the screening process. 

Deep learning-based object detection methods offer promising solutions to address the 

limitations of traditional X-ray security inspection. They offer powerful capabilities for feature 

extraction and pattern recognition. These models can make X-ray security inspection faster and more 

accurate [6], [10]. Several studies have been conducted to develop detection models for security 

inspection on X-ray images [11]-[16]. Several challenges must be considered when developing deep 

learning models, such as overlapping items in bags and the diversity of sizes, shapes, and variations 

in prohibited items. Objects in X-ray images have low contrast, textures, and edges that are less 

prominent than those in natural images [17]-[20], which can negatively impact detection accuracy 

[17], [19], [21]. Along with technological advancements, several studies have adopted large-scale 

deep neural networks and transformer-based object detection models to improve detection accuracy 

[8], [15], [18], [22]-[24]. These models have proven capable of recognizing complex patterns and 

subtle features in visual data, such as X-ray images. However, despite this approach is promising in 

terms of performance, significant challenges may arise due to the larger computational requirements. 

This poses limitations in terms of accessibility and scalability, particularly in resource-constrained 

environments. 

In practical security inspection scenarios, detection models that strike a balance between 

accuracy, speed, and computational efficiency are essential. The YOLO-based model is 

advantageous in this context because it offers a compact design and rapid detection capabilities while 

ensuring reliable performance [25]-[30]. The efficiency of the YOLO architecture is attributed to its 

single-stage detection approach, which analyzes the entire image in a single forward pass [31]. This 

enables real-time object detection, making it ideal for scenarios with limited computational power or 

those that demand quick processing [32]-[37]. Several studies have adopted YOLO-based models to 

detect prohibited items in X-ray images [11], [12], [14], [38]-[40].  Ren et al. [12] proposed a 

lightweight object detection model based on the YOLOv4 architecture called LightRay. The 

proposed model achieved good performance with a small light size. Gan et al. [11] proposed the 

YOLO-CID method based on the YOLOv7 architecture. The experimental results obtained from the 

PIDray dataset indicate that modifications to the baseline, such as modifying the backbone and 

incorporating attention mechanisms, can improve the model performance by 4.9% compared with 

the base YOLOv7 model. 

The Attention Mechanism (AM) is a method for diverting the attention of a deep-learning model 

to important parts while ignoring irrelevant parts [41]-[45]. In the context of computer vision, AM 

has proven to be effective in enhancing the model’s ability to analyze and interpret complex visual 

data efficiently. Several AM modules have been proposed for computer vision tasks, including 

Squeeze-and-Excitation Networks (SENet) [46], Convolutional Block Attention Mechanism 

(CBAM) [47], and Coordinate Attention (CA) [48]. Previous studies have demonstrated that 

integrating attention mechanisms into object detection models can significantly improve their 

performance [49]-[51]. Recently, attention mechanisms have been incorporated into YOLO-based 

architectures to enhance the detection of prohibited items in X-ray images. For instance, Ren et al. 

[12] applied CBAM to YOLOv4 to improve the characteristics of small objects. Zhao et al. [7] 

introduced a Label-Aware mechanism aimed at improving the accuracy of detecting overlapping 

items. Although this approach enhances accuracy, it often necessitates more intricate network 

architectures and greater computational resources. Gan et al. [11] applied Shuffle Attention (SA) to 

the neck of the YOLOv7 architecture. S. Han, Jiang, and Wu [52] used CA on the backbone and neck 

of YOLOv5 to capture information and enable the model to identify targets more accurately. 

Despite these advancements, the optimal placement of attention modules within YOLO-based 

architectures remains an open question. Based on related studies [52]-[57], various strategies for 

integrating AM modules at different locations within the architecture require further investigation to 
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determine their impact on the overall model performance. Although AMs have proven effective in 

enhancing object detection capabilities, there is a need for systematic exploration to determine the 

most effective placement strategies, particularly in the context of prohibited items detection. 

Moreover, challenges such as varying object scales and complex visual patterns in X-ray imagery 

highlight the need for further research and innovation. 

In response to the issues, this paper proposes ESI-YOLO, an enhanced YOLOv8-based model, 

designed to improve multi-scale feature representation in X-ray security inspections. The model 

innovatively integrates Efficient Multi-Scale Attention (EMA) on optimal placement and the Wise-

IoU (WIoU) loss function into the YOLOv8 architecture to enhance the detection of prohibited items. 

The integration of the EMA module with the YOLOv8 architecture aims to enhance its feature 

extraction capabilities by focusing more attention on significant features across different scales, 

thereby enhancing the model's detection performance. The contributions of this paper are as follows: 

1) This study proposes ESI-YOLO, an enhanced YOLOv8-based model that innovatively 

integrates EMA on optimal placement and Wise-IoU loss function on the YOLOv8 architecture 

for prohibited items detection. To validate the effectiveness of the proposed ESI-YOLO model, 

comprehensive experiments were conducted using benchmark datasets. Experiments conducted 

on the CLCXray [7] and PIDray [6] datasets showed that the ESI-YOLO model achieved 

improved performance over the baseline model. 

2) This study systematically explored various scenarios for integrating the Efficient Multi-Scale 

Attention (EMA) module into the YOLOv8 architecture, with a particular focus on the backbone 

and neck sections, to evaluate their impact on the detection performance. The direct integration 

scenario of the EMA module in both the backbone and neck sections of YOLOv8 emerged as 

the most effective configuration, consistently enhancing the overall performance. 

3) To enhance the accuracy and robustness of bounding box regression in the presence of variations 

in the object scale and shape, this paper integrates the Wise-IoU (WIoU) loss function into the 

model development process. Its efficacy in managing complex backgrounds with overlapping 

challenges renders it suitable for detecting prohibited items. This loss function significantly 

improved the overall model performance. 

2. Proposed Method 

This paper proposes ESI-YOLO, an enhanced model based on YOLOv8, designed to improve 

the multi-scale feature representation in X-ray security inspections. The model innovatively 

integrates Efficient Multi-Scale Attention (EMA) on optimal placement and the Wise-IoU loss 

function into the YOLOv8 architecture to enhance the detection of prohibited items. The proposed 

method was derived from a series of research stages, including a literature review, data exploration, 

model design, model evaluation, and result analysis. The overall architecture of the proposed ESI-

YOLO is shown in Fig. 1. 

2.1. Baseline Method (YOLOv8) 

YOLOv8 [58] is an iteration of the YOLO series developed by the same author as YOLOv5 

[59]. Although it was not the latest iteration at the time this study was conducted, the model 

performance is still very good in recent studies and is still being optimized in various fields to date 

with good community support. YOLOv8 has an adjustable scaling factor. This implies that it can 

meet the requirements under different conditions. YOLOv8 incorporates cutting-edge backbone and 

neck designs that improve the feature extraction and object detection capabilities. In YOLOv8, the 

C2f module replaces the C3 module from the YOLOv5 architecture. The C2f module was developed 

by drawing inspiration from the C3 module of YOLOv5 and the ELAN concept [60]. With more 

residual connections, the C2f structure enables YOLOv8 to achieve a richer gradient flow while 

remaining lightweight. The SPP module from YOLOv5 is substituted with SPPF (Spatial Pyramid 

Pooling-Faster), which serves the same purpose of managing features at various scales but with 
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reduced computational demands. The neck architecture of YOLOv8 employs the PAN-FPN 

structure, which is derived from the PANet backbone network. The Detection Head in YOLOv8 

utilizes the decoupling-head and anchor-free design from the YOLOv6 model [28]. 

 

Fig. 1. ESI-YOLO overall architecture 

In this study, the YOLOv8n (nano) variant was primarily employed as the baseline model owing 

to its advantages in computational efficiency and inference speed. YOLOv8n is crafted specifically 

for use in real-time scenarios on devices with limited resources, which is particularly pertinent to the 

context of detecting prohibited items during security inspections. In such scenarios, the system must 

process images swiftly and accurately without relying on high-powered hardware. Furthermore, the 

utilization of a lightweight model, such as YOLOv8n, facilitates the isolation and evaluation of the 

impact of integrating the EMA module on detection performance. Consequently, YOLOv8n serves 

as an ideal baseline for assessing the effectiveness of the EMA module placement in enhancing the 

accuracy of prohibited object detection. 

2.2. Integration of Efficient Multi-Scale Attention 

Efficient Multi-Scale Attention (EMA) [61] is an attention mechanism that focuses on important 

features at various scales with minimal computation. EMA can efficiently capture spatial and channel 
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information through a lightweight multi-scale mechanism. This capability is particularly crucial in 

the domain of prohibited item detection, where objects frequently exhibit variations in size, shape, 

and position. Unlike CBAM and CA that process channel and spatial separately, EMA integrates 

both in one stage, making it more efficient in the context of real-time object detection. EMA provides 

a better trade-off between accuracy and complexity than other attention modules. EMA uses parallel 

substructure in modules to avoid sequential processing and large network depth, preserving 

information while reducing computational cost. The overall structure of EMA module is shown in 

Fig. 2. 

The main features of EMA include feature grouping, parallel subnetworks, and cross-spatial 

learning. The input features are divided into several channel groups to reduce complexity and enable 

parallel processing. EMA captures spatial context from two main directions, y using adaptive average 

pooling separately on the horizontal (X) and vertical (Y) dimensions as demonstrated in (1) and (2).  

 

Fig. 2. EMA module architecture illustrating main feature such as feature grouping, parallel subnetworks, 

and cross-spatial learning 

This allows the model to understand broader spatial structures without explicitly enlarging the 

receptive field. 

 𝑍𝐶
𝐻 =

1

𝑊
∑ 𝑥𝐶(𝐻, 𝑖)

0≤𝑖≤𝑊

, (1) 

 𝑍𝐶
𝑊 =

1

𝐻
∑ 𝑥𝐶(𝑗, 𝑊)

0≤𝑗≤𝐻

, (2) 
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where C represents the count of input channels, while H and W refer to the spatial dimensions of the 

input features, respectively, and 𝑥𝐶 indicates the input feature. 𝑍𝐶
𝐻represent the output of average 

pooling on H (height) dimension for C channel, 𝑍𝐶
𝑊 represent the output on average pooling on W 

(width) dimension for C channel. 

The pooled features are concatenated and processed through 1×1 convolutions, then used as 

gating masks modulated with a sigmoid function. This gating selectively controls the flow of spatial 

information. While one path uses gating and normalization (GroupNorm), the other path uses 3×3 

convolutions to preserve local information. These two paths are then combined through a global 

attention mechanism. EMA determines global attention weights to enhance the initial spatial features 

by utilizing 2D global adaptive average pooling with reconstruction, as illustrated in (3), along with 

the softmax normalization function. This process allows the model to adjust its focus on important 

areas in the spatial features. Through feature grouping and multi-scale structure, it builds short-term 

and long-term dependencies effectively. 

 𝑍𝐶 =
1

𝐻 × 𝑊
∑ ∑ 𝑥𝐶(𝑖, 𝑗)

𝑊

𝑖

𝐻

𝑗

 (3) 

where C represents the count of input channels, while H and W refer to the spatial dimensions of the 

input features, respectively, and 𝑥𝐶 indicates the input feature. 𝑍𝐶  represents the output of global 

average pooling for C channel. 

The experiments in this study are aimed at investigating the optimal placement of the EMA 

module within the YOLOv8 architecture for prohibited items detection. Strategic placement of the 

EMA module is expected to improve the quality of the features used for the final prediction, and to 

allow the model to focus more on important areas in the image, especially small or hidden objects. 

Several experimental scenarios for the module placement were considered in this study. In each 

scenario, the placement of the EMA module is evaluated by positioning it on the backbone, neck, or 

both sections of the YOLOv8 architecture. The scenarios explored in this paper are as follows;  

(1) The EMA module is directly integrated into the YOLOv8 structure, either on the backbone, 

neck, or both. In the backbone section, The EMA module is placed after each C2f block to 

strengthen the feature representation in the early stages of extraction. In the neck section, The 

EMA module is placed before the transition to the head, aiming to enrich the multiscale features 

before the final prediction is performed. 

(2) The integration of EMA internally into the C2f block, which is then referred to as C2f_EMA. 

The EMA module is placed before the last convolutional layer in the C2f block, resulting in 

more informative feature maps than the previous implementation. The original C2f block in 

YOLOv8 is replaced by C2f_EMA. The architectural design of C2f_EMA block is explained in 

Fig. 3 (a). 

(3) The EMA module is integrated into the Bottleneck part of the C2f block, which then referred to 

as C2f_BtlEMA. This placement allows the processing of smaller features maps, thus reducing 

model complexity without sacrificing feature quality. The original C2f block is replaced by 

C2f_BtlEMA in the same position as in the second scenario. The changes in the bottleneck 

structure are shown in Fig. 3 (b), and the details of the C2f_BtlEMA block are shown in Fig. 3 

(c). 

2.3. Improve Loss Function (WIoU) 

In this study, the Wise-IoU v3 (WIoU v3) [62] loss function is employed as part of an enhanced 

strategy to improve accuracy in the detection of prohibited items. This function replaces the default 

CIoU used in the YOLOv8 model, as CIoU has shown limitations in meeting the high demands for 

speed and accuracy in complex object detection scenarios. WIoU v3 introduces a dynamic gradient 

allocation mechanism that allows the model to focus more effectively on medium-quality samples, 
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which often reflect real-world conditions. WIoU introduces the Dynamic Non-Monotonic Focusing 

Mechanism (FM) approach. This mechanism aims to address the shortcomings of conventional loss 

functions that tend to produce zero gradients when there is no overlap between the prediction and 

ground truth. In addition, WIoU also takes into account the outlier degree of the anchor box to assess 

prediction quality, allowing for more prudent allocation of gradients. Additionally, this function 

enhances gradient distribution, enabling the model to detect objects at various scales more accurately 

and to accelerate convergence during training. By integrating non-monotonic behavior, WIoU v3 

aids in minimizing overfitting to extreme samples while preserving the model's responsiveness to 

changes in object shape and size, a crucial feature for identifying prohibited items that are often 

hidden or have irregular structures. The WIOU loss function calculated using formula:  

 ℒ𝑤𝑖𝑜𝑢 = 𝑟𝑅𝑤𝑖𝑜𝑢ℒ𝑖𝑜𝑢 , 𝑟 =
𝛽

𝛿𝛼𝛽−𝛿
 (4) 

 𝑅𝑤𝑖𝑜𝑢 = (
(𝑥 − 𝑥𝑔𝑡)

2
+ (𝑦 − 𝑦𝑔𝑡)

2

(𝑊𝑔
2 + 𝐻𝑔

2)
∗ ) (5) 

 ℒ𝑖𝑜𝑢 = 1 − 𝐼𝑂𝑈 (6) 

In the equations, (𝑥, 𝑦)  represents the center coordinates of the anchor box, while (𝑥𝑔𝑡, 𝑦𝑔𝑡) 

indicates the target box centroid coordinates. The dimensions of the smallest bounding box are 

denoted by 𝑊𝑔 and 𝐻𝑔. The factor of gradient enhancement 𝑟, which is influenced by the 

hyperparameters α, δ, and the nonmonotonic focusing factor β, is dynamically adjusted. The loss 

function is denoted by  ℒ𝑖𝑜𝑢 The hyperparameter α regulates the magnitude of the gradient applied 

to anchor boxes based on their quality. A higher α value results in a steeper gradient difference 

between anchor boxes of medium quality and those of high or low quality. The hyperparameter δ 

controls sensitivity to outliers by mitigating the impact of extremely poor-quality anchor boxes, 

thereby preventing the generation of harmful gradients. The hyperparameter β defines the quality 

threshold in a non-monotonic focus mechanism, helping to identify anchor boxes that are considered 

medium quality to receive maximum gradient updates. 

2.4. Experimental Dataset 

The main dataset used is the publicly available Cutters and Liquid Containers X-ray Dataset 

(CLCXray) [7]. The dataset contained 9059 X-ray images from real and simulated manual baggage 

scanning. The dataset includes 12 object categories with five types of cutters and seven types of 

liquid containers. This dataset has the largest amount of liquid container data compared to other 

security X-ray datasets. The data classes were imbalanced, particularly for the liquid container 

classes. The image resolution used in the experiment was 640×640. The dataset was divided into 

fixed training and testing sets with ratios of 80%:20%.  To validate the best model, this study used 

the PIDray dataset [6]. The dataset covers various real-world cases of prohibited item detection, 

especially those involving deliberately hidden objects, thereby presenting significant challenges to 

conventional detection systems. PIDray consists of 124486 X-ray images covering 12 distinct 

categories of prohibited items. The dataset is one of the largest in the x-ray security images field and 

offers unique challenges related to intra-class variation, class imbalance, and occlusion issues. Both 

datasets were chosen because they contain prohibited items that are quite different from each other, 

with varying scenarios and complexity. For image preprocessing, each image in the dataset 

undergoes auto-orientation to ensure the image orientation matches its respective metadata, and the 

image is resized to stretch to 640×640. 

2.5. Experimental Setup 

In this paper, the hardware used in the experiment was a 4-Core CPU Processor with 30 GB 

RAM and an NVIDIA Tesla T4 GPU for training and testing in the model development experiments. 
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This paper uses Python 3.10 and PyTorch framework 2.3. In addition, in the training phase, each 

experiment did not use the pretrained YOLOv8 model. The decision to train the model from scratch 

in this study was based on technical considerations, particularly related to the modification of the 

YOLOv8 architecture. This modification directly affects the internal structure and learning 

mechanism of the model, so that the pre-trained weights of the standard architecture are no longer 

compatible or optimal for use. In addition, X-ray images have very different visual characteristics 

from conventional RGB images, such as object transparency and internal contrast, which are not 

covered in common datasets such as COCO. Therefore, training from scratch is necessary for the 

model to learn domain-specific features thoroughly and consistently. 

The hyperparameter settings used for model training for each experiment were based on the 

YOLOv8 default settings. The number of epochs used is 100, with SGD optimizer and 0.01 learning 

rate. The momentum used was 0.937 with three warmup epochs. Employing these default 

configurations allows the research to maintain computational efficiency and time effectiveness, 

particularly in exploratory studies or under limited resource conditions. Moreover, the default 

settings provided by YOLOv8 have undergone extensive tuning and validation, demonstrating 

generally optimal performance across a wide range of datasets. Additionally, using default 

hyperparameters allows researchers to focus on the main aspects of the improvement that proposed 

in this study. This is important to ensure that experiments are compared fairly. As a baseline, default 

hyperparameters provide an initial representative overview of the model’s capabilities. 

   
(a) C2f_EMA (b)  BottleneckEMA (c)  C2f_BtlEMA 

Fig. 3. EMA Module Integration for C2f_EMA and C2f_BtlEMA 

2.6. Evaluation Metrics 

The model evaluation used several metrics that are commonly used for object detection. In 

object detection, various metrics can measure how well a model detects objects in images. The model 

is measured by the precision of position and class of objects. Common evaluation metrics are 

precision, recall, and mean Average Precision (mAP). Besides performance metrics, measurements 

of model computation size, such as parameter count and FLOPs, are used for evaluation. The number 

of model parameters represents required memory resources. FLOPs represent the floating-point 

operations of the model, understood as calculation count. In deep learning, parameters and FLOPs 

are used to measure an algorithm's computational complexity. 
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In object detection, for a detection result to be considered correct, the model must accurately 

identify the object and its location. True Positive (TP) occurs when the model correctly predicts both 

the location and class according to the actual value and the object is still within the specified IoU 

threshold. False Positive (FP) occurs when the model correctly predicts the class according to the 

actual value, but the location falls below the IoU threshold, or the model predicts an object that does 

not exist in the actual values. False Negative (FN) occurs when the model fails to detect or does not 

detect an object that exists in the actual data. Precision, recall, and mAP are calculated using (7)- 

(10): 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (7) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (8) 

 𝐴𝑃𝑖 =  𝐴𝑃 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑖 (9) 

 𝑚𝐴𝑃 =
1

𝑛
∑ 𝐴𝑃𝑖

𝑛

𝑖=1

 (10) 

GFLOPs are calculated using (11): 

 𝐺𝐹𝐿𝑂𝑃𝑠 =
𝐹𝑙𝑜𝑎𝑡𝑖𝑛𝑔 𝑃𝑜𝑖𝑛𝑡 𝑝𝑒𝑟 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

109
 (11) 

3. Results and Discussion 

3.1. EMA Integration Experiments 

The evaluation results for model development, particularly focusing on the optimal placement 

exploration of the EMA module within the YOLOv8 architecture, are presented in Table 1. The 

experiment adhered to the scenario outlined in the research method design. Notably, all scenarios 

demonstrated improved performance compared to the YOLOv8 base model across various 

performance metrics. Among the evaluation metrics utilized in the experimental dataset, the 

placement of the EMA module on both sections (EMA-both) of the YOLOv8 architecture exhibited 

the most promising results for mAP50 and mAP metrics, with an approximate 0.7% increase in mAP. 

However, this configuration also resulted in the largest parameters and GFLOPs across all scenarios, 

the increase in parameters and GFLOPs from the original model remains within acceptable limits. 

The YOLOv8 with integration of the C2f_BtlEMA block in both sections (C2f_BtlEMA-both), ranks 

as the second-best in performance while being lighter. This scenario delivers results similar to the 

EMA-both scenario but with fewer parameters and lower computational demands. 

Table 1.  EMA module placement experiments on CLCXray dataset 

Model mAP50 mAP #param GFLOPs 
Base (YOLOv8n) 81.6 69.5 3.013M 8.21 

EMA-backbone 82.1 69.9 3.014M 8.29 

EMA-neck 81.9 69.7 3.014M 8.27 

EMA-both 82.3 70.3 3.015M 8.35 

C2f_EMA-backbone 81.9 69.9 3.016M 8.39 

C2f_EMA-neck 81.9 69.9 3.015M 8.33 

C2f_EMA-both 82.0 69.8 3.017M 8.52 

C2f_BtlEMA-backbone 82.0 69.8 3.013M 8.24 

C2f_BtlEMA-neck 81.9 69.8 3.013M 8.23 

C2f_BtlEMA-both 82.1 70.2 3.014M 8.26 
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To further evaluate the generalization capabilities of the two best scenario models, experiments 

were conducted utilizing multi-scale training by setting the multi-scale hyperparameter to True 

during model training. This approach was employed to assess the models' ability to manage the 

diversity and variation of objects within images, which presents a significant challenge in the 

detection of prohibited items. The evaluation outcomes of these multi-scale training experiments are 

presented in Table 2. From the results, the base model exhibits a significant decline from its previous 

default training outcomes, whereas the proposed model maintains a robust performance. The EMA 

scenario models demonstrate resilience in multi-scale training, suggesting an enhanced adaptability 

to varying object sizes and image variations. This improved generalization capability may be 

attributed to the EMA module's ability to capture and emphasize relevant features across different 

scales. The consistent performance of the EMA-both model under multi-scale conditions indicates 

its potential for real-world applications where object sizes may vary significantly. 

Table 2.  Evaluation results on multi-scale training settings on CLCXray dataset 

Model mAP50 mAP 
Base (YOLOv8n) 81.5 68.8 

EMA-both 81.9 69.7 

C2f_BtlEMA-both 81.8 69.6 

 

To further validate the results obtained from the models, the two best scenario model from the 

experiment was evaluated on another prohibited items detection dataset, namely, PIDray. The 

evaluation results on the PIDray dataset, presented in Table 3. In the evaluation results on PIDray 

dataset, the EMA-both model produces better performance compared to the base model and 

C2f_BtlEMA-both model. The EMA-both model shows significant improvements over the base 

model, particularly in the mAP metrics for each test set. In hidden subset, the EMA-both model 

achieves an mAP50 of 59.7% and 44.9%. The EMA-both model can improve performance with an 

increase in mAP metrics of approximately 2.9% and mAP50 metrics of approximately 3% on hidden 

subset. The EMA-both model's enhanced significant performance in the hidden test set indicates its 

potential for addressing this challenge. The C2f_BtlEMA-both model performs comparably to the 

base model, with minor variations across test set. 

Table 3.  Evaluation results on PIDray dataset 

Model 
Easy Hard Hidden 

mAP50 mAP mAP50 mAP mAP50 mAP 
Base (YOLOv8n) 81.1 68.5 83 65.3 56.6 42 

EMA-both 81 69.3 83 65.6 59.7 44.9 

C2f_BtlEMA-both 80.7 68.7 82.3 65.2 58.2 43.1 

 

For further analysis, this experiment was compared with several other popular attention 

mechanisms for computer vision such as CBAM and CA. The data, architecture, and model training 

settings followed the same configurations used in the experimental settings. The results of the 

comparison of the experiments with several models with other AM modules are shown in Table 4. 

The placement of other AM modules follows the optimal placement that has been obtained 

previously, namely, by placing them in both parts of YOLOv8. The EMA module exhibited the best 

performance in the experiment for detecting prohibited items in this study. In terms of performance 

and number of parameters metrics, the EMA module yielded the best results in the experiment. 

Although, in terms of GFLOPs metrics, the CA metric has slightly better results, the configuration 

in the C2f_BtlEMA scenario has better results with slightly better performance. Based on the 

comprehensive evaluation results, the EMA-both scenario emerges as the optimal placement strategy 

in this study. The consistent performance enhancements observed across various datasets and training 

configurations indicate that the EMA, particularly EMA-both model effectively address the 

limitations of the baseline model without introducing significant computational complexity. 
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Table 4.  Comparison with other AM module in optimal placement on CLCXray dataset 

Model mAP50 mAP #Param GFLOPs 
Base 81.6 69.5 3.01M 8.21 

+ CBAM 81.9 69.7 3.19M 8.34 

+ CA 82 70.2 3.04M 8.27 

+ EMA 82.3 70.3 3.01M 8.35 

+ C2f_BtlEMA 82.2 70.2 3.01M 8.26 

3.2. WIoU Loss Integration Experiments 

Based on the evaluation results on the CLCXray dataset shown in Table 5, the model using the 

WIoU method showed the best performance compared to other IoU loss variants. The model using 

Wise IoU v3 (WIoU) [62] showed the best performance with an mAP50 value of 82.2% and an 

overall mAP of 69.7%. Compared to the baseline CIoU which obtained an mAP50 of 81.6% and 

PIoU [63] with an mAP50 of 82%, WIoU provided consistent improvements in both the high 

precision metric (mAP50) and the average overall precision (mAP). These results indicate that WIoU 

is able to produce more accurate and stable bounding box predictions, which are very important in 

detecting suspicious objects in X-ray images. Thus, the integration of WIoU in the YOLOv8-based 

Prohibited Items Detection system in this study has the potential to increase the effectiveness and 

reliability in identifying the items, making it a notable choice for security applications. These 

advantages confirm that the integration of WIoU in the detection system can improve the accuracy 

of suspicious object identification, thereby contributing significantly to the effectiveness of the 

developed security system. 

Table 5.  Comparison with other IoU loss on CLCXray dataset 

Model mAP50 mAP75 mAP 
CIoU (base) 81.6 78.6 69.5 

PIoU  82 78.8 69.7 

WIoU 82.2 79.2 69.7 

3.3. Ablation Experiments 

The ablation experiments for the proposed ESI-YOLO model were conducted using the 

CLCXray and PIDray datasets. These experiments aimed to demonstrate the impact of various 

components on the performance of the proposed ESI-YOLO model. The study examined the effects 

of integrating EMA and WIoU loss separately into the baseline model. The experimental results, as 

presented in Table 6, illustrate the performance for the CLCXray dataset. Incorporating EMA led to 

improvements in both mAP50 and mAP, achieving values of 82.3% and 70.3%, respectively, with a 

slight increase in parameters and GFLOPs. The integration of WIoU alone enhanced mAP50 to 

82.2%, although it showed only a slight increase in mAP compared to the baseline. The final 

proposed model, ESI-YOLO, which combines both EMA and WIoU, achieved the highest mAP50 

of 82.5%, increase 0.9% approximately to the baseline, and the highest mAP75 with a score of 79.5%. 

Although the ESI-YOLO model shows improvement in the evaluation metrics compared to the 

baseline, the mAP value decreases slightly compared to the model with only EMA. This indicates 

that the model is better at detecting objects with a high threshold (50, 75), but the overall decrease in 

mAP may indicate a slight reduction from EMA only model in the model's ability in higher threshold 

within the CLCXray dataset. 

Based on the ablation experiment results presented in Table 7, the findings on the PIDray dataset 

highlight the efficacy of the proposed components in ESI-YOLO. The integration of EMA into the 

baseline YOLOv8n model resulted in enhanced performance across all subsets, with significant 

improvements observed in the challenging hidden subset (mAP50 increased from 56.6% to 59.7%, 

mAP from 42% to 44.9%). The incorporation of WIoU loss alone yielded modest enhancements, 

particularly in the easy subset. The comprehensive ESI-YOLO model, which combines both EMA 

and WIoU, achieved the most favorable overall outcomes, with mAP50/mAP scores of 82.6%/69.8% 

on the easy subset, 84.1%/66.1% on the hard subset, and 60.1%/44.8% on the hidden subset. These 
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results represent substantial improvements over the baseline, especially in the hidden subset, where 

mAP50 increased by 3.5% and mAP by 2.8%. The findings demonstrate that the integration of EMA 

and WIoU significantly enhances the model's capability to detect prohibited items across varying 

levels of difficulty, with particular efficacy in identifying challenging hidden objects. 

Table 6.  Ablation experiment results on CLCXray dataset 

Model EMA WIoU mAP50 mAP75 mAP #Param GFLOPs 
YOLOv8n   81.6 78.6 69.5 3.013M 8.21 

+EMA ✓  82.3 79.3 70.3 3.014M 8.35 

+WIoU  
✓ 82.2 79.2 69.7 3.013M 8.21 

ESI-YOLO ✓ ✓ 82.5 79.5 70.1 3.014M 8.35 

Table 7.  Ablation experiment results on PIDray dataset 

Model EMA WIoU 
Easy Hard Hidden 

mAP50 mAP mAP50 mAP mAP50 mAP 
YOLOv8n     81.1 68.5 83 65.3 56.6 42 

 +EMA ✓  81 69.3 83 65.6 59.7 44.9 

 +WIoU  
✓ 81.9 68.2 83 64.6 57.3 41.7 

ESI-YOLO ✓ ✓ 82.6 69.8 84.1 66.1 60.1 44.8 

 

The ablation study highlights the synergistic effect of combining EMA and WIoU in proposed 

ESI-YOLO model, as the full model outperforms individual component additions. This 

comprehensive approach enables more robust detection across diverse scenarios, addressing the 

complexities of prohibited item identification in X-ray security screening. The substantial 

improvements on the hidden subset underscore ESI-YOLO potential to enhance security screening 

processes, particularly for concealed or obscured objects that pose significant challenges in real-

world applications. 

3.4. Visualization and Results Analysis 

A comparison of the precision-recall curves of the baseline model and the ESI-YOLO model on 

the CLCXray and PIDray datasets is shown in Fig. 4 and Fig. 5. Based on the analysis performed on 

the Precision-Recall curves shown, it can be seen that the ESI-YOLO model shows superior 

performance compared to YOLOv8n as the baseline, especially in terms of object detection accuracy. 

This superiority is evident in the evaluation results on the CLCXray and PIDray (hidden test set) 

datasets. On the CLCXray dataset, the ESI-YOLO model has an mAP50 value of 82.5%, which is 

higher than that of YOLOv8n which only reaches 81.6%. This difference shows that ESI-YOLO is 

able to identify and classify objects more accurately than the baseline. In addition, the Precision-

Recall distribution also shows better consistency across different object categories, especially on 

items that have high complexity in their identification. The superiority of ESI-YOLO was further 

strengthened when tested on the PIDray dataset (hidden test set), where this model recorded an 

mAP50 value of 60.1%, higher than YOLOv8n which only reached 56.6%. This difference indicates 

that ESI-YOLO has better generalization in detecting objects in more complex and varied 

environments. In addition, the analysis of specific objects such as guns, knives, and scissors shows 

that ESI-YOLO provides more precise detection, with a lower error rate compared to the baseline. 

This is due to the architectural optimization factor in ESI-YOLO with the integration of EMA and 

Wise-IoU that allows for improved model performance. 

From the sample prediction results of the models shown in Fig. 6, ESI-YOLO consistently 

provides a higher confidence score for correctly detected ground-truth objects, indicating better 

detection accuracy and more reliability in identifying various objects. This not only ensures that each 

item examined is correctly identified but also reduces the risk of errors that could occur. In addition, 

ESI-YOLO is able to recognize more objects in a single overlapping or hidden image more 

accurately, allowing it to handle complex scenarios that often arise in security or baggage screening 

applications. The consistency exhibited by this model in various scenarios shows the advantage of a 
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more robust architecture in understanding object characteristics compared to the baseline model. 

Despite the model enhancing the baseline model performance, the model still encounters challenges 

in accurately detecting entire objects that exhibit a significant degree of overlap, as illustrated in the 

first sample in Fig. 6. Furthermore, in the last sample, a single object is erroneously identified as two 

distinct objects, although the confidence level for the correct object remains higher. However, 

comparison with ground truth shows ESI-YOLO results are more accurate and match actual labels, 

strengthening the claim that this model is optimal for object detection in challenging environments. 

With these advantages, ESI-YOLO becomes more efficient and reliable for improving deep-learning 

based prohibited items detection systems. However, although the model performs better, there are 

cases where object location is identified but the item type is misclassified. This may be due to subtle 

differences between item types in prohibited items detection. 

  
(a) YOLOv8n (b) ESI-YOLO 

Fig. 4. Comparison of Precision-Recall Curve on CLCXray 

  
(a) YOLOv8n (b) ESI-YOLO 

Fig. 5. Comparison of Precision-Recall Curve on PIDray (hidden test set) 

3.5. Comparative Experiments with Other Models 

Comparative results of various object detection models applied to the CLCXray dataset 

presented on Table 8. ESI-YOLO distinguishes itself among the models in several key findings. It 

achieves the highest mAP50 (82.5%) and mAP (70.1%) scores among the nano-sized models, 

surpassing other nano-sized YOLO models. It maintains an optimal balance between accuracy and 

efficiency, with only 3M parameters and 8.4 GFLOPs, comparable to YOLOv8n. In the category of 

small-sized models, ESI-YOLOs exhibits superior performance with 83.3% mAP50 and 71.8% 

mAP, outperforming YOLOv5s, YOLOv8s, and YOLO11s. When compared to larger two-stage 

detectors such as Faster R-CNN and RetinaNet, ESI-YOLO achieves significantly higher accuracy 

with considerably fewer parameters and reduced computational cost. Among the YOLO variants, 

ESI-YOLO consistently enhances the baseline YOLOv8 model in both nano and small sizes. The 

nano version of ESI-YOLO is particularly noteworthy, as it surpasses even some larger models while 

maintaining a highly lightweight architecture. In summary, ESI-YOLO excels in detection 
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performance for X-ray security inspection tasks while maintaining computational efficiency. Its 

ability to deliver high accuracy with a compact model makes it ideal for real-time security screening 

applications, where both speed and accuracy are crucial. 

Table 8.  Comparison with other models on CLCXray dataset 

Model mAP50 mAP #Param GFLOPs 
Faster R-CNN [64] 80.2 64.5 43.3M 173.3 

RetinaNet [65] 76.7 59.3 36.6M 146.3 

YOLOv5n [59] 81.4 68.1 2.5M 7.2 

YOLOv6n [66] 80.8 68.9 4.2M 11.9 

YOLOv8n [58] 81.6 69.5 3M 8.2 

YOLO11n [67] 81.4 69.1 2.6M 6.5 

ESI-YOLO (n) 82.5 70.1 3M 8.4 

YOLOv5s [59] 82.8 70.7 9.1M 24.1 

YOLOv8s [58] 82.5 71.5 11.1M 28.7 

YOLO11s [67] 82.4 71.4 9.4M 21.6 

ESI-YOLO (s) 83.3 71.8 11.1M 29.2 

3.6. Discussion 

This paper proposes ESI-YOLO, an enhanced YOLOv8-based model designed to improve 

multi-scale feature representation in X-ray security inspections. The ESI-YOLO model consistently 

demonstrates superior performance compared to the baseline YOLOv8 model in detecting prohibited 

objects within the PIDray and CLCXray datasets. Evaluation results show that ESI-YOLO achieves 

mAP50 improvements of 0.9% on the CLCXray dataset and 3.5% on the PIDray hidden subset, 

respectively. This performance gain is primarily attributed to the integration of the EMA module, 

which adaptively enhances focus on critical features of small or obstructed objects. Simultaneously, 

the use of WIoU as a loss function improves consistency in object localization, resulting in more 

precise bounding boxes. 

Systematic exploration reveals that direct integration of EMA into both the backbone and neck 

sections (EMA-both) of YOLOv8 yields the most effective results. These findings are supported by 

consistently strong performance across experimental trials. The EMA-both configuration delivers the 

best outcomes compared to other scenarios tested, without introducing significant computational 

complexity. By applying EMA to both the backbone and neck, the model effectively balances the 

extraction of low-level features with the synthesis of high-level semantic information, leading to 

improved detection accuracy across various scales. Consequently, the model becomes more adept at 

identifying prohibited items, which often pose challenges due to their diverse sizes, shapes, and 

contextual appearances within X-ray images. 

Results analysis reveal that the combination of the EMA module and WIoU in ESI-YOLO 

significantly contributes to overcoming detection challenges in X-ray images, where objects 

frequently appear obscure or overlap. ESI-YOLO demonstrates the capability to accurately recognize 

more objects in a single image, even when they are overlapping or obscured, thereby enabling it to 

manage complex scenarios commonly encountered in security or baggage inspection applications. 

The model's consistency across various scenarios underscores the robustness of its architecture in 

understanding object characteristics compared to the baseline model. This is a positive indication of 

EMA integration, allowing the model to effectively concentrate attention on detected objects. The 

integration of WIoU further enhances detection outcomes, as evidenced by improved object 

localization over the baseline model. Comparisons with the ground truth indicate that ESI-YOLO's 

results are more accurate and aligned with the actual labels, reinforcing the assertion that this model 

is optimal for object detection in challenging environments. 

Despite ESI-YOLO superior performance compared to the baseline model, several limitations 

warrant consideration. First, the model continues to encounter challenges in detecting objects at high 

thresholds, resulting in a suboptimal mAP metric, particularly in CLCXray images. This decline can 

be attributed to the difficulty in maintaining high precision at extreme IoU levels (above 0.85), which 
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is potentially expected as limitation of the WIoU loss function. Wise-IoU is a variant of IoU-based 

loss that seeks to balance the penalty for poor predictions and the reward for good predictions. The 

goal is to make the model more stable and accurate in bounding box regression.  This trend is 

observed across both datasets, the increase in mAP50 and mAP75 still indicates relevant practical 

improvements for real-world applications, while the decrease in mAP reflects a trade-off in the loss 

function design that prioritizes generalization and prediction stability.  

   

   

   

   

   
(a) Ground Truth (b) YOLOv8n (c) ESI-YOLO 

Fig. 6. Sample of model prediction results 
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Second, although the use of EMA enhances focus on spatial features that lead to improve model 

performance, it increases the model’s computational load compared to the baseline model. This could 

potentially reduce inference speed in real-time scenarios. However, the increase remains relatively 

small and manageable, especially when compared to the YOLOv8n baseline. Third, the quality of 

images within the datasets plays a crucial role in model performance. Class imbalance remains a 

persistent issue, with certain object categories appearing more frequently than others. This results in 

bias during model training and affects generalization to unseen data. Furthermore, minor differences 

between object classes in the images continue to pose challenges. Although data augmentation 

techniques from YOLOv8 have been applied to mitigate this issue, the improvements achieved 

remain limited. 

4. Conclusion 

This paper presents ESI-YOLO, an enhanced YOLOv8-based model designed to improve multi-

scale feature representation for X-ray security inspections. ESI-YOLO integrates Efficient Multi-

Scale Attention (EMA) at optimal placements and incorporates the Wise-IoU (WIoU) loss function 

into the YOLOv8 architecture to enhance the prohibited items detection. Experimental results on the 

CLCXray and PIDray datasets demonstrate mAP50 improvements of 0.9% and 3.5% (on the hidden 

subset), respectively, over the baseline YOLOv8 model. A systematic exploration of EMA 

integration scenarios reveals that applying EMA to both the backbone and neck sections yields the 

most effective performance. This configuration consistently enhances detection accuracy across 

various settings without introducing significant computational overhead. The integration of the 

WIoU loss function further improves bounding box regression accuracy and robustness. Ablation 

studies and comparative evaluations confirm the effectiveness of ESI-YOLO in balancing detection 

accuracy and computational efficiency, particularly among lightweight (nano-sized) models. The 

proposed model offers a promising solution for real-time X-ray security inspection systems, enabling 

more accurate detection of prohibited items while maintaining operational efficiency. Despite its 

advantages, this study is limited by the scope of the datasets used and the reliance on convolutional 

YOLOv8-based architectures. Future work may explore alternative model architectures, such as 

Transformer-based designs, or further optimize the model for edge deployment. Additionally, 

expanding the dataset to include a wider range of object categories, imaging conditions, and more 

challenging scenarios would enhance the model’s generalizability and robustness in real-world 

applications. 
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