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1. Introduction 

Induction motors (IMs) are widely used in industrial applications due to their reliability, 

simplicity, and cost-effectiveness, making them a preferred choice for variable-speed electric drives 
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 This study addresses the limitations of traditional Model Reference 

Adaptive Systems (MRAS) in sensorless induction motor (IM) control, 

particularly the degraded performance at low speeds and under dynamic 

load conditions. The main objective is to enhance speed and torque 

estimation accuracy by replacing the classical proportional-integral (PI) 

adaptation mechanism with an adaptive neuro-fuzzy architecture. The 

research contribution lies in developing and experimentally validating 

two intelligent adaptation schemes: one based on fuzzy logic and another 

combining fuzzy inference with a recurrent neural network (RNN) within 

a sensorless field-oriented control (FOC) framework. The proposed 

system integrates a fuzzy logic-based estimator and an RNN-driven 

torque predictor to improve tracking precision and robustness. Real-time 

implementation was carried out on a 1.1 kilowatt, 1430 revolutions per 

minute induction motor using a dSPACE DS1104 platform. Comparative 

experiments were conducted under two challenging benchmark profiles 

that include load disturbances, parameter mismatches, and full-speed 

reversals. Results showed that the hybrid neuro-fuzzy controller reduced 

the steady-state speed error by 91 %, from 0.65 rad/s to 0.08 rad/s, and 

improved torque estimation accuracy by 42%, reducing SMAPE from 

45.2 % to 26.3 %, compared to the PI-based MRAS. It also outperformed 

the standalone fuzzy and neural MRAS controllers in rise time, tracking 

error, overshoot suppression, and adaptation quality. These findings 

confirm that the proposed method provides improved estimation fidelity, 

enhanced control robustness, and reliable sensorless operation suitable for 

real-time industrial applications. The study concludes that the integration 

of neuro-fuzzy intelligence into MRAS-based control structures offers a 

technically effective and scalable solution for advanced IM drives. 
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in manufacturing and transportation systems [1], [2]. To achieve high-performance control, 

techniques such as Field-Oriented Control (FOC) have been developed, enabling decoupled torque 

and flux regulation similar to that of DC motors by aligning the reference frame with rotor flux [3]. 

This has allowed IMs to meet the demands of precision, dynamics, and stability required in 

advanced drive systems [4]. A key challenge in such systems lies in the accurate estimation of rotor 

speed, especially in sensorless configurations, where mechanical speed sensors are eliminated to 

reduce cost, complexity, and maintenance requirements [5]. In this context, sensorless estimation 

techniques have become crucial, among which the Model Reference Adaptive System (MRAS) has 

gained widespread popularity due to its simple structure and suitability for real-time implementation 

[6], [7]. The Model Reference Adaptive System (MRAS) estimates rotor speed by evaluating the 

difference between two model outputs: a reference model that is independent of the rotor speed [8], 

and an adaptive model that incorporates the estimated speed as a parameter [9]. This discrepancy, 

often referred to as the adaptation error, is used to adjust the speed estimate through a dedicated 

adaptation mechanism. In most implementations, this mechanism is realized using a proportional-

integral (PI) controller due to its simplicity and ease of tuning [10]. Despite the widespread use of 

PI-based MRAS structures, they suffer from three critical limitations: 

(i) Degraded performance at low speeds due to poor signal-to-noise ratios, 

(ii) Sensitivity to parameter variations such as rotor resistance drift, and  

(iii) Inadequate handling of nonlinearities and un-modeled disturbances [11]-[15]. 

These limitations motivate the integration of intelligent techniques for improved robustness and 

adaptability [16], [17]. In response to these limitations, fuzzy logic controllers (FLCs) have been 

introduced into MRAS schemes to improve adaptation accuracy without relying on precise 

mathematical models [18]. Fuzzy systems are especially useful when domain expertise can be 

encoded into rule-based structures and have shown improved performance under parameter 

uncertainty [19]. However, their static rule base and lack of learning mechanisms can hinder 

adaptability in dynamic environments [20]. 

In contrast, artificial neural networks (ANNs) offer strong learning capabilities and function 

approximation properties, allowing them to capture complex, nonlinear system dynamics [21], [22]. 

Neural networks, including feedforward and recurrent architectures, have been successfully 

employed in various control applications [23]-[26], and more recently, in sensorless induction motor 

drives [27], [28]. However, purely neural approaches may require extensive training data, and their 

black-box nature often reduces transparency and interpretability [29], [30]. 

To exploit the complementary strengths of both techniques, hybrid neuro-fuzzy systems have 

emerged as a powerful solution, combining the reasoning capability of fuzzy inference with the 

learning and adaptation capability of neural networks [31], [32]. In particular, recurrent neural 

networks (RNNs), known for their internal memory and temporal modeling abilities, have shown 

promise for dynamic control and torque estimation tasks [33]-[36]. Yet, the integration of RNNs 

within MRAS frameworks remains limited in the literature, especially in practical sensorless 

induction motor applications. Recent works on intelligent MRAS design (e.g., [37]-[40]) have 

reported improvements over classical methods, but often lack comprehensive experimental 

validation, robust benchmarking, or critical analysis against dynamic operating conditions such as 

speed reversal, load disturbances, and parameter mismatches. Moreover, the theoretical motivation 

for combining fuzzy and neural methods is often underexplored, leaving a gap in fully 

understanding the strategic benefits of hybridization. 

This paper is motivated by three goals. First, to overcome the known limitations of PI-based 

MRAS systems by integrating adaptive neuro-intelligent techniques into the speed estimation loop. 

Second, to validate the proposed architectures under realistic industrial scenarios involving fast 

dynamics and parameter variation. Third, to investigate the synergistic effect of combining fuzzy 

logic and neural networks within the MRAS framework. To this end, we propose and evaluate three 

progressively refined sensorless MRAS schemes: 
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 A fuzzy-logic-based estimator, 

 A neural-network-based torque predictor, and. 

 A hybrid neuro-fuzzy MRAS architecture, which serves as the primary contribution  

The design is implemented in real time on a 1.1 kW induction motor using a dSPACE DS1104 

platform, and performance is analyzed using both control metrics (e.g., rise time, overshoot, steady-

state error) and machine learning metrics (e.g., MAE, SMAPE, R²). The research contribution is 

summarized as follows:  

 A novel hybrid neuro-fuzzy MRAS estimator is introduced, combining fuzzy logic adaptation 

with an RNN-based torque prediction model. 

 The individual impact of fuzzy/neural components is quantified through comparative testing. 

 The method is evaluated against PI-MRAS, fuzzy MRAS, and neural MRAS baselines. 

 Experimental results show a 91% reduction in speed error and a 42% gain in torque accuracy, 

confirming the hybrid controller’s effectiveness under real-time sensorless conditions. 

The remainder of this paper is structured as follows. Section 2 outlines the dynamic model of 

the induction motor and the field oriented vector control principle. Section 3 covers the 

fundamentals of the MRAS observer. Section 4 presents the first proposed adaptive fuzzy control 

scheme, while Section 5 introduces the second proposed framework based on neural networks and 

learning systems. Section 6 details the experimental setup and test conditions, followed by a 

comprehensive performance analysis comparing the proposed and conventional methods. Finally, 

Section 7 concludes the paper and suggests directions for future research. 

2. Induction Motor Model and Vector Control 

The mathematical model (1)-(4) of the IM in the 𝑑-𝑞 coordinates, formulated within a rotor 

flux-oriented reference frame (i.e. rotates at angular speed 𝜔), can be expressed as [15]: 

[
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where 𝜔𝑠𝑙 = 𝜔 − 𝜔𝑟 and the expressions for stator and rotor flux linkages are defined by [16]: 
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The state-space model of the induction motor, using stator current components (1) and rotor 

flux linkages (2) as state variables, is expressed as [15]: 
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where 𝐿𝑠, 𝐿𝑟, 𝑅𝑠, 𝑅𝑟, 𝐿𝑚 are the motor parameters and 𝜔𝑟 = 𝑝𝜔𝑚, 𝐮(𝑡) = [𝑣𝑠𝑑  𝑣𝑠𝑞]
⟙

 is the stator 

input voltage, 𝐱(𝑡) = [𝑖𝑠𝑑    𝑖𝑠𝑞  𝜓𝑟𝑑   𝜓𝑟𝑞]
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The electromagnetic torque and the rotor speed are given by [22]: 

𝒯𝑒𝑚(𝑡) = 𝑝𝐿𝑚(𝜓𝑟𝑑𝑖𝑠𝑞 − 𝜓𝑟𝑞𝑖𝑠𝑑)/𝐿𝑟; �̇�𝑚(𝑡) = [(𝒯𝑒𝑚(𝑡) − 𝒯𝐿(𝑡)) − 𝑅𝑚𝜔𝑚(𝑡)]/𝐷𝑚 (4) 
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Field-oriented control enables independent control of torque and flux by aligning the rotor flux 

with the d-axis of the rotating 𝑑𝑞 reference frame, mimicking the behavior of a DC motor [15], [20]: 

𝜓𝑟𝑞 = 0;𝜓𝑟𝑑 = 𝐿𝑚𝑖𝑠𝑑 (5) 

The slip frequency 𝜔𝑠𝑙 = 𝜔 − 𝜔𝑟 can be calculated from the reference values of the stator 

current components represented in the rotor flux oriented reference frame [11]. The relationship for 

electromagnetic torque can be formulated as: 

𝒯𝑒𝑚 = (𝑝𝐿𝑚/𝐿𝑟)𝜓𝑟𝑑𝑖𝑠𝑞 = 𝐾𝑡𝑖𝑠𝑞 (6) 

where 𝐾𝑡 is the torque constant given by: 

𝐾𝑡 = (𝑝𝐿𝑚/𝐿𝑟)𝜓𝑟𝑑 (7) 

For the field oriented control, the PI gains of the speed adaptive scheme are tuned according to 

[25]: 𝐾𝑝 = 3, 𝐾𝑖 = 1800. For a detailed explanation of FOC principles, the reader is referred to 

[15], [16]. 

3. Model Reference Adaptive Systems (MRAS) 

Rotor speed �̂� can be estimated using a model reference adaptive system structure composed of 

two estimators: a reference model and an adaptive model. Both models independently compute the 

rotor flux linkage components 𝜓𝑟𝑑 and 𝜓𝑟𝑞 in the stationary 𝑑𝑞 reference frame. By comparing the 

flux-linkage estimates, the adaptive model adjusts its internal speed estimate to minimize the 

discrepancy, thereby converging to the true rotor speed [11], [12]. The reference model, derived 

from the stator voltage equations, does not depend on rotor speed and is therefore suitable for speed-

independent flux estimation. Its expression in the stationary frame is given by: 
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In contrast, the adaptive model, formulated from the rotor voltage equations, explicitly depends 

on the rotor flux components and the estimated speed �̂� [10]. It is expressed as: 
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The angular discrepancy between the estimated and reference flux vectors serves as the 

adaptation signal, which is processed by a linear PI controller to adjust the estimated speed. 

Applying the Popov hyperstability criterion [6], [15] to guarantee global asymptotic stability of the 

closed-loop estimation system, the adaptive law is given by: 

�̂�𝑟 = 𝐾𝑝𝜀(𝑡) + 𝐾𝑖 ∫𝜀(𝑡)𝑑𝑡 (10) 

with 𝜀(𝑡) = [�̂�𝑟𝑑(𝑡)𝜓𝑟𝑞
ref(𝑡) − �̂�𝑟𝑞(𝑡)𝜓𝑟𝑑

ref(𝑡)] is the error between the real and estimated rotor 

fluxes in the (𝑑,𝑞) frame. The controller gains were tuned using the method described in [7], [11]. 

4. The First Proposed Fuzzy Logic Controller (FLC) 

Fuzzy logic is useful for problems that are difficult to model mathematically due to limited 

data, incomplete information, or system complexity [13]. Such systems can be improved by adding 

new rules to enhance performance or introduce features. In conventional MRAS speed observers, a 

PI controller is typically used in the adaptation mechanism to estimate speed by minimizing the 
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error between the adaptive and reference models [17]. In the proposed structure, this PI controller is 

replaced by a fuzzy logic system, as shown in Fig. 1. The overall fuzzy controller is presented in 

Fig. 2, and its internal structure in Fig. 3. The process starts with the fuzzifier, which performs scale 

mapping and converts crisp inputs into fuzzy sets using selected membership functions [18]. Scale 

mapping adjusts the input range to a normalized domain for inference. The fuzzified inputs are then 

processed through a rule base containing expert-defined fuzzy rules [20]. The inference engine 

evaluates these rules using logical operations to determine the control action. Mamdani inference, 

with the AND operator as implication, is commonly used. Alternatively, the Takagi-Sugeno (TS) 

model can be applied when higher accuracy is needed [14]. Finally, the defuzzifier converts the 

fuzzy output into a crisp signal applied to the plant. 

 

Fig. 1. Adaptation mechanism using a fuzzy logic controller 

 

Fig. 2. Configuration of the fuzzy rule-based control framework 

 

Fig. 3. Schematic representation of the fuzzy logic control system 

The gains 𝐾1, 𝐾2 and 𝐾3 act as scaling factors and must be selected carefully to achieve optimal 

controller performance. This is typically done through trial-and-error tuning. Based on expert 

knowledge, the fuzzy system employs predefined membership functions, and the associated rule 

base is presented in Table 1, using linguistic labels such as NB (Negative Big), NS (Negative 

Small), ZE (Zero), PS (Positive Small), and PB (Positive Big). The fuzzy controller may accept 

either two or three inputs; however, to reduce system complexity, the proposed design considers 

only two inputs. Each input can be characterized using 3, 5, 7, or 9 linguistic terms. Consequently, 
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the total number of fuzzy rules is N × N or N2, yielding 9, 25, 49, or 81 rules, respectively. The 

choice of the number of terms must balance control performance and computational cost, as too few 

rules may degrade accuracy, while too many may slow down real-time processing. Fig. 4 illustrates 

the selected membership functions and the resulting control surface of the adaptive fuzzy system. In 

this work, five linguistic labels with trapezoidal and triangular membership functions were adopted 

as they offer a practical trade-off between interpretability, real-time efficiency, and control accuracy, 

as commonly practiced in real-time fuzzy control systems [10]-[12], [15], [22]. The fuzzy inference 

rules used in the proposed system are summarized in Table 1. The Simulink model developed for 

this purpose (used for implementation) is shown in Fig. 5. 

 

  

Fig. 4. Membership distribution of speed error, change in speed error and control surface of FLC 

Table 1.  Fuzzy rules for the proposed system with a rule confidence weights for enhanced inference 

𝑒/∆𝑒    NB      NS    ZE    PS     PB

  

NB
NS
ZE
PS
PB

         

NB
NB
NB
NS
ZE

     

NB
NB
NS
ZE
PS

   

NB
NS
ZE
PS
PB

   

NS
ZE
PS
PB
PB

    

ZE
PS
PB
PB
PB

   

𝑒/∆𝑒 NB     NS   ZE   PS     PB  

  

NB
NS
ZE
PS
PB

      

1.00
0.95
0.90
0.85
0.80

0.95
0.92
0.88
0.84
0.85

0.90
0.88
0.85
0.88
0.90

0.85
0.84
0.88
0.92
0.95

 

0.80
0.80
0.90
0.95
1.00

   

 

The fuzzy logic controller design uses five linguistic terms for each input and output variable. 

This choice represents a widely accepted trade-off between control resolution and rule base 

complexity, ensuring real-time feasibility. Triangular and trapezoidal membership functions were 

selected due to their computational efficiency and suitability for embedded implementation. The rule 

base was constructed using domain expertise and refined empirically through simulation to balance 

convergence speed and estimation robustness. Let the inputs to the fuzzy controller be defined as the 

MRAS error signal 𝑒(𝑡) and its derivative �̇�(𝑡), where: 

𝑒(𝑡) = 𝑦1,ref(𝑡)  − 𝑦1,est(𝑡), �̇�(𝑡) =
𝑑𝑒(𝑡)

𝑑𝑡
 (11) 

These two signals are mapped into the fuzzy domain through a scaling process: 

𝑥1 = 𝐾1 ⋅ 𝑒(𝑡), 𝑥2 = 𝐾2 ⋅ �̇�(𝑡) (12) 

where 𝐾1 and 𝐾2 are input scaling gains that normalize the crisp input variables to the universe of 

discourse, typically defined in the range [−1, 1]. The fuzzy system output is a speed adaptation 

signal 𝑣1(𝑡), given by: 
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𝑣1(𝑡) = 𝐾3 ⋅ 𝑢f(𝑡) (13) 

Here, 𝑢f(𝑡) is the defuzzified output of the fuzzy inference engine, and 𝐾3 is the output gain 

used to re-scale the fuzzy output to its actual value domain. 

 

Fig. 5. Real time system block diagram 

Each fuzzy input variable 𝑥𝑖 (for 𝑖 = 1,2) is described by five linguistic labels: 

NB, NS, ZE, PS, and PB. Each label is associated with a membership function 𝜇𝐴𝑗(𝑥𝑖), where 𝑗 =

1,2,… ,5. These functions are defined using symmetric triangular or trapezoidal shapes, such as: 

𝜇𝐴𝑗(𝑥) = {0    if 𝑥 ≤ 𝑎 or 𝑥 ≥ 𝑐;
𝑥 − 𝑎

𝑏 − 𝑎
 if 𝑎 < 𝑥 ≤ 𝑏; 

𝑐 − 𝑥

𝑐 − 𝑏
if 𝑏 < 𝑥 < 𝑐} (14) 

where 𝑎, 𝑏, and 𝑐 define the support and peak of the triangle or trapezoid. The fuzzy rule base 𝑅 

consists of 𝑁 × 𝑁 = 25 rules, derived from all combinations of input labels. Each rule 𝑅𝑖𝑗  takes the 

general Mamdani form: 

𝑅𝑖𝑗:     IF   𝑥1  is  𝐴𝑖   AND   𝑥2  is  𝐵𝑗     THEN    𝑣1 is   𝐶𝑖𝑗 (15) 

where 𝐴𝑖, 𝐵𝑗 are input fuzzy sets and 𝐶𝑖𝑗 is the output fuzzy set associated with rule 𝑅𝑖𝑗. The fuzzy 

inference engine computes the firing strength 𝑤𝑖𝑗 for each rule using the minimum operator: 

𝑤𝑖𝑗 = min[𝜇𝐴𝑖(𝑥1), 𝜇𝐵𝑗(𝑥2)] (16) 

In the aggregation phase, the weighted outputs of all rules are combined using the max–min or 

centroid method. For the centroid defuzzification, the final crisp output 𝑢f(𝑡) is computed as: 

𝑢f(𝑡) = ∑
𝑖𝑗
𝑤𝑖𝑗𝑧𝑖𝑗/∑𝑖𝑗

𝑤𝑖𝑗 (17) 
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where 𝑧𝑖𝑗 is the centroid (center) of the output membership function 𝐶𝑖𝑗. Thus, the complete control 

law for the fuzzy speed adaptation signal becomes: 

𝑣1(𝑡) = 𝐾3 ⋅ {∑
𝑖𝑗

min[𝜇𝐴𝑖(𝑥1), 𝜇𝐵𝑗(𝑥2)] 𝑧𝑖𝑗/∑𝑖𝑗
min[𝜇𝐴𝑖(𝑥1), 𝜇𝐵𝑗(𝑥2)]} (18) 

This fuzzy-based adaptation signal is then fed back into the MRAS loop to update the rotor 

speed estimate, replacing the classical PI-based correction mechanism. The design ensures smoother 

adaptation, improved noise immunity, and enhanced robustness to parameter variation—critical for 

real-time sensorless motor drives.   

5. The Proposed Practical Neural-Fuzzy Logic Controller   

Fig. 6 presents the proposed neural adaptive model reference control system for sensorless 

induction motor (IM) drives. A neural controller generates control signals based on the reference 

speed, estimated rotor flux �̂�𝑟, and current feedback. The system employs both reference and 

adjustable models, driven by identical inputs, to assess motor performance. The rotor flux error 

𝜀(𝑡) = �̂�𝑟𝑑𝜓𝑟𝑞
ref − �̂�𝑟𝑞𝜓𝑟𝑑

ref is processed by an adaptive fuzzy estimator to estimate the rotor speed 

�̂�𝑟. This sensorless approach enhances robustness and eliminates the need for mechanical speed 

sensors [21]-[25]. 

 

Fig. 6. The NN-Fuzzy MRAS adaptive sensorless control system for induction motor drives 

Fig. 7 illustrates the proposed hybrid neural-fuzzy control architecture for sensorless induction 

motor drives. A recurrent neural network (RNN) generates the reference torque 𝒯emf
⋆  based on speed 

error and historical data. This torque is applied through a field-oriented control block to produce 

stator voltage commands. The rotor speed �̂�𝑟 is estimated via a fuzzy logic-based estimator, 

removing the need for mechanical sensors. By combining neural learning and fuzzy adaptation, the 

system achieves robust performance under both steady-state and dynamic conditions. 

The proposed scheme employs a recurrent neural network to estimate the electromagnetic 

torque 𝒯emf
⋆  using the rotor speed error and past values. By capturing temporal dependencies, the 

RNN effectively models the motor's nonlinear dynamics, outperforming conventional feedforward 

networks. Let 𝑒(𝑘) = 𝜔ref(𝑘) − �̂�𝑟(𝑘) denote the speed tracking error at discrete time step 𝑘. The 

internal structure of the RNN is governed by the following equations [26]-[34]:   

1. Hidden State Update: 𝐡(𝑘) = 𝝓(𝐖in𝑒(𝑘) + 𝐖rec𝐡(𝑘 − 1) + 𝐛ℎ) where:  

• 𝐡(𝑘) ∈ ℝ𝑛: hidden state vector, 𝐛ℎ ∈ ℝ𝑛: bias vector,  
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• 𝐖in ∈ ℝ𝑛×1: input weight matrix, 𝐖rec ∈ ℝ𝑛×𝑛: recurrent weight matrix,  

• 𝝓(⋅): element-wise activation function (e.g., tanh or ReLU).   

2. Torque Output Estimation: 𝒯emf
⋆ (𝑘) = 𝐖out𝐡(𝑘) + 𝑏o where: 

• 𝐖out ∈ ℝ1×𝑛: output weight vector, 𝑏o ∈ ℝ: output bias.  

The complete mapping from input error to torque estimate is compactly expressed as one 

function: 𝒯emf
⋆ (𝑘) = 𝐟RNN(𝑒(𝑘), 𝐡(𝑘 − 1); 𝜽) where 𝜽 = {𝐖in,𝐖rec,𝐖out, 𝐛ℎ , 𝑏o} is the set of all 

trainable parameters [35]. This RNN-based estimator enables the controller to adaptively generate 

torque commands that account for the system's nonlinearities, time delays, and dynamic 

uncertainties, thus enhancing overall control performance. The RNN parameters 𝜽 are optimized to 

minimize the mean squared error loss over 𝑁 time steps: ℒ = [⅀𝑘=1
𝑁 {𝒯emf

⋆ (𝑘) − 𝒯emf(𝑘)}2]/𝑁. First 

we compute hidden states and output torque estimates sequentially: 𝐡(𝑘) = 𝝓(𝐖in𝑒(𝑘) +
𝐖rec𝐡(𝑘 − 1) + 𝐛ℎ) and 𝒯emf

⋆ (𝑘) = 𝐖out𝐡(𝑘) + 𝑏o then compute gradients Δ = 𝜕ℒ/𝜕𝜽 by 

unrolling the network through time and applying the chain rule. Finally, update parameters using 

gradient descent or an advanced optimizer (e.g., Adam): 𝜽 = 𝜽 + 𝜂Δ where 𝜂 is the learning rate. 

This iterative process continues until convergence, enabling the RNN to learn the dynamic mapping 

from speed error sequences to torque commands effectively [36]-[40]. 

 

Fig. 7. Detailed diagram of the hybrid neural-fuzzy control scheme for sensorless induction motor drives   

If we define 𝛿(𝑘) = 𝜕ℒ/𝜕𝒯emf
⋆ = 2[𝒯emf

⋆ (𝑘) − 𝒯emf(𝑘)]/𝑁 then the gradients for output layer 

are given by the relations 𝐠
out

= 𝜕ℒ/𝜕𝐖out = ⅀
𝑘=1
𝑁 𝛿(𝑘)𝐡⊤(𝑘) and 𝐠

𝑏o
= 𝜕ℒ/𝜕𝑏o = ⅀

𝑘=1
𝑁 𝛿(𝑘). 

Also, if we back-propagate through time (BPTT) into hidden states 𝝐(𝑘) = 𝜕ℒ/𝜕𝐡(𝑘) ∈ ℝ𝑛 then 

we can compute recursively (with 𝑘 = 𝑁: 1) as 𝝐(𝑘) = 𝐖out
⊤ 𝛿(𝑘) + 𝐖rec

⟙ [𝝐(𝑘 + 1)⨀𝝓′(𝒂(𝑘 +

1))] where 𝒂(𝑘) = 𝐖in𝑒(𝑘) + 𝐖rec𝐡(𝑘 − 1) + 𝐛ℎ, 𝝓′(𝒂) is the element-wise derivative of 

activation and ⨀ is the element-wise multiplication. Now use 𝝐(𝑘) to compute the following 

gradients: 𝐠
rec

= 𝜕ℒ/𝜕𝐖rec = ⅀
𝑘=1
𝑁 𝐬(𝑘). 𝐡⊤(𝑘 − 1)  ∈ ℝ𝑛×𝑛, 𝐠

in
= 𝜕ℒ/𝜕𝐖in =

⅀
𝑘=1
𝑁 𝐬(𝑘). 𝑒⊤(𝑘) ∈ ℝ𝑛×1 and 𝐠

𝐛ℎ
= 𝜕ℒ/𝜕𝐛ℎ = ⅀

𝑘=1
𝑁 𝐬(𝑘). ∈ ℝ𝑛 with 𝐬(𝑘) = [𝝐(𝑘)⨀𝝓′(𝒂(𝑘))]. 

Finally, if we let 𝜂 be the learning rate, then: 𝐖out ← 𝐖out − 𝜂𝐠
out

, 𝐖rec ← 𝐖rec − 𝜂𝐠
rec

 etc. All 

parameters are updated this way. The structure of this learning procedure is illustrated in the 

flowchart shown in Fig. 8. The RNN parameter update steps using backpropagation are described in 

the following algorithm. 

The RNN architecture employed consists of one hidden layer with 10 neurons using the tanh 

activation function. The network was trained using the Adam optimizer with a learning rate of 0.001 
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over 100 epochs. The dataset consisted of 10,000 samples (10 seconds at 1 kHz), divided into 80% 

training and 20% validation sets. Regularization and early stopping were used to mitigate 

overfitting. This setup ensures generalization while maintaining a low computational footprint 

suitable for real-time deployment. 

 

Fig. 8. Training procedure of the RNN-based electromagnetic torque estimator using BPTT 

Algorithm: Backpropagation for the RNN Torque Estimator 

Inputs: 

• Training sequence: {𝑒(𝑘), 𝒯emf(𝑘)}𝑘=1
𝑁 ,  

• Initial RNN parameters: 𝜽 = {𝐖in,𝐖rec,𝐖out, 𝐛ℎ, 𝑏o}  
• Activation function: 𝝓(. ) and its derivative 𝝓′(. ),  Learning rate: 𝜂      

Outputs: Updated parameters 𝜽   

1. Forward Pass: Compute Activations and Outputs     

      For 𝑘 = 1 to 𝑁: 

𝒂(𝑘) = 𝐖in𝑒(𝑘) + 𝐖rec𝐡(𝑘 − 1) + 𝐛ℎ,    

𝐡(𝑘) = 𝝓(𝒂(𝑘)),  

𝒯emf
⋆ (𝑘) = 𝐖out𝐡(𝑘) + 𝑏o  

2. Compute Loss Gradient at Output Layer 

      For 𝑘 = 1 to 𝑁: 

              𝛿(𝑘) = 𝜕ℒ/𝜕𝒯emf
⋆ = 2[𝒯emf

⋆ (𝑘) − 𝒯emf(𝑘)]/𝑁 

3. Backward Pass: Compute Gradients via BPTT 

        Initialize 𝝐(𝑁 + 1) = 0 ∈ ℝ𝑛  

      For 𝑘 = 𝑁 down to 1: 

               𝝐(𝑘) = 𝐖out
⟙ 𝛿(𝑘) + 𝐖rec

⟙ [𝝐(𝑘 + 1)⨀𝝓′(𝒂(𝑘 + 1))] 

4. Accumulate Gradients 

        Initialize all gradients to zero.     

      For 𝑘 = 1 to 𝑁: 𝐬(𝑘) = [𝝐(𝑘)⨀𝝓′(𝒂(𝑘))]  

𝐠out
+ = 𝛿(𝑘) ⋅ 𝐡⟙(𝑘)  ∈ ℝ1×𝑛,  𝐠rec

+ = 𝐬(𝑘). 𝐡⟙(𝑘 − 1) ∈ ℝ𝑛×𝑛, 

𝐠in
+ = 𝐬(𝑘). 𝑒⟙(𝑘) ∈ ℝ𝑛×1 , 𝐠𝑏o

+ = 𝛿(𝑘) ∈ ℝ1×𝑛,  𝐠𝐛ℎ

+ = 𝐬(𝑘) ∈ ℝ𝑛   

5. Parameter Update  

𝐖out ← 𝐖out − 𝜂𝐠out,   𝐖rec ← 𝐖rec − 𝜂𝐠rec, 

𝐖in ← 𝐖in − 𝜂𝐠in ,  𝐛ℎ ← 𝐛ℎ − 𝜂𝐠𝐛ℎ
,  𝑏o ← 𝑏o − 𝜂𝐠𝑏o

+    

6. Return Updated Parameters 𝜽   

6. Experimental Results and Discussion  

The performance of the proposed neuro-fuzzy controller was assessed using the experimental 

platform illustrated in Fig. 9. The setup features a three-phase asynchronous induction motor with 

the following rated specifications: 380 V line voltage, 2.2 A nominal current, 1.1 kW rated power, 

Initialize parameters 

Loop over epochs 

1. Forward pass: 𝐚(𝑘), 𝐡(𝑘), 𝒯emf
⋆

(𝑘) 

2. Compute loss and 𝛿(𝑘)  

3. Backward pass: compute ε(k) 

4. Accumulate gradients 

5. Update parameters 
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1430 rpm nominal speed, and a supply frequency of 50 Hz. The motor is loaded using a 

synchronous machine coupled with a powder brake to enable controlled loading under various 

conditions. The power conversion system includes an uncontrolled three-phase diode rectifier 

followed by a voltage source inverter (VSI) composed of three IGBT modules. For electrical 

measurement and monitoring, the platform employs LEM LV 25-P sensors for capturing 

instantaneous stator voltage and LEM LA 55-P sensors for stator current measurement. The 

instantaneous DC-link voltage is monitored using a LEM CV3-1000 voltage sensor. Although the 

proposed control scheme is fully sensorless, an incremental encoder (model RS 256-499, 2500 

pulses per revolution) is used strictly for offline validation and performance comparison, and does 

not participate in the feedback loop. The entire control algorithm is executed on a dSPACE DS1104 

board, which features a PowerPC 604e processor running at 400 MHz, supported by a 

TMS320F240 floating-point digital signal processor for real-time signal processing. During 

operation, key signals and parameters are monitored and recorded using CONTROLDESK software, 

which provides a real-time interface to the DSP platform. 

 
Fig. 9. Experimental setup for the proposed neural-fuzzy MRAS control of the IM 

Simulations in MATLAB verified the proposed control scheme using a rated flux reference and 

500 V DC-link voltage. The feedback signal reconstruction was confirmed in simulation, and 

experimental results further validated the effectiveness-robustness of the sensorless control strategy. 

The electrical and mechanical parameters of the induction motor are listed in Table 2.         

Table 2.  Induction motor parameters  

Parameters Name  Rating Values 

• Stator resistance  𝑅𝑠 11.8 Ω 

• Rotor resistance  𝑅𝑟 11.3085 Ω 

• Mutual cyclic inductance 𝐿𝑚 0.5400 H 

• Stator cyclic inductance  𝐿𝑠 0.5578 H 

• Rotor cyclic inductance  𝐿𝑟 0.6152 H 

• Moment of inertia  𝐽 0.0020 Kg.m2 

• Friction coefficient  𝛽 3.1165e-004 N.m/rad/s 

• Number of pair poles  𝑝 1 

 

The control algorithm relies on the DS1104 R&D Controller Board created by the German 

company dSPACE and integrated within a computer. This board contains two processors: a master 
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processor that handles the application management, and a slave processor, which is a Texas 

Instruments digital signal processor model TMS320F240, responsible for generating pulse width 

modulation signals in 0 to 5 volts TTL logic. This hardware forms the physical core of the dSPACE 

system. On the software side, two programs are involved. The first is MATLAB/Simulink, which 

enables easy real-time application programming through special blocks from the Real Time 

Interface (RTI) toolbox that configure the inputs and outputs of the DS1104 card. The second 

program is ControlDesk, which loads the code (initially designed graphically in Simulink and then 

compiled into C language) onto the controller, creating a full experimental environment. 

ControlDesk also provides a graphical user interface to control the real-time process, handle data 

acquisition, save information in MATLAB-compatible formats for later use, and monitor measured or 

calculated data using graphical and digital displays. Communication between hardware and software 

is achieved via an external connection box known as the CP1104 Connector Panel from dSPACE, 

linked to the board by a shielded cable. This panel receives analog signals through BNC connectors, 

conditions PWM control signals, monitors any error feedback from the Semikron converter, and 

interfaces with various sensors. The signal conditioning converts signals between TTL logic levels 

of 0 to 5 volts and CMOS logic levels of 0 to 15 volts, which is necessary because the DS1104 board 

operates at TTL levels while the voltage inverter requires CMOS levels. The measurement system 

uses LEM LA25TP closed-loop Hall effect current sensors for current measurement, LEM type 

LV100-500 Hall effect voltage sensors for voltage measurement, and an incremental encoder to 

detect motor rotation speed. Since the analog current signals must be digitized, sampling is 

performed, and to avoid spectral aliasing, a protective low-pass filter with a cutoff frequency near 

500 Hz, which is roughly ten times the fundamental frequency of 50 Hz, is inserted between each 

sensor and the analog-to-digital converter. 

Analyzing the operation of an IM supplied by a voltage inverter is complex due to its 

complicated nonlinear nature [41]-[45]. Moreover, neural-fuzzy adaptive control of an IM requires 

solid theoretical foundations in areas such as electrical machines, power electronics, and control 

systems. Using the dSPACE-instrumented platform, the proposed control strategy is first 

implemented in Simulink, then deployed in real-time via dSPACE. The PWM-driven inverter 

operates at a switching frequency of 9.5 kHz. A detailed view of the experimental setup is provided 

in Fig. 10. 

 

Fig. 10. Architecture of the neuro-fuzzy adaptive control scheme for sensorless induction motor drive 
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The performance of the proposed NN-fuzzy adaptive control strategy for the IM motor is 

illustrated in Fig. 11, which presents both control and estimation results under varying speed 

references. 
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Fig. 11. Performance and estimation accuracy of the proposed control scheme under speed variation 

As shown in the upper-left plot (Fig. 11), the rotor speed ωr(𝑡) accurately tracks the reference 

profile ωref(𝑡) over the entire interval, with a rise time of approximately 1.5 s and negligible 

overshoot. The speed tracking error remains tightly bounded within ±0.52 rad/s, highlighting the 

controller’s precision and dynamic responsiveness. Simultaneously, the motor torque 𝒯(𝑡) and its 

estimated value 𝒯em(𝑡) are depicted in the upper-right plot. The torque follows the reference values 

effectively, with a peak transient around 14.8 Nm during acceleration, and exhibits minimal steady-

state error. The estimation error in torque, plotted in the middle-right subplot, remains within ±1.50 

Nm, indicating the high accuracy of the neuro-fuzzy observer under sensorless conditions. The 

control voltages 𝑉𝑎(𝑡) and 𝑉𝑏(𝑡), shown in the lower plots, exhibit typical PWM switching 

characteristics with modulation amplitudes reaching ±150 V. The dynamic variation of the voltage 

signals aligns with the torque and speed demands, confirming effective control signal generation via 

the adaptive neuro-fuzzy controller. Overall, the results validate the proposed control architecture’s 

robustness, adaptability, and estimation fidelity. The controller ensures smooth transitions, high 

tracking accuracy, and minimal estimation error under varying operating conditions, all while 

preserving real-time feasibility and avoiding reliance on physical sensors.  
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The experimental validation (Fig. 12) was conducted on a sensorless vector-controlled 

induction motor drive system operating under a hybrid neuro-fuzzy control scheme. The test 

environment was configured to simulate realistic industrial conditions by including various dynamic 

challenges. The motor was controlled to follow a complex speed reference profile involving 

acceleration, deceleration, and full speed reversal within a 10-second interval. The system was 

intentionally exposed to external disturbances, such as load torque variations and noise injection on 

the measurement channels, in order to test its resilience. Parameter mismatches were also introduced 

by modifying rotor resistance and stator inductance to assess the adaptability of the observer-

controller loop. All control computations were executed in real-time with PWM-based voltage 

injection, and no mechanical sensors were used, enforcing a fully sensorless operation. Input 

voltages, speed, and torque signals were sampled with high resolution to ensure accurate monitoring 

and analysis. 

The experimental results clearly demonstrate the strength and reliability of the proposed hybrid 

neuro-fuzzy control algorithm. The motor accurately tracks the reference speed and torque 

commands, including during fast transitions and speed reversals, with minimal overshoot and nearly 

zero steady-state error. The estimated torque closely follows the reference with a peak transient 

around 12.3 Nm and an estimation error confined within ±1.25 Nm throughout the operation. The 

speed error remains bounded under ±10 rad/s even during reversal, showing excellent stability. 

Furthermore, the system sustains stable voltage waveforms across all phases, with no sign of 

chattering or saturation, validating the effectiveness of the PWM switching strategy. Despite 

disturbances, parameter variations, and sensorless operation, the proposed controller maintained 

high performance and strong adaptation capabilities. These results confirm that the hybrid algorithm 

offers robust and precise control, making it well-suited for real-world applications demanding 

accuracy, disturbance rejection, and reliable estimation. Comparative study: To evaluate the 

performance of the proposed control, we use standard electrical engineering (EE) control metrics 

based on the response to speed or torque ramps (ramp amplitude = |final − initial|):     

• 𝑡2% is the time value at which the response signal has covered 2% of the ramp amplitude. 

• 𝑡95% is the time after which the response remains at less than 5% of the target value.    

• 𝐷% Peak overshoot relative to target (% of ramp amplitude).    

• 𝐸ss (steady-state error settling) the error once the 𝑡95% has been reached.   

• 𝐸fol Error when reference reaches 50% of ramp.  

• ∆𝒯max Max torque deviation during speed ramp. 

And in order analyze the performance at global scope, we employ standard machine learning 

(ML) metrics: mean absolute error (MAE), symmetric mean absolute percentage error (SMAPE), 

and coefficient of determination (𝑅2). These metrics are defined as: MAE = [⅀𝑡=1
𝑇 |𝑦𝑡 − �̂�𝑡|]/𝑇; 

SMAPE = 100.⅀𝑡=1
𝑇 [|𝑦𝑡  −  �̂�𝑡|/(|𝑦𝑡| + |�̂�𝑡|)]/𝑇 and 𝑅2 = 1 − ⅀𝑡=1

𝑇 [�̅�𝑡  − �̂�𝑡]
2/⅀𝑡=1

𝑇 [�̅�𝑡  −  𝑦𝑡]
2 

where 𝑦𝑡 is the ground truth, �̂�𝑡 is the predicted output of the model at time 𝑡, and 𝑇 is the total 

experiment duration. �̅�𝑡 denotes the mean of 𝑦𝑡. These metrics jointly characterize accuracy, relative 

error, and explained variance, enabling a comprehensive assessment of model fidelity [46]-[51]. To 

comprehensively assess the effectiveness of the proposed adaptive neuro-fuzzy sensorless control 

scheme under realistic and demanding operating conditions, two benchmark trajectories were 

designed:    

1. Pseudo-Static Benchmark: In this scenario, the reference speed rapidly ramps from 0 to 

157 rad/s within 1 second and maintains this steady state for 8 seconds. During the interval 
[1s, 2.5s] and [4s, 6s], a torque of approximately 7.5 Nm is switched on, with superimposed 

oscillations post-step to simulate external disturbances or system ripples. This setup evaluates 

the controller’s ability to handle sudden load changes and steady-state performance amidst 

disturbances.  
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Dynamic Benchmark: This test case simulates aggressive maneuvering conditions. The 

reference speed trajectory begins with a linear ramp from rest to 157 rad/s during the first second, 

followed by a constant speed hold at 157 rad/s between 2 and 5 seconds. A rapid reversal then 

occurs, driving the speed from +157 rad/s to –157 rad/s within the short interval from 5 to 5.5 

seconds. This reversed speed is maintained steady between 5.5 and 9 seconds, after which the signal 

ramps upward from –157 rad/s to 77 rad/s in the final half-second, completing the profile. The 

torque profile starts with zero torque for the first second. A step increase to 8 Nm is applied over a 

short transition from 1.0 to 1.1 seconds and held constant until 3.5 seconds, followed by a sharp 

drop back to 0 Nm. A second 8 Nm step is introduced at 5.0 seconds and is then linearly decreased 

to 4 Nm by 5.9 seconds, followed by another quick return to 0 Nm. At 6.5 seconds, a third 8 Nm step 

is applied and maintained until 8.0 seconds, after which the torque begins a gradual descent toward 

0 Nm, passing through 4 Nm at 9.0 seconds and reaching zero at 9.6 seconds. 
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Fig. 12. Performance and estimation accuracy of the proposed control scheme under speed reversal 

Throughout the entire profile, small random perturbations are superimposed to simulate 

external disturbances, ensuring a challenging scenario for evaluating control robustness, 

responsiveness, and adaptation under dynamic and load-varying conditions. Fig. 13 shows the 

profiles used during the experimental tests. To assess steady-state and low-dynamic behavior, the 

four control strategies were subjected to a pseudo-static benchmark consisting of a speed ramp from 

0 to 157 rad/s over 1 second, followed by a steady-state hold. Simultaneously, a step torque 
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disturbance of 7.5 Nm was introduced and held constant, with superimposed high-frequency 

perturbations to emulate load noise. The benchmark is designed to evaluate tracking accuracy, 

overshoot suppression, steady-state precision, and torque estimation quality in stable operating 

conditions. A quantitative comparison of control performance under pseudo-static conditions is 

summarized in Table 3. 

 

Fig. 13. Realistic operating conditions benchmark profiles for comparative performance evaluation 

Table 3.  Comparative evaluation of control laws under pseudo-static speed and torque conditions 

 Speed (𝛚𝒓) Torque 𝓣𝐞𝐦 

𝐌𝐀𝐄
(₋₋)

  
𝐒𝐌𝐀𝐏𝐄

(%)
     

𝒕𝟐%

(𝐦𝐬)
   

𝒕𝟗𝟓%

(𝐦𝐬)
   

𝑬𝐟𝐨𝐥 

(𝐇𝐳)
   

𝑫%

(%)
    

𝑬𝐬𝐬 

(𝐇𝐳)
  
∆𝓣𝐦𝐚𝐱 

(%𝐧𝐨𝐦)
  

𝐌𝐀𝐄
(₋₋)

   
𝐒𝐌𝐀𝐏𝐄

(%)
 

PI-MRAS [11] 0.72   21.30   12     858     0.44     1.60     0.65   36.54 0.48    45.23 

Fuzzy-MRAS [7] 0.13   17.91   16     841     0.18     0.90     0.21   30.41 0.19    36.52 

NN-MRAS [29] 0.09   16.83   15     855     0.11     0.74     0.13   28.72 0.13    29.81 

NN-Fuzzy 0.07   16.54   14     848     0.10     0.59     0.08   27.23 0.11    26.37 

𝑅2 is ≈ 0.99 for all the used controller.  

 

The results demonstrate a clear performance improvement when transitioning from 

conventional PI-based MRAS to advanced AI-based methods. The hybrid NN-Fuzzy controller 

achieved the lowest speed tracking error (MAE = 0.07 rad/s) and minimal steady-state error (𝐸ss = 

0.08 rad/s), outperforming all other control laws in terms of stability and precision. In torque 

estimation, the NN-Fuzzy method again delivered the best result with a 26.3% SMAPE, highlighting 

its ability to handle low-frequency disturbances with high accuracy. The overshoot (𝐷%) and torque 

deviation (∆𝒯max) are also significantly reduced compared to the baseline controller, indicating 

strong robustness under near-static load conditions.   

To evaluate the controllers under dynamic and nonlinear conditions, a comprehensive 

benchmark was conducted, incorporating fast acceleration, full speed reversal, and variable torque 

loading. The speed reference varied between ±157 rad/s, while torque underwent rapid steps, ramps, 

and sinusoidal perturbations—highlighting the controllers' ability to adapt to simultaneous nonlinear 

speed and torque variations while preserving estimation fidelity and transient performance. 

Additionally, the robustness of the proposed controller was assessed against distinct disturbance 

categories, including step changes in load torque, rotor resistance mismatches (±10% to emulate 

parametric uncertainty), and high-frequency Gaussian noise (variance = 0.002) injected into voltage 

and current measurements to simulate sensor disturbances. Each disturbance was tested 

independently to isolate its effects and assess adaptability across scenarios. The results of these 

evaluations, including speed reversal and load variation, are summarized in Table 4. Future work 



1844 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 5, No. 3, 2025, pp. 1828-1849 

 

 

Belkacem Bekhiti (Artificial Intelligence-Enhanced Sensorless Vector Control of Induction Motors Using Adaptive 

Neuro-Fuzzy Systems: Experimental Validation and Benchmark Analysis)   

 

will investigate systematic variations in disturbance magnitude and frequency to establish 

performance bounds and quantify robustness more formally.   

Table 4.  Comparative performance under dynamic speed reversal and load transients 

 Speed (𝛚𝒓) Torque 𝓣𝐞𝐦 

MAE
(₋₋)

    
SMAPE
(%)

     
𝑡2%

(ms)
   

𝑡95%

(ms)
   

𝐸fol 

(Hz)
   

𝐷%

(%)
    

𝐸ss 

(Hz)
   

∆𝒯max 

(%nom)
 

MAE
(₋₋)

   
SMAPE
(%)

 

PI-MRAS [11] 1.48      25.6   18      1025    1.22   4.10    1.10     42.33    0.83    53.2 

Fuzzy-MRAS [7] 0.34      21.3   22      1010    0.57   2.37    0.39     36.75 0.41    39.64 

NN-MRAS [29] 0.22      19.25   21      996      0.32    1.63    0.27    33.54 0.13    29.81 

NN-Fuzzy   0.17     18.44   20      990      0.26    1.12    0.19    30.83 0.20    28.55 

𝑅2 is ≈ 0.98 for all the used controller.  

 

Under dynamic speed reversal and variable torque conditions, the performance gap between the 

control strategies becomes more pronounced. While the classical PI-MRAS struggles with overshoot 

and tracking delays (𝐷% = 4.1%, 𝐸ss  = 1.10 rad/s), the AI-based approaches maintain significantly 

better precision. The NN-Fuzzy controller exhibits the best performance overall, with the lowest 

speed MAE (0.17 rad/s) and torque SMAPE (28.5%), while also minimizing transient torque 

deviation (∆𝒯max = 30.8%). These results confirm the superior adaptability and dynamic tracking 

capabilities of the hybrid neuro-fuzzy architecture, especially in complex, real-world operation 

scenarios where both speed and torque vary rapidly. Table 5 presents the speed error values recorded 

during a challenging test scenario involving full speed reversal combined with a sudden 2 Nm load 

step, under both nominal and perturbed conditions. Specifically, it illustrates the performance 

degradation of each control scheme in the presence of ±10% rotor resistance variation, highlighting 

their sensitivity to parametric uncertainty and their ability to maintain accurate speed estimation 

under abrupt dynamic changes.   

Table 5.  Performance degradation under ±10% rotor resistance variation 

 
Speed Error (rad/s) 

Nominal 𝑹𝒓 +𝟏𝟎% 𝑹𝒓 +𝟏𝟎% 𝑹𝒓 

PI-MRAS [11] 0.82 1.45 1.33 

Fuzzy-MRAS [7] 0.48 0.91 0.84 

NN-MRAS [29] 0.39 0.65 0.62 

NN-Fuzzy   0.07 0.13 0.11 

 

Compared to previous studies such as [11], [7] and [29], which employed standalone MRAS, 

fuzzy-MRAS, or neural-based MRAS designs, the proposed hybrid controller exhibits superior 

robustness and performance under speed reversals, noise, and parametric disturbances. This 

improvement stems from its ability to integrate nonlinear inference with dynamic memory, 

enhancing adaptability across varying operating conditions.  

These improvements suggest potential benefits in real-world industrial applications. Enhanced 

estimation accuracy reduces startup delays, minimizes energy waste during transients, and may 

extend motor lifespan by reducing thermal and mechanical stress. While the current 

implementation is tailored to a specific drive configuration, future research will explore broader 

applicability, hardware abstraction, and cost-aware optimization.  

Explanation of Findings along with Strengths and Limitations: The fuzzy logic component 

provides nonlinear inference from expert-defined rules, handling signal noise and uncertainties 

effectively. Meanwhile, the RNN learns temporal relationships from past behavior, enabling 

dynamic adaptation during transient conditions such as reversals. The architecture combines 

generalization and online adaptability while maintaining real-time feasibility. However, training the 
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RNN requires significant data and preprocessing, and tuning the fuzzy inference mechanism may 

require expert input, which limits plug-and-play deployment.  

Benchmarking Scope and Justification: The proposed neuro-fuzzy MRAS estimator was 

benchmarked against three reference schemes: a classical PI-based MRAS, a standalone fuzzy-

MRAS, and a neural-MRAS observer. These schemes were chosen because they represent the most 

widely used and practically implementable classes of sensorless control strategies—conventional 

linear, rule-based, and data-driven approaches, respectively. This comparison provides a fair and 

balanced evaluation of the proposed method across both classical and intelligent baselines. Other 

advanced methods such as sliding mode observers or robust adaptive control were not included, as 

they follow fundamentally different design philosophies or require significant structural 

modifications beyond the MRAS framework, which fall outside the scope of this study. 

The reported results include MAE, SMAPE, and R² to quantify performance. While these 

metrics confirm strong accuracy, the current study does not include confidence intervals or 

hypothesis testing due to the dataset's size and structure. These will be addressed in future work 

through statistical validation and broader test campaigns.  

7. Conclusion 

This work presented a sensorless control strategy for induction motors based on a hybrid neuro-

fuzzy Model Reference Adaptive System (MRAS). The main contribution lies in replacing the 

traditional proportional-integral (PI) adaptation mechanism with a novel architecture that integrates 

a fuzzy logic estimator and a recurrent neural network (RNN)-based torque predictor. This 

combination enables robust, real-time estimation of rotor speed and electromagnetic torque, even 

under low-speed, high-disturbance, or parameter-variant conditions. The approach was 

experimentally validated using a 1.1 kW induction motor under realistic industrial operating 

conditions. Two benchmark profiles, including speed reversals, torque steps, and load disturbances, 

were used to assess dynamic adaptability and steady-state performance. The proposed hybrid 

controller achieved a 91% reduction in steady-state speed error (from 0.65 rad/s to 0.08 rad/s) and a 

42% improvement in torque estimation accuracy, reducing SMAPE from 45.2% to 26.3%. It 

consistently outperformed the standalone PI-MRAS, fuzzy-MRAS, and neural-MRAS controllers 

across all tested metrics, including rise time, overshoot, and mean absolute error.  

From a theoretical standpoint, this work introduces a neuro-fuzzy structure tailored for MRAS-

based observers, bridging symbolic reasoning and data-driven adaptation within a unified 

framework. The architecture contributes new insights into the synergistic benefits of combining 

fuzzy logic with temporal learning mechanisms like RNNs for motor control applications. However, 

the proposed scheme has some limitations. The RNN component requires retraining if applied to 

motors with significantly different dynamics, and the fuzzy rule base may need adaptation under 

drastically varying load profiles. These factors may affect generalization in cross-domain 

deployment without recalibration. Despite these constraints, the system retains strong adaptability 

and is well-suited for real-time sensorless drives. 

Looking ahead, future work will focus on improving scalability and extending the method to 

more complex systems such as doubly-fed induction machines and coaxial rotor configurations. 

Another promising direction involves replacing the RNN block with advanced memory-based 

models like Long Short-Term Memory (LSTM) networks to better capture long-range temporal 

dependencies in torque dynamics. Additionally, efforts will be directed toward automating the fuzzy 

rule optimization process using evolutionary algorithms or reinforcement learning to enhance 

controller portability across different drive types. In summary, this study offers a validated, AI-

driven control solution that improves estimation accuracy, increases robustness to uncertainties, and 

advances the state-of-the-art in sensorless induction motor control. 
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