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1. Introduction 

The implementation of visual control technologies within modern society has brought about 

substantial transformations in everyday human activities. One important use of this technology is 

spotting suspicious human actions using video surveillance [1]-[4]. The growing demand for effective 

surveillance and public safety has driven the development of intelligent monitoring systems, typically 

based on fixed-cameras [5]-[8]. However, traditional CCTV surveillance, which relies on continuous 

human monitoring, has become increasingly impractical and inefficient in large-scale or dynamic 
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 The increasing demand for drone-based surveillance systems has raised 

significant concerns about advancements in person and activity recognition 

based on joint motion features within visual monitoring frameworks. This 

study contributes to developing deep learning models that improve 

surveillance systems by using RGB video data recorded by drone cameras. 

In this study, a framework for person and activity recognition based on 120 

datasets is proposed, from drone camera-recorded videos of 10 subjects, 

each performing six movements: walking, running, jogging, boxing, 

waving, and clapping. Joint motion features, including joint positions and 

joint angles, were extracted and processed as one-dimensional series data. 

The 1D-CNN, LeNet, AlexNet, and AlexNet-LSTM architectures were 

developed and evaluated for classification tasks. Evaluation results show 

that AlexNet-LSTM outperformed the other models in person recognition, 

achieving a classification accuracy of 0.8544, a precision of 0.9161, a recall 

of 0.8575, and an F1-score of 0.8332, while AlexNet delivered superior 

performance in activity recognition with an accuracy of 0.8571, a precision 

of 0.8442, a recall of 0.8599, and an F1-score of 0.8463. The relatively 

small dataset size used likely favors simpler architectures like AlexNet. 

These findings highlight the effectiveness of joint motion features for 

person identification and emphasize the suitability of simpler classifier 

architectures for activity classification when working with small datasets. 
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environments. To resolve this problem, an RGB drone camera has been introduced, but the low-

resolution image in person and activity recognition are challenges in this study. 

Recent advancements have explored the use of aerial video systems for human activity 

recognition. Some studies have employed alternative platforms such as helium balloons to simulate 

drone-like camera perspectives [9]-[11], while others, for example, Mishra et al. [12] introduced 

drone-recorded datasets for search and rescue applications that require accurate finding and tracking 

of humans, which is a very difficult and demanding task. Srivastava et al. [13] further expanded this 

area by proposing a dataset of eight human activities captured by drones flying at altitudes ranging 

from two to ten meters, which makes the captured body structures appear small. Despite these 

advancements, several problems persist in drone-based video capture, including sensitivity to lighting 

variations, image resolution limitations, fluctuating object distances, and drone-induced vibration 

artifacts. As a result, robust and effective feature extraction methods are crucial for accurate motion 

detection from aerial footage. 

Human motion recognition remains a complex research area, particularly due to the intricate 

coordination of body joints that govern movement. Visual recognition systems commonly utilize 

variations in joint coordination across sequences of frames to identify human activities [14]-[18]. 

Grimmer et al. [19] emphasized the usefulness of lower limb joints in recognizing distinct gait 

patterns, especially during stair-climbing activities, by examining the kinematic movements of the 

hip, knee, and ankle. These joint dynamics provide important information for biomechanical 

evaluations for enhancing recognition performance. However, their study focuses on the lower body 

joints. In this study, sequences of key body joint positions (pose keypoints) were extracted from RGB 

images, instead of classical biomechanical features, to provide data on the sequence of body poses 

during movement. 

Ahad et al. [20] proposed the extraction of kinematic posture features from skeletal joint positions 

to improve activity recognition accuracy. This approach involves measuring linear and angular joint 

features based on bone segment connections visible in video data, making it suitable for implementing 

pose estimation algorithms. For instance, digital cameras are used to capture front and side views of 

the pelvis, hip, knee, and ankle angles [21], [22]. Subsequent pose estimation performed using tools 

such as OpenPose [23], [24] and MediaPipe [25]-[28], enables the extraction of temporal joint 

movement sequences, which can be used to construct discriminative motion patterns for both activity 

and identity recognition. 

Temporal feature sequences play a pivotal role in deep learning-based human motion analysis, 

as their effectiveness depends on the specific task and model architecture [29]-[32]. Nam et al. [33] 

employed convolutional neural networks (CNNs) trained on temporal joint motion features derived 

from coordinate sequences and depth maps. Similarly, Wang et al. [34] introduced skeletal edge 

movement features, consisting of rotation angles and movement distances between joints, which were 

then classified using neural networks. These approaches highlight the importance of both angular and 

spatial motion cues in achieving accurate classification results. 

To overcome the shortcomings of earlier methods, recent research has employed deep learning 

architectures such as 1D-CNNs, LeNet, and AlexNet to improve the accuracy of person and activity 

recognition based on joint motion features [35]-[38]. The 1D-CNN architecture, a variation of the 

traditional CNN, is particularly popular due to its low complexity and high computational efficiency, 

which are essential for processing limited datasets such as joint motion data [39]. Furthermore, the 

Long Short-Term Memory (LSTM) architecture has been identified as an effective model for learning 

long-term dependencies in sequential data, particularly suited for time series classification tasks, 

especially when combined with CNNs for spatiotemporal feature extraction [40]-[42]. LSTMs are 

used to capture temporal data about joint motion features, which are crucial for distinguishing 

activities such as walking, running, or waving. 

The objective of this study is to propose a deep learning model designed for individual and 

activity recognition from video data captured by a drone-mounted camera. The proposed novel model 
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combines the strengths of deep CNNs and LSTM networks to effectively classify both person identity 

and activity type. The dataset used in this research consists of video recordings in which a single 

subject performs a specific activity, with each frame providing motion data derived from joint position 

coordinates and joint angles. The raw video data faces potential degradation because of its low 

resolution. Consequently, it is processed using pose estimation to emphasize the detection of structural 

motion patterns and to acquire features based on distance and joint angles for input into the classifier. 

These features, extracted as sequential data representing body movement patterns, serve as input 

for the classification model. The study contributes by developing and evaluating hybrid AlexNet- 

LSTM architecture and an evaluation of its classification performance in comparison to other leading 

deep learning models, including 1D-CNN, LeNet, and standard AlexNet. The effectiveness of the 

proposed method is measured based on accuracy, precision, recall, and F1-score, with the goal of 

improving recognition reliability in low-resolution, drone-based video settings. 

2. Method 

The proposed method for person and activity recognition based on low-resolution RGB video 

data captured from a drone-mounted camera consists of five main stages: (1) video data acquisition 

from the drone camera, (2) joint detection and feature extraction, (3) feature selection for person 

recognition and activity recognition, (4) classification using deep learning models, and (5) evaluation 

of the classification results to assess model performance. The overall framework of the proposed 

person and activity recognition method is depicted in Fig. 1. 

 

Fig. 1. Overview of the method developed for person and activity recognition 

2.1. Video Data Collection Using RGB Camera on a Drone 

Low-cost drone navigation in unstructured environments using mounted cameras as the primary 

sensor has been used previously [43], [44]. The video data collection for human movement in this 

study was conducted using a drone-mounted camera. The dataset utilized in this study is following 

GitHub repository in https://github.com/yunardi-89/Drone-ITS. The recorded video sequences, each 

lasting between two to three seconds, captured various movements performed by 10 subjects (8 males 

and 2 females) aged between 18 and 21 years, with varying body heights, as depicted in Fig. 2. A low-

cost drone (Eachine E88 Pro) was positioned outdoors at a height of two meters above the ground. To 

maintain a stable altitude and consistent camera orientation, considering the limitations of both the 

equipment and the environment, the drone was mounted on a two-meter-high pole. In collecting video 

data for the proposed model application, limitations regarding lighting conditions, occlusion, or 
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variations in drone height were not taken into account. The videos were recorded in 1920 × 1080-

pixel resolution at 20 frames per second (fps), transmitted to a smartphone via Wi-Fi FPV, and saved 

in MP4 format. 

 

Fig. 2. Video data collection using a drone-mounted camera 

2.2. Joint Detection and Feature Extraction 

Each movement is detected and tracked using a video dataset captured by a drone-mounted 

camera, where each frame contains an individual performing one of six different movements: walking, 

running, jogging, boxing, waving, and clapping. To extract joint movement features, joint detection 

must first be performed. This is achieved using a pose estimation algorithm implemented through the 

MediaPipe and OpenCV platforms. Fig. 3 illustrates a sample of the pose estimation outcomes applied 

to the six movement types analyzed in this study. The calculation of joint angles and distances between 

body joints is highly dependent on the accuracy of joint points. Small errors in position detection can 

lead to large deviations in the calculation of angles or movements. A quantitative evaluation of joint 

point detection accuracy is necessary to ensure the reliability of pose estimation-based systems. 

Therefore, datasets with a maximum acceptable error are selected, as demonstrated in previous 

research [26].  

 

Fig. 3. Pose estimation for joint detection in the six movements 



1904 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 5, No. 3, 2025, pp. 1900-1918 

 

 

Riky Tri Yunardi (Person and Activity Recognition Based on Joint Motion Features Using Deep Learning with Drone 

Camera) 

 

The pose estimation process aims to determine the joint coordinates that form a 2D skeletal 

structure for each sequence of image frames [45]. These joint points represent specific anatomical 

locations corresponding to key body joints. The process generates landmark points that are essential 

for identifying joint movements. In this study, feature extraction for person and activity recognition is 

based on five selected landmark points: the shoulder, wrist, waist, knee, and left ankle. Variable 

identifiers for each joint point, expressed as 𝐽𝑝(𝑥,𝑦,𝑧)
, are provided in Table 1. Tracking the general 

movement of the body's joints depends on the choice of these joints. It is possible to monitor the 

human body's movement patterns during activities by using these reference points. These reference 

joint points are vectors that are used to extract joint information from each movement. 

Table 1.  Selected landmark joints and their variables 

Landmark Variables 

Left Shoulder Joint 𝑱𝟏(𝒙,𝒚,𝒛)
 

Left Wrist Joint 𝑱𝟐(𝒙,𝒚,𝒛)
 

Left Hip Joint 𝑱𝟑(𝒙,𝒚,𝒛)
 

Left Knee Joint 𝑱𝟒(𝒙,𝒚,𝒛)
 

Left Ankle Joint 𝑱𝟓(𝒙,𝒚,𝒛)
 

 

Next, the feature pattern utilized in this study includes joint positions and angles, as shown in 

Fig. 4. When a person moves, body parts move and change position, particularly in the swing and 

joint angles. These changes in joint position allow for the identification of a movement by obtaining 

its features. The sequence of position data, as features, can describe the characteristics of an activity 

based on the movements of selected joints. A person's movement features are extracted from each 

image frame using joint landmark points in vector form from the skeleton model. These features are 

organized into sequential data, which consist of the distance of the knee joint position|𝑆𝑘|, ankle joint 

position |𝑆𝑎|, wrist joint position |𝑆𝑤|, hip joint angle 𝜃ℎ, knee joint angle 𝜃𝑘, and wrist joint angle 

𝜃𝑤. Each distance and angle are calculated using equations (1) to (6). 

 |𝑆𝑘| = √(𝐽3(𝑥,𝑦,𝑧)
− 𝐽4(𝑥,𝑦,𝑧)

)
2

 (1) 

 |𝑆𝑎| = √(𝐽3(𝑥,𝑦,𝑧)
− 𝐽5(𝑥,𝑦,𝑧)

)
2

 (2) 

 |𝑆𝑤| = √(𝐽3(𝑥,𝑦,𝑧)
− 𝐽2(𝑥,𝑦,𝑧)

)
2

 (3) 

 𝜃ℎ = cos−1 (
𝐽3(𝑥,𝑦,𝑧)

 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∙  𝐽4(𝑥,𝑦,𝑧)
 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

|𝐽3(𝑥,𝑦,𝑧)
 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|  ∙  |𝐽4(𝑥,𝑦,𝑧)

 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|  
) (4) 

 𝜃𝑘 = cos−1 (
𝐽4(𝑥,𝑦,𝑧)

 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∙  𝐽5(𝑥,𝑦,𝑧)
 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

|𝐽4(𝑥,𝑦,𝑧)
 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|  ∙  |𝐽5(𝑥,𝑦,𝑧)

 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|  
) (5) 

 𝜃𝑤 = cos−1 (
𝐽1(𝑥,𝑦,𝑧)

 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∙  𝐽2(𝑥,𝑦,𝑧)
 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

|𝐽1(𝑥,𝑦,𝑧)
 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|  ∙  |𝐽2(𝑥,𝑦,𝑧)

 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|  
) (6) 

Next, the feature pattern for a single body movement of the subject includes joint positions and 

angles, which are organized into sequential data comprising |𝑆𝑘|, |𝑆𝑎|, |𝑆𝑤|, 𝜃ℎ, 𝜃𝑘, and 𝜃𝑤 for every 

30 image frames 𝑓, as follows: 
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 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 =

[
 
 
 
 
 
 
 
|𝑆𝑘|𝑓=1, |𝑆𝑘|𝑓=2, |𝑆𝑘|𝑓=3, ⋯ |𝑆𝑘|𝑓=30,

|𝑆𝑎|𝑓=1, |𝑆𝑎|𝑓=2, |𝑆𝑎|𝑓=3, ⋯ |𝑆𝑎|𝑓=30,

|𝑆𝑤|𝑓=1, |𝑆𝑤|𝑓=2, |𝑆𝑤|𝑓=3, ⋯ |𝑆𝑤|𝑓=30,

𝜃ℎ𝑓=1, 𝜃ℎ𝑓=2, 𝜃ℎ𝑓=3, ⋯ 𝜃ℎ𝑓=30,

𝜃𝑘𝑓=1
, 𝜃𝑘𝑓=2

, 𝜃𝑘𝑓=3
, ⋯ 𝜃𝑘𝑓=30

,

𝜃𝑤𝑓=1, 𝜃𝑤𝑓=2, 𝜃𝑤𝑓=3, ⋯ 𝜃𝑤𝑓=30 ]
 
 
 
 
 
 
 

 (7) 

2.3. Feature Data Selection for Person and Activity Recognition 

The feature data selection in this study is categorized into two main tasks: person recognition and 

activity recognition. To recognize person based on body joint movements, the model leverages motion 

features that characterize a person’s walking pattern, as depicted in Fig. 3 (a). The walking pattern is 

a relatively consistent activity performed in a repetitive manner and without object interaction. For 

activity recognition, it utilizes motion feature data derived from five distinct actions: running, jogging, 

boxing, waving, and clapping, as illustrated in Fig. 3 (b) through Fig. 3 (f). 

2.4. Classification Using Deep Learning Models 

This research contributes by evaluating the performance of deep learning models in classification 

tasks for person and activity recognition, based on features extracted from 1D time-series data. The 

deep learning classification models proposed in this study, 1D-CNN, LeNet, AlexNet, and AlexNet-

LSTM, were developed and executed on a computer system using the Python programming language 

within the Jupyter Lab environment. The reference of joint positions and angles Fig. 4. 

 

Fig. 4. The reference of joint positions and angles 
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2.4.1. 1D-CNN Classifier Model 

In this study, the 1D-CNN classification model is designed to process one-dimensional sequential 

inputs, such as time-series data. Its architecture operates similarly to standard convolutional neural 

networks, applying convolutional filters directly to the input sequence [46]. In the context of person 

and activity classification, this model transforms numerical features into a structure optimized for a 

1D-CNN, which is more effective in handling temporal data sequences [47], [48]. The architecture of 

the 1D-CNN classifier model, as shown in Fig. 5, consists of an initial Conv1D layer with 32 filters 

and a kernel size of 179, which extracts features from the input data. This kernel size allows the 

network to summarize the temporal structure early on, thus allowing for a reduction in the 

dimensionality of the sequence before deeper layers. A pooling layer is then employed to perform 

dimensionality reduction on the extracted features. To enhance feature extraction, a further Conv1D 

layer with 64 convolutional filters and a kernel size of 3 is applied to further process the data and 

accelerate training through a reduction in model complexity of parameters. In the final stage, the 

architecture incorporates a dense layer activated by ReLU, succeeded by a Softmax-activated layer to 

classify features derived from joint motion data. 

 

Fig. 5. 1D-CNN classifier model architecture 

2.4.2. LeNet Classifier Model 

The LeNet classifier model is a convolutional neural network (CNN) architecture designed for 

classification tasks. Developed by Yann LeCun, the original LeNet architecture was created for 

handwritten digit recognition [49]. The model consists of convolutional layers that perform feature 

extraction, followed by pooling layers to reduce feature dimensionality [50], [51]. For this study, the 

LeNet architecture is adapted into a 1D-CNN structure to process numerical data, utilizing one-

dimensional convolutional layers (Conv1D) to extract patterns from the input features. The 

architecture of the LeNet classifier model is shown in Fig. 6. LeNet comprises five layers, including 

three convolutional layers with tanh activation functions and average pooling layers to decrease the 

complexity of the feature maps before passing the data to the fully connected layers. The output is 

then processed through two fully connected layers, followed by a Softmax activation layer for 

classification.  
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Fig. 6. LeNet classifier model architecture 

2.4.3. AlexNet Classifier Model 

The AlexNet classifier model is a deep learning neural network originally developed by Alex 

Krizhevsky for image classification tasks [52], [53]. The AlexNet architecture integrates a series of 

convolutional layers for extracting relevant features, alongside batch normalization layers that 

facilitate more stable and efficient training [54], [55]. In this study, the AlexNet model is adapted for 

sequential data by employing 1D convolutional layers and max pooling layers. These adaptations 

allow for dimensionality reduction of sequential data while preserving critical information. The 

processed data is subsequently passed through two fully connected layers, with dropout applied in 

deeper layers to mitigate overfitting. The classification process is completed by connecting the output 

to a Softmax activation layer. The architectural layout of the AlexNet model is illustrated in Fig. 7. 

 

Fig. 7. AlexNet classifier model architecture 
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2.4.4.  AlexNet-LSTM Classifier Model 

The AlexNet-LSTM model represents a hybrid architecture that merges the AlexNet and LSTM 

architecture. By combining the feature extraction power of CNN with the sequential learning 

capability of LSTM, the AlexNet-LSTM model demonstrates superior performance in sequential data 

classification when compared to traditional models [56], [57]. AlexNet is specifically designed for 

spatial feature extraction, while LSTM excels in processing sequential data [58]. The architecture of 

the AlexNet-LSTM classifier model is depicted in Fig. 8. As part of the model framework in this 

study, sequential data representing joint positions and angles are first passed through several AlexNet-

based 1D convolutional layers to capture essential spatial features. Batch normalization and max 

pooling layers are then applied to accelerate training and reduce the dimensionality of the extracted 

features. Following the feature extraction phase, the output is passed to the LSTM layers, that learn 

the temporal dependencies present within the data. 

 

Fig. 8. AlexNet-LSTM classifier model architecture 

2.5. Performance Evaluation of Deep Learning Classification Models 

To evaluate the performance of the proposed deep learning models for person and activity 

recognition tasks, a series of experiments were conducted. The models evaluated include 1D-CNN, 

LeNet, AlexNet, and AlexNet-LSTM, all utilizing one-dimensional time-series data features extracted 

from the dataset. The evaluation process involved comparing the models' performance based on 

precision, recall, F1-score, and accuracy, which were computed using equations (8)-(11). These results 

were then compared to those obtained from other state-of-the-art (SOTA) classification models, as 

referenced in [59], [60]. To further analyze model performance, the multiclass confusion matrix was 

utilized to compute the values of true positives (TP), false positives (FP), true negatives (TN), and 

false negatives (FN). 
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 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (8) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (9) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (10) 

 𝐹1𝑆𝑐𝑜𝑟𝑒 =
2 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (11) 

3. Results and Discussion 

To assess the effectiveness and contribution of deep learning architectures in person and activity 

recognition tasks based on the proposed joint position and angle features, this study conducted two 

separate experimental evaluations. The first experiment focused on evaluating model performance in 

recognizing individual identities, while the second focused on recognizing human activities. Both 

experiments employed four different deep learning architectures: 1D-CNN, LeNet, AlexNet, and 

AlexNet-LSTM. Model performance was evaluated using standard statistical metrics, including 

average accuracy, precision, recall, and F1-score, to measure their effectiveness in classifying both 

individual identities and the types of activities performed. 

3.1. Classification Evaluation for Person Recognition Using Deep Learning 

In the person recognition task, all four models were trained using motion features derived from 

walking patterns of ten distinct subjects. The data extraction process yielded a total of 120 datasets, 

which were subsequently divided into training and testing sets. Considering the relatively small dataset 

size, accuracy validation was performed using three different train-test split ratios: 70:30, 80:20, and 

90:10. Each configuration was trained for 100 epochs to ensure a fair performance comparison. The 

optimal train-test ratio, based on overall classification performance, was selected as the final 

configuration for model evaluation. In this experiment, the primary goal is to evaluate model 

performance under various conditions, not to optimize the model. Therefore, it provides more diverse 

data and more testing data. Although the main validation focus was on 70:30, 80:20, and 90:10 splits, 

we also present results for 50:50 and 60:40 splits in Table 2 for completeness and to illustrate 

performance trends across a wider range of data distributions. The 50:50 or 60:40 ratio is used when 

the dataset size is limited or to evaluate the overall model performance. This ratio provides a larger 

test set size, allowing for a more stable and representative evaluation of pattern recognition within the 

dataset. 

The performance comparison of the deep learning models in person recognition is presented in 

Table 2, highlighting the results across different split ratios. The analysis demonstrates that the 

AlexNet-LSTM architecture consistently outperformed other models, validating the effectiveness of 

combining convolutional and sequential learning for person identification tasks using the proposed 

joint position and angle features. 

Validation of the model using a 70:30 train-test data split, 70% for training and 30% for testing, 

demonstrated superior performance in person recognition compared to other split configurations. This 

data split yielded higher accuracy, likely due to the relatively larger training portion, which contributed 

significantly to performance improvement. As presented in Table 2, the AlexNet-LSTM model 

achieved the highest classification performance for person recognition, with an accuracy of 0.8544, a 

precision of 0.9161, a recall of 0.8575, and an F1-score of 0.8332.  

The 70:30 ratio in Table 2 can be considered a balanced approach, providing sufficient data for 

training while maintaining the validity of the performance evaluation. While a ratio like 90:10 may 
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seem advantageous from a training perspective, its use can increase the risk of overfitting and decrease 

the reliability of the model evaluation. The evaluation results indicate that AlexNet outperforms other 

models in activity recognition tasks. Several architectural aspects and data characteristics explain this 

superiority. First, AlexNet has a relatively deep but not overly complex structure, making it suitable 

for use on moderately sized activity datasets without a high risk of overfitting. Furthermore, the large 

filters in the early layers of AlexNet allow the model to effectively capture global spatial patterns, 

which is crucial when feature-based activity representation is used. 

Table 2.  The performance of classifier models for person recognition 

Data Split 

Train: Test 
Classifier Models Accuracy Precision Recall F1-Score 

50:50 

1D-CNN 0.5448 0.5385 0.5537 0.5028 

LeNet 0.6438 0.5176 0.6417 0.5395 

AlexNet 0.4210 0.3022 0.4233 0.3426 

AlexNet-LSTM 0.7105 0.5557 0.7000 0.6049 

60:40 

1D-CNN 0.7825 0.8710 0.7895 0.7520 

LeNet 0.8190 0.8794 0.8270 0.8082 

AlexNet 0.8381 0.8905 0.8405 0.8298 

AlexNet-LSTM 0.8571 0.8783 0.8544 0.8470 

70:30 

1D-CNN 0.7211 0.7258 0.7290 0.6738 

LeNet 0.8898 0.8477 0.9000 0.8646 

AlexNet 0.8259 0.7991 0.8350 0.7969 

AlexNet-LSTM 0.8544 0.9161 0.8575 0.8332 

80:20  

1D-CNN 0.7702 0.7326 0.7755 0.7357 

LeNet 0.7476 0.7075 0.7542 0.7155 

AlexNet 0.7940 0.7851 0.7993 0.7482 

AlexNet-LSTM 0.6583 0.5651 0.6672 0.6023 

90:10 

1D-CNN 0.7492 0.7892 0.7499 0.7403 

LeNet 0.7090 0.7620 0.7107 0.6858 

AlexNet 0.6328 0.6083 0.6344 0.5826 

AlexNet-LSTM 0.7365 0.8444 0.7375 0.6973 

 

Fig. 9 illustrates a comparative analysis of classification accuracy for person recognition using 

four models: 1D-CNN, LeNet, AlexNet, and AlexNet-LSTM, all evaluated under the 70:30 train-test 

split. The accuracy trend indicates that all models exhibited improved performance as the number of 

training epochs increased, demonstrating a direct correlation between epoch progression and accuracy. 

The graph shows that on small datasets, AlexNet-LSTM tends to experience a large accuracy gap 

between training and validation, while AlexNet is relatively more stable. Among these models, 

AlexNet-LSTM consistently outperformed the others, achieving a training accuracy of 0.7510, which 

stabilized at epoch 60 out of 100 total epochs. However, a slight performance drops between epoch 

80 and 87 suggests the onset of overfitting. Overall, the training trend confirms the model’s ability to 

effectively learn and recognize individuals in the validation set. 

Table 3 shows the evaluation report of the AlexNet-LSTM classification model, which was 

trained and tested using a 70% training and 30% testing data split, in terms of accuracy, precision, 

recall, and F1-score for each Id individual label class fed into the model. The overall classification 

accuracy, obtained using consistent joint position and angle features across all Id individual labels, 

reached 0.85. Utilizing only these features enabled the AlexNet-LSTM model to minimize 

classification ambiguity. In general, the model achieved a precision of 1.00 across most person labels. 

However, in this case, the precision for Id individual 4 and Id individual 9 was relatively lower, 

recorded at 0.62 and 0.54, respectively. These evaluation results indicate that the selected body joint 

features are effective in enhancing the performance of deep learning-based classification, particularly 

in addressing challenges associated with a limited dataset in person recognition tasks. The feature 

pattern partially represents a single subject's body movement, indicating that the sequential data is 

temporally one-dimensional. This observation aligns with the design of a hybrid AlexNet  and LSTM 
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model to distinguish each feature pattern. This finding emphasizes the possible use of spatiotemporal 

analysis to capture the specific characteristics of a person's movement. 

  
(a) (b) 

  
(c) (d) 

Fig. 9. Comparison of model accuracy for person recognition using: (a) 1D-CNN, (b) LeNet, (c) AlexNet, 

and (d) AlexNet-LSTM, with a 70:30 train-test data split 

The confusion matrix results in Fig. 10 show the prediction results from the diagonal aspect of 

the matrix using AlexNet-LSTM on a 70:30 train-test split. The proposed architecture model is able 

to show more correct predicted results. 

3.2. Classification Evaluation for Activity Recognition Using Deep Learning 

In the performance evaluation of human activity recognition, the 1D-CNN, LeNet, AlexNet, and 

AlexNet-LSTM models were trained using motion features derived from five distinct activities: 

boxing, waving, clapping, running, and jogging. The evaluation results include accuracy, precision, 

recall, and F1-score for each model, as presented in Table 4. 

Table 3.  Person recognition classification report using AlexNet-LSTM on a 70:30 train-test split 

Person Label Classes Accuracy Precision Recall F1-Score 

Id individual 1 

0.85 

1.00 1.00  1.00  

Id individual 2 1.00  1.00  1.00  

Id individual 3 1.00  1.00  1.00  

Id individual 4 0.62  1.00  0.76 

Id individual 5 1.00  0.41 0.58 

Id individual 6 1.00  1.00  1.00  

Id individual 7 1.00  1.00  1.00  

Id individual 8 1.00  0.16 0.28 

Id individual 9 0.54 1.00  0.71 

Id individual 10 1.00 1.00  1.00 

Average 0.85 0.92 0.86 0.83 
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Fig. 10. Confusion matrix for person recognition using AlexNet-LSTM on a 70:30 train-test split 

Table 4.  The performance of classifier models for activity recognition 

Ratio Data 

Train: Test 
Classifier Models Accuracy Precision Recall F1-Score 

50:50 

1D-CNN 0.7800 0.7958 0.7307 0.7367 

LeNet 0.7600 0.8273 0.7785 0.7192 

AlexNet 0.7800 0.8969 0.7873 0.7583 

AlexNet-LSTM 0.7150 0.6838 0.6962 0.6876 

60:40 

1D-CNN 0.8111 0.8077 0.7981 0.7981 

LeNet 0.7278 0.6116 0.7500 0.6633 

AlexNet 0.6611 0.6305 0.6619 0.6377 

AlexNet-LSTM 0.7625 0.6328 0.7547 0.6810 

70:30 

1D-CNN 0.8524 0.8524 0.8377 0.8413 

LeNet 0.8571 0.8790 0.8599 0.8442 

AlexNet 0.8571 0.8442 0.8599 0.8463 

AlexNet-LSTM 0.7667 0.7551 0.7790 0.7509 

80:20  

1D-CNN 0.8125 0.8256 0.8004 0.7973 

LeNet 0.8167 0.8297 0.8036 0.8016 

AlexNet 0.7333 0.7823 0.7244 0.6895 

AlexNet-LSTM 0.7531 0.6895 0.7429 0.6903 

90:10 

1D-CNN 0.6889 0.7690 0.6786 0.6524 

LeNet 0.7333 0.7855 0.7357 0.6969 

AlexNet 0.6926 0.5722 0.6984 0.6243 

AlexNet-LSTM 0.6722 0.7017 0.6767 0.6558 

 

As shown in Table 4, although the AlexNet-LSTM model was developed by integrating AlexNet 

and LSTM layers, the standalone AlexNet model outperformed the other models in terms of overall 

performance. Under the 70:30 data split configuration, AlexNet achieved an accuracy of 0.8571, a 

precision of 0.8442, a recall of 0.8599, and an F1-score of 0.8463. This can be attributed to the greater 

complexity and higher number of parameters in the AlexNet-LSTM model compared to AlexNet, 

which increases the risk of overfitting, particularly when working with small datasets. Therefore, with 

limited and relatively simple data, models with fewer parameters, such as AlexNet, tend to yield better 

performance. 

Table 5 presents the performance analysis of the AlexNet model in classifying human activities 

across five activity categories, with a focus on a 70:30 train-test split. Based on the results obtained, 
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the AlexNet model achieved an average accuracy of 0.86, an average precision of 0.92, an average 

recall of 0.86, and an average F1-score of 0.83 in recognizing human activities. The results indicate 

that misclassification in terms of precision is more prominent for running and jogging activities. The 

primary reason is that the classifier often confuses jogging with running, treating them as similar 

patterns, leading to a lower precision score for running, which is frequently misclassified as jogging. 

Additionally, misclassification also occurred for the waving activity, which was often incorrectly 

identified as jogging. Misclassification errors in activity recognition, particularly between activities 

with similar movement patterns, such as running and jogging, have technical implications. These two 

activities have similar movement sequences and joint positions but differ in intensity, speed, and 

rhythm. Classification systems that are not sufficiently sensitive to these differences can produce 

erroneous predictions, and these errors have varying impacts depending on the dataset and its use. 

This may be attributed to the unreadable leg angle data during jogging and the similarity in arm 

movements between the two activities. In summary, the experimental outcomes demonstrate that the 

AlexNet-based architecture achieves reliable performance in classifying five types of human 

movement activities from drone camera video data. 

Fig. 11 shows the graphical representation of training and accuracy of the four models with a 

70:30 train-test split for activity recognition indicates that the accuracy during training tends to 

stabilize after the first 10 epochs and continues to improve, albeit with minor fluctuations. Meanwhile, 

the training accuracy is generally higher compared to the validation accuracy. Focusing on the 

AlexNet model, it consistently demonstrates higher accuracy than the other models, considering the 

dataset size and the ratio of the split. 

  
(a) (b) 

  
(c) (d) 

Fig. 11. Comparison of model accuracy for activity recognition using: (a) 1D-CNN, (b) LeNet, (c) AlexNet, 

and (d) AlexNet-LSTM, with a 70:30 train-test data split 
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The test results also produced a confusion matrix for activity recognition using AlexNet on a 

70:30 train-test split shown in Fig. 12, representing the accuracy of classifying five types of activities 

from motion features data. 

Table 5.  Person recognition classification report using AlexNet on a 70:30 train-test split  

Person Label Classes Accuracy Precision Recall F1-Score 

running  

0.86 

0.76 1.00 0.86 

jogging 0.68 0.51 0.58 

boxing 1.00  1.00  1.00  

waving 0.79 0.79 0.79 

clapping 1.00  0.41 0.58 

Average 0.86 0.92 0.86 0.83 

 

 

Fig. 12. Confusion matrix for activity recognition using AlexNet on a 70:30 train-test split 

4. Conclusion 

The findings of this study confirm the applicability and performance of deep learning approaches 

for recognizing person and activity using video data captured by a drone-mounted camera. The 

recorded video sequences involved only 10 subjects and a limited number of activities, which directly 

impacts the generalizability of the results. By leveraging motion features derived from joint positions 

and angles, the proposed models were able to classify human identity and actions with high accuracy, 

even under the constraints of low-resolution images. Among the evaluated architectures, the hybrid 

AlexNet-LSTM model outperformed the others in person recognition, achieving a classification 

accuracy of 0.8544, a precision of 0.9161, a recall of 0.8575, and an F1-score of 0.8332, affirming the 

benefits of combining spatial and temporal feature extraction. Conversely, for activity recognition, the 

standard AlexNet model yielded the best performance, with an accuracy of 0.8571, a precision of 

0.8442, a recall of 0.8599, and an F1-score of 0.8463, suggesting that simpler models with fewer 

parameters may be more suitable when dealing with limited datasets. Overall, the results highlight the 

potential of deep learning-based frameworks in enhancing surveillance systems, particularly when 

applied to video data captured by drone-mounted camera. Future study could focus on expanding the 

data set, improving robustness against subject variability, and integrating multi-person tracking to 

further improve real world applicability. 
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