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1. Introduction 

A control problem can be divided into tracking and regulating cases. The regulating case forces 

the states to converge towards the origin upon perturbation in the initial condition [1]. Regulation can 

be achieved with state feedback, provided that the system is controllable. The design of feedback 

control systems for a tracking case is critical for ensuring the reliable operation of the system under 

control, such that both transient performance and steady-state performance are met. For instance, 

ensuring robots to track desired trajectories accurately and maintain balance [2] and tracking a solar 

system [3]. Among various feedback control techniques, the Proportional-Integral-Derivative (PID) 

controller remains widely used due to its simplicity, ease of implementation, and effective 

performance in a range of engineering applications. The earliest conceptual developments of three-

term controllers can be traced back to 1936 [4]. This article described automatic process control 

systems, including concepts of feedback and early forms of three-term controllers. Later, in 1942 [5], 

Ziegler and Nichols formally described three-term controller as a PID control, making a significant 
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contribution with the introduction of the Ziegler-Nichols tuning method. Nowadays, the Ziegler-

Nichols tuning method remains widely used in industries such as electrohydraulic systems [6], water 

level control [7], [8], and advanced process control due to its simplicity and effectiveness in initializing 

PID parameters. 

For a linear system, PID controllers are particularly advantageous for their capability to correct 

steady-state errors and offer satisfactory transient response. With minimal computational complexity, 

the stability of the closed loop control system can almost guaranteed. Advancements in PID 

applications can be found in adaptive tuning methods [9], position control of robotic arms [2], and 

adjusting the orientation of solar panel in the solar tracking system [3]. Recent advancements in PID 

control have been applied in various domains, including smart agriculture for precise irrigation, 

nutrient delivery, and climate regulation in greenhouses [10], electric vehicles for motor speed control, 

torque regulation, battery thermal management, and regenerative braking systems [11], HVAC 

systems in modern building automation [12], robotic arms in medical robotics [13], and the stable, 

efficient operation of microgrids [14]. Several methods are available to tune the three-term parameters 

of a PID controller. The conventional approaches like Ziegler–Nichols tuning method [5] and Cohen-

Coon tuning remains relevant even in this decade. For instance, it has been applied in hardware-in-

the-loop (HIL) control implementations for a coupled tank system using Arduino and Simulink [15]. 

However, these traditional tuning methods rely on system response characteristics that struggled with 

nonlinear or time-varying dynamics. To address these limitations, model-based self-tuning and rule-

based self-tuning methods have been developed [16]. This approach improves adaptability in dynamic 

environments. 

Though advancement of the PID design steps shows a blossom progress, the traditional method 

using a root locus is still relevant. Recent studies highlight the effectiveness of root locus methods in 

PID controller design across diverse applications. Jiang et al. [17] and Rodrigues et al. [18] emphasize 

educational and DC motor control benefits, while Fahmi et al. [19] extend its use to real-time human 

face tracking, demonstrating practical versatility. Traditional frequency-domain approaches for tuning 

PID parameters are still relevant today. A few decades ago, the absence of computer-aided design 

platforms forced designers to use hand-sketched Bode plots [20]. Recently, Barbosa, R [21] explores 

the application of an ideal open-loop transfer function, commonly referred to as Bode’s ideal in the 

tuning of PID controllers. The approach uses manual straight-line Bode plots to shape the system’s 

frequency response for desired closed-loop performance. By matching the open-loop frequency 

response of the system to that of a fractional-order reference model, the corresponding PID parameters 

can be systematically derived. This method offers significant advantages, notably enhanced robustness 

to plant gain variations and iso-damping characteristics, whereby the system’s overshoot remains 

largely unaffected by changes in loop gain. Recent advancements in PID controller tuning have 

emphasized frequency-domain approaches for enhanced performance. Wang [22] introduced 

automatic tuning using frequency sampling filters, offering robust control with minimal manual 

intervention. Liu and Daley [23] proposed optimal frequency-domain PID tuning for rotary hydraulic 

systems, demonstrating improved system stability and response. Wang et al. [24] focused on 

performance-oriented PID tuning, integrating practical constraints to refine controller behavior. More 

recently, Sarman and Doğruer [25] addressed fractional-order systems, designing PID controllers with 

set-point filters based on time-response specifications, thus extending PID applicability to complex 

dynamic systems. Frequency-domain PID tuning via Bode plots targets key closed-loop criteria such 

as gain and phase margins, bandwidth, steady-state accuracy, overshoot control, robustness, and iso-

damping behavior [26]-[29] ensuring stability and performance across variations. 

Recent advancements augment artificial intelligence to enhance PID tuning such as 

Reinforcement learning algorithms like a Twin Delayed Deep Deterministic Policy Gradient (TD3). 

This tuning concept can be applied to nonlinear systems and demonstrating superior performance over 

classical methods [30]. To handle uncertainties and disturbances, a hybrid neural structure based on 

actor-critic models is employed to enable real-time self-tuning in applications like quadcopter control 

[31]. Additionally, optimization algorithms like the Jellyfish Search Optimization (JSO) have been 
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utilized for tuning Fractional Order PID (FOPID) controllers [32]. The results reported JSO gives 

better control performance compared to traditional PID controllers. Brief literature regarding the 

augmentation of AI-based tuning methods concludes that this tuning approach offer adaptive, model-

free solutions that enhance control performance in complex and uncertain systems, marking a 

significant shift in PID tuning practices. 

This manuscript explores the feasibility of using Lyapunov stability criteria to tune the three 

parameters of a PID controller and evaluates its performance in comparison to classical techniques. 

Although Lyapunov’s theorem is essential for assessing the stability of nonlinear controllers such as 

backstepping [33], [34] and sliding mode control [35], [36], it is hoped that the approach presented in 

this manuscript will open new avenues in control system knowledge and methodology, serving as a 

valuable reference for future research in this field. The foundational work introducing Lyapunov 

stability theory is Aleksandr Mikhailovich Lyapunov’s 1892 doctoral dissertation, which was later 

translated into English and reprinted in 1922 [37]. 

Lyapunov stability theorem provides a powerful mathematical framework to guarantee the 

stability of dynamic systems through a Lyapunov function to ensure that the system's trajectories 

converge to a desired equilibrium point. The advantage of applying Lyapunov-based methods is the 

ability to design controllers that ensure global or local asymptotic stability without requiring exact 

solutions to the system dynamics [38]. 

There are many recent works on augmenting a Lyapunov with PID controller. For instance, 

author in [39] deals with the selection and evaluation of FOPID criteria for the X-15 adaptive flight 

control system (AFCS), using Lyapunov functions and optimization algorithms to balance trade-offs 

in control performance and stability. It emphasizes the theoretical and analytical aspects of designing 

FOPID controllers to ensure robust, stable flight control during high-speed and high-stress conditions. 

In [40], the author extends this idea to a practical application involving a 3-DOF helicopter model, 

where the effectiveness of FOPID controllers tuned using three different optimization algorithms is 

evaluated. The study focuses on the dynamic control of helicopter motion, aiming to enhance response 

accuracy and robustness under real-world disturbances. The study by author in [41] proposes a 

Lyapunov exponent-based PID control approach for noisy chaotic systems, demonstrating improved 

stability and noise resilience. This method offers a novel perspective in controller design, particularly 

for systems affected by chaotic behavior and external disturbances. 

While augmenting Lyapunov stability in the tuning of PID controllers offers notable advantages 

such as improved system stability and enhanced transient performance, it is important to recognize 

the associated trade-offs. One of the key challenges lies in the difficulty of selecting an appropriate 

Lyapunov function, which is critical to ensuring the validity of the stability analysis and the overall 

controller performance. The process often requires deep mathematical insight and may not be 

straightforward for complex or nonlinear systems. Additionally, implementing a Lyapunov-based PID 

controller typically involves increased computational complexity, especially when real-time 

adaptation or optimization is involved. These factors can limit the practicality of the approach in 

systems with constrained processing capabilities or where simplicity and ease of tuning are prioritized. 

In this manuscript, the proposed augmentation of Lyapunov stability in PID tuning is applied to 

a linear system, specifically a coupled-tank system. The applicability of the method is limited to 

systems without parametric uncertainty, exogenous disturbances, or external perturbations. Moreover, 

robustness against these factors is not addressed. Therefore, the main research contribution lies in the 

comparative study with a linear counterpart, namely the Ziegler-Nichols tuning approach. 

2. Formulation of Lyapunov-Based PID Algorithm  

This subsection discusses the formulation of the three-term parameters, namely the proportional 

gain (𝐾𝑝), derivative gain (𝐾𝑑), and integral gain (𝐾𝑖), of a standard PID controller. A block diagram 
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of a PID controller is depicted in Fig. 1 [42]-[44]. The error signal is denoted as 𝑒(𝑡), while the control 

signal is denoted as 𝑢(𝑡). 

 

Fig. 1. PID controller 

The Lyapunov stability criterion is embedded in the formulation steps to ensure the asymptotic 

stability of the closed-loop system. Subsequently, the efficacy of the proposed technique is verified 

using a numerical case study, with a DC-DC converter employed as the benchmarking model. 

Consider a linear-time-invariant (LTI) system shown in equation (1), where 𝑥(𝑡) ∈ ℝ is the state, 

𝑢(𝑡) ∈ ℝ is the control input. Both 𝑓(𝑥) and 𝑔(𝑥) are smooth function representing a system 

dynamics and input coupling function respectively. 

�̇� = 𝑓(𝑥) + 𝑔(𝑥)𝑢(t) (1) 

If the control input holds the dynamic of PID controller, then 𝑢(𝑡) can be expressed as in equation 

(2) [26]. If the 𝑥𝑟𝑒𝑓(𝑡) is the demanded state, then the tracking error dynamic can be defined as 𝑒(𝑡) =

𝑥𝑟𝑒𝑓(𝑡) − 𝑥(𝑡). 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖∫ 𝑒(𝑡)𝑑𝑡
𝑡

0

+ 𝐾𝑑�̇�(𝑡) (2) 

The rate of change of error can be deduced as 

�̇�(𝑡) = �̇�𝑟𝑒𝑓(𝑡) − 𝑓(𝑥) − 𝑔(𝑥)𝑢(𝑡) (3) 

Assumption 1 is introduced to ease the formulation. This assumption eliminates the influence of 

reference dynamics, thereby allowing the analysis to focus solely on the system's response and the 

stability of the closed-loop error dynamics. It allows the analysis to disregard the reference signal’s 

rate of change (slope=0) and focus solely on the system’s output dynamics in response to a step input. 

Thus, facilitating stability and convergence analysis of the control system. 

Assumption 1: The reference signal xref(t) is assumed to be a step function. This implies when t >
0, time derivative ẋref(t) = 0 almost everywhere except at the discontinuity at t = 0. 

As a result, the error dynamic in equation (3) can be reduced to equation (4). 

�̇�(𝑡) = −𝑓(𝑥) − 𝑔(𝑥)𝑢(𝑡) (4) 

For feedback stabilization, the existence of a control-Lyapunov function is necessary, as in 

Artstein’s theorem and Definition 1. 

Artstein Theorem [45]: Artstein theorem states that a dynamical system has a differentiable control-

Lyapunov function if and only if there exists a regular stabilizing feedback. 
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Definition 1 [24]: A smooth positive definite and radially unbounded function V(x) is called a 

Lyapunov function for a system ẋ = f(x, u), such that 
∂V

∂x
⋅ f(x, u) < 0 for all x ≠ 0. 

As such, a candidate Lyapunov function is chosen as in equation (5), where 𝜂 = ∫ 𝑒(𝜏)
𝑡

0
𝑑𝜏 is the 

integral of error. As such, �̇�(𝑡) = 𝑒(𝑡), and the PID control law can be further expressed as in equation 

(6). 

𝑉(𝑒, 𝜂) =
1

2
𝑒2 +

1

2
𝜂2 (5) 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖𝜂 + 𝐾𝑑�̇�(𝑡) (6) 

According to Lyapunov stability criteria [24], for the system in equation (1) to be stable, 𝑉(𝑒, 𝜂) 
must be positive definite (𝑉(𝑒, 𝜂) > 0) as in Definition 1, and its derivative must be negative semi-

definite (�̇�(𝑒, 𝜂) ≤ 0). The derivative of a candidate Lyapunov function can be deduced as in equation 

(7). 

�̇�(𝑒, 𝜂) = 𝑒�̇� + 𝜂�̇� 

(7)  = 𝑒�̇� + 𝜂𝑒 

 = 𝑒(�̇� + 𝜂) 

To ease the design concept, let assume 𝑓(𝑥) = 0 and 𝑔(𝑥) = 1. Hence, the error dynamics is 

simplified as �̇�(𝑡) = −𝑢(𝑡), and the augmentation of PID control law renders 𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) +

𝐾𝑖𝜂 − 𝐾𝑑𝑢. Further, lumped all coefficient and embed the error dynamic into the control law, renders 

a control law with PID term as shown in equation (8). 

𝑢(𝑡) =
𝐾𝑝𝑒 + 𝐾𝑖𝜂

1 + 𝐾𝑑
 (8) 

Bijective mapping 𝑢(𝑡) into 𝑒(𝑡) yields 

�̇�(𝑡) = −
𝐾𝑝𝑒 + 𝐾𝑖𝜂

1 + 𝐾𝑑
 (9) 

Equation (9) depicts the error dynamic in term of three-term PID parameters [𝐾𝑝 𝐾𝑖 𝐾𝑑]. 
Thus, by exploiting the Lyapunov stability criteria that has been derived in equation (7), �̇�(𝑒, 𝜂) can 

be further expanded as 

�̇�(𝑒, 𝜂) = 
𝑒 (−

𝐾𝑝𝑒 + 𝐾𝑖𝜂

1 + 𝐾𝑑
+ 𝜂) 

(10) 

 = 
𝑒 (−

𝐾𝑝

1 + 𝐾𝑑
𝑒 + (1 −

𝐾𝑖
1 + 𝐾𝑑

) 𝜂) 

 
= −

𝐾𝑝

1 + 𝐾𝑑
𝑒2 + (1 −

𝐾𝑖
1 + 𝐾𝑑

) 𝑒𝜂 

 = ℳ(𝑒) +𝒩(𝑒, 𝜂) 

For the tracking purposes, the state 𝑥(𝑡) → 𝑥𝑟𝑒𝑓(𝑡) as 𝑡 > 0 such that the control problem can 

be handled like a regulation case where 𝑒(𝑡) → 0 as 𝑡 > 0. As such, to guarantee the asymptotic 

stability (𝑒(𝑡) → 0) in a sense of Lyapunov, the quadratic term ℳ(𝑒) should be negative definite, 

and inequality in equation (11) must be fulfilled.  
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1 −
𝐾𝑖

1 + 𝐾𝑑
< 0 (11) 

Then −
𝐾𝑖

1+𝐾𝑑
< −1 renders 

𝐾𝑖

1+𝐾𝑑
> 1. Hence, the condition of 𝐾𝑖 and 𝐾𝑑 can be concluded as 

𝐾𝑖 > 1 + 𝐾𝑑 (12) 

Then, 𝒩(𝑒, 𝜂) becomes non-positive. To summarize, the condition for [𝐾𝑝 𝐾𝑖 𝐾𝑑] according 

to Lyapunov can be deduced as in Condition 1. 

Condition 1: A Lyapunov-based tuning PID controller must adhere to these 3 conditions - Kp > 0, 

Kd > −1, and Ki > 1 + Kd, such that the error e and η will converge to zero, implying asymptotic 

stability. 

3. Analysis of Numerical Case-Level Controller 

To verify the efficacy of the proposed method, a Lyapunov-based PID controller is applied to 

control the liquid level in a coupled-tank system. The control objective is to improve the transient 

performance such as overshoot and settling time, without the consideration of exogeneous 

perturbation and parametric uncertainties. Beforehand, a dynamic model of the coupled-tank system 

must be established, as the PID controller is model-based. 

Akram Muntaser in [30] developed a PID controller to control the liquid level in a coupled-tank 

system. the coupled-tank model developed by Akram Muntaser is shown in in Fig. 2. Noted that 𝐻1 

and 𝐻2 represent the liquid levels in tank 1 and tank 2, respectively. 𝑄𝑖1 and 𝑄𝑖2 denote the pump flow 

rate into tank 1 and tank 2, respectively, while 𝑄𝑜1 and 𝑄𝑜2 represent the outflow rates from tank 1 

and tank 2, respectively. All the parameters are then embedded into new-defined lumped parameters 

to produce a transfer function in equation (13) [46]. 

𝐺(𝑠) =
0.045

46.159𝑠2 + 13.645𝑠 + 0.65295
 (13) 

 

Fig. 2. Couple tank system [46] 

A coupled-tank system in equation (13) has the characteristic equation of 𝑠2 + 0.2956s +
0.01414 = 0. This makes the system stable overdamped as its damping ratio, 𝜁 can be calculated as 

𝜁 = 1.243, with a natural frequency, 𝜔𝑛 = 0.1189 𝑟𝑎𝑑 𝑠⁄ . The open-loop step response of the 
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coupled-tank system in Equation (13) is depicted in Fig. 3. It can be observed that the response behaves 

as an overdamped system that requires 70 seconds to settle at 0.0689-meters. This outcome results in 

a significant steady-state error of 0.9311-meters. Therefore, the system requires a compensator to 

eliminate the steady-state error and improve the transient performance. 

 

Fig. 3. Step response of open-loop coupled-tank system 

For a coupled-tank system, overdamped response is acceptable as overdamped systems settle 

without oscillations. This is preferred since overshoot can cause spillage or unstable liquid levels. 

Moreover, a coupled-tank system exhibits natural damping due to the physical flow of liquid through 

pipes and valves, causing it to naturally behave in a sluggish, overdamped, or critically damped 

manner without overshooting. However, overdamping has a shortcoming as it results in a slow 

response by way of the liquid level rises gradually toward the desired setpoint. If the control objective 

is to fill the tank quickly and a slight overshoot can be tolerated, an overdamped system may be too 

slow and therefore requires a more responsive control strategy. In such cases, tuning toward critical 

damping (𝜁 ≈ 1), or even slight underdamping (𝜁 < 1) can offer a better balance between speed and 

stability. 

In [46], Akram Muntaser developed a PID controller using Ziegler–Nichols tuning. The research 

presented in this manuscript aims to develop a PID controller based on Lyapunov stability criteria and 

Condition 1, to enable a thorough comparative study between the two approaches. Table 1 shows the 

PID parameters developed by using these two approaches. 

Table 1.  PID parameters 

PID parameters Ziegler–Nichols tuning in [46] Lyapunov stability criteria - Condition 1 

Proportional, 𝐾𝑝 83.5 83.5 

Integral, 𝐾𝑖 14.5 4.01 

Derivative, 𝐾𝑑 120 3 

 

To observe the feasibility of both tuning techniques, the closed-loop coupled-tank system is 

injected with a 0.5-meter input. The tracking history is depicted in Fig. 4. Both the Ziegler–Nichols 

and Lyapunov methods are able to track the desired setpoint with zero steady-state error. However, 

the transient performances produced by these two methods differ. It can be observed that both the 

Ziegler–Nichols and Lyapunov methods result in an underdamped response. However, the Lyapunov 

method yields a faster settling time with lower overshoot. Table 2 summarizes the results along with 

the percentage improvements. 
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Fig. 5 shows the root locus of the closed-loop coupled tank system with PID controller. By using 

a Lyapunov technique (Fig. 5 (a)), the locus lies entirely in the left half of the s-plane, indicating all 

poles remain in the stable region for a wide range of gain values (noted as 𝐾). The gain trajectory 

starts from a pole at the origin and extend leftward to very large negative real values, with maximum 

visibility at around –80. This implies that the system is stable for all gain 𝐾 > 0. 

Table 2.  Transient performance of a closed-loop coupled-tank system 

Performance 

criteria 

Ziegler–Nichols 

[46] 

Lyapunov stability criteria - 

Condition 1 

Improvements 

(%) 
Setting time 45.2 seconds 30 seconds 33.63% 

Overshoot 35% 19.2% 45.14% 

 

 

Fig. 4. Response to a 0.5-meters setpoint 

  
(a) Lyapunov-based PID (b) Ziegler-Nichols PID 

Fig. 5. Root locus of a closed-loop system with PID 

It also can be observed that the locus extends far along the negative real axis, implying fast 

response, as more negative real parts correspond to higher damping and faster settling times. The 

closed-loop system with Lyapunov control exhibits a root locus with a large scale on both the 
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imaginary axis (±30) and the real axis (up to –80), indicating that the system can tolerate high gain 

values while maintaining stability. This characteristic makes it suitable for systems that require high 

robustness and minimal oscillations, such as a coupled tank system. 

In contrast, Fig. 5 (b), which uses the Ziegler-Nichols PID method shows the root locus starting 

from poles on the left-hand plane but quickly approaching the imaginary axis. Some branches cross 

into the right half-plane, indicating that the system becomes unstable at higher gain values. Therefore, 

with Ziegler-Nichols tuning, the stability range is limited, such that the system stable only for a narrow 

range of gain 𝐾. The poles also exhibit significant imaginary components, which may result in an 

oscillatory response. Compared to the Lyapunov-based PID, the Ziegler-Nichols method produces a 

closed-loop system with poles that are closer to the imaginary axis, implying a slower settling time 

and higher overshoot. 

4. Conclusion 

In the analysis of the coupled-tank system, the natural frequency 𝜔𝑛 = 0.1189 rad/s indicates 

that the coupled-tank system responds slowly to input changes, controller design must consider this 

sluggish nature. As such, it is proven that a Lyapunov-based method offers stability, while Ziegler-

Nichols may need careful tuning to avoid instability or poor performance due to the system's inherent 

slowness. The outcome of the controller design shows that the Lyapunov-based PID offers superior 

stability and conservative design. Thus, this technique is ideal for systems requiring reliability and 

strong performance under varying conditions. In the case of a coupled-tank dynamic, it ensures fast 

settling time with less overshoot as compared to its benchmarking Ziegler-Nichols PID. The improved 

transient response due to the movement of pole along the real axis. In contrast, Ziegler-Nichols PID 

provides quicker and aggressive tuning but suffers from limited stability, lower robustness, and more 

oscillatory underdamped responses due to pole movement near or across the imaginary axis. These 

overall results highlight the effectiveness of a Lyapunov-based PID in achieving faster and more stable 

responses for a slow system like a coupled-tank, making it a better choice for control applications 

requiring precision and reduced oscillations. Despite its benefits in enhancing stability and 

performance, the Lyapunov-based PID approach presents challenges such as selecting a suitable 

Lyapunov function and increased computational complexity, which may limit its practicality for 

complex or resource-constrained systems. 
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