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1. Introduction 

Lung cancer continues to be among the most common and fatal types of cancer globally. Based 

on the most recent estimates from the American Cancer Society, approximately 234,580 new lung 
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 Lung cancer ranks among the primary contributors to cancer-related deaths 

globally, highlighting the need for accurate and efficient detection methods 

to enable early diagnosis. However, deep learning models such as VGG16 

and VGG19, commonly used for CT scan image classification, often face 

challenges related to class imbalance, resulting in classification bias and 

reduced sensitivity to minority classes. This study contributes by proposing 

an integration of the VGG architecture and Generative Adversarial 

Networks (GANs) to improve lung cancer classification performance 

through balanced and realistic synthetic data augmentation. The proposed 

approach was evaluated using two datasets: the IQ-OTH/NCCD Dataset, 

which classifies patients into Benign, Malignant, and Normal categories 

based on clinical condition, and the Lung Cancer CT Scan Dataset, 

annotated with histopathological labels: Adenocarcinoma, Squamous Cell 

Carcinoma, Large Cell Carcinoma, and Normal. The method involves 

initial training of the VGG model without augmentation, followed by 

GAN-based data generation to balance class distribution. The experimental 

results show that, prior to augmentation, the models achieved relatively 

high overall accuracy, but with poor performance on minority classes 

(marked by low precision and F1-scores and FPR exceeding 8% in certain 

cases). After augmentation with GAN, all performance metrics improved 

dramatically and consistently across all classes, achieving near-perfect 

precision, TPR, F1-score, and overall accuracy of 99.99%, and FPR 

sharply reduced to around 0.001%. In conclusion, the integration of GAN 

and VGG proved effective in overcoming data imbalance and enhancing 

model generalization, making it a promising solution for AI-based lung 

cancer diagnostic systems. 
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cancer cases and 125,070 related deaths are anticipated in the United States by 2024 [1]. Although 

there have been notable improvements in lung cancer therapies over the years, the overall outlook for 

patients is still grim, with a five-year survival rate hovering around 20% [2]. A major factor 

contributing to this low survival rate is the fact that many individuals are diagnosed when the disease 

has already progressed to a late stage, making treatment less effective. Detecting the disease early is 

vital to improving recovery prospects for lung cancer patients. If identified during a localized phase, 

the five-year survival rate can rise significantly to 63.7% [3]. Nevertheless, only about 27% of lung 

cancer cases are currently identified at this early stage, with the majority being diagnosed after the 

cancer has advanced [4]. Widely used screening techniques, such as low-dose CT, still face limitations 

in identifying small lung nodules, which are often indicative of early-stage lung cancer. 

In recent years, the rapid development of AI, particularly in deep learning, has introduced 

promising possibilities for the early detection of lung cancer. Among these, CNNs have emerged as a 

powerful tool for automatically and accurately interpreting complex patterns in medical imaging. 

Specific CNN architectures, such as VGG-16, have been widely utilized for classifying medical 

images and have demonstrated strong capabilities in distinguishing between malignant and benign 

lung nodules. For instance, Pandian et al. (2022) implemented a method combining CNN and 

GoogleNet, with VGG-16 serving as the foundational layer, to detect lung cancer from CT scans [5]. 

Their model achieved an impressive classification accuracy of 98%, highlighting CNN’s potential to 

enhance the speed and accuracy of early lung cancer diagnosis. Additionally, Sait (2023) introduced 

a deep learning-based model for detecting lung cancer using PET or CT scans, incorporating data 

augmentation and optimized training strategies like quantization-aware training [6]. This model 

reached 98.6% accuracy, demonstrating its viability for integration into clinical workflows to aid in 

early detection. Further, Klangbunrueang et al. (2025) assessed the performance of several CNN 

models, ResNet50, VGG16, and MobileNetV2, for lung cancer classification from CT images [7]. 

Their study revealed that VGG16 achieved the highest accuracy at 98.18%, reaffirming its suitability 

and effectiveness for clinical applications in lung cancer detection. 

Mohamed et al. (2023) integrated a CNN with the EOSA, a metaheuristic method, to enhance the 

performance of lung cancer detection [8]. Their method achieved an accuracy of 93.21%, 

demonstrating that incorporating optimization techniques into deep learning models can yield better 

results, particularly in complex lung cancer cases. In another study, Shah et al. (2023) introduced an 

ensemble strategy that combined three distinct CNN models to detect lung nodules, whether 

“malignant” or “benign” [9]. This ensemble approach reached a 95% accuracy rate, surpassing the 

baseline model and indicating that merging multiple CNN architectures can improve the detection of 

challenging lung nodules. Furthermore, Thangamani et al. (2024) proposed a weighted CNN approach 

to diagnose lung cancer based on gene expression data [10]. They employed Z-score normalization 

and selected genes using the LFCS optimization algorithm, which led to enhanced classification 

accuracy. This method highlights the promise of integrating genetic information with CNNs to 

increase the precision of lung cancer predictions. Despite these advancements, a notable limitation in 

the application of CNNs is their reliance on large volumes of high-quality medical imaging data for 

training, resources that are not readily accessible in many healthcare settings. 

To address these limitations, recent studies have started integrating CNNs with GANs, which can 

produce realistic synthetic images that closely mimic the original data. This combination, often 

referred to as VGG-GAN, holds considerable promise in enhancing the precision of lung cancer 

diagnosis. GAN-generated synthetic data can increase the robustness of CNN models to variations in 

lung cancer image patterns, while overcoming the limitations of training data. This approach can 

theoretically increase the sensitivity and specificity in the early detection of lung cancer, thereby 

assisting doctors in making a more precise and rapid diagnosis. Thus, research into CNN deep learning 

approaches using the VGG-GAN architecture has high relevance in the current medical context. The 

successful development of this technology can not only increase the early detection rate of lung cancer, 

but also directly impact the prognosis and survival rate of patients. Therefore, further exploration of 

this method is essential to support public health strategies to meet the challenge of lung cancer. 
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2. Dataset and Method 

2.1. Dataset 

This research employed two datasets: the IQ-OTH/NCCD lung cancer dataset [11] and the Lung 

Cancer CT Scan Dataset [12]. The IQ-OTH/NCCD dataset comprises medical CT scan images of the 

lungs and is commonly utilized in studies focusing on automated lung cancer classification through 

machine learning, particularly deep learning techniques. It contains a total of 1,097 images divided 

into three primary categories. Among these, 120 images depict benign tumors, which are not life-

threatening but must be accurately identified to prevent incorrect diagnoses. The largest portion of the 

dataset, with 561 images, represents malignant tumors that pose serious health risks if not diagnosed 

and treated promptly. The remaining 416 images show normal lung tissue and serve as control data 

for model development. This dataset was gathered from two prominent healthcare institutions in Iraq: 

the Iraq-Oncology Teaching Hospital and the National Centre for Cancer Diseases. All images 

underwent thorough review by specialists in oncology and radiology to maintain high-quality 

standards. The CT scans offer high resolution, with slice thicknesses of around 1 mm, enabling clear 

visualization of lung anatomy. This level of detail greatly facilitates automated feature extraction by 

deep learning models. In parallel, the Lung Cancer CT Scan dataset offers a more detailed 

classification of lung cancer types based on histopathological characteristics. It includes 315 lung CT 

images sorted into four distinct categories: Adenocarcinoma (120 images), Large Cell Carcinoma (51 

images), Squamous Cell Carcinoma (90 images), and 54 images of normal lung tissue. The inclusion 

of histopathological labels enhances the model's ability to learn and recognize specific visual traits 

associated with each cancer type, thereby improving the precision of automated diagnostic systems. 

IQ-OTH/NCCD lung cancer dataset shown in Fig. 1. Lung cancer CT scan dataset based on 

histopathological type in Fig. 2. 

 

Fig. 1. IQ-OTH/NCCD lung cancer dataset [11] 

 

Fig. 2. Lung cancer CT scan dataset based on histopathological type [12] 

These two datasets have important value in the development of modern health technologies, 

especially in utilising the potential of AI for early and accurate detection of lung cancer. However, 

common challenges such as imbalance between classes remains a significant problem. This imbalance 

can cause bias in the classification algorithm, such that the category with the highest number of images 

may dominate the model's decision. In general, the open availability of these two datasets allows 

researchers around the world to develop and evaluate various ML and DL approaches. Thus, the IQ-

OTH/NCCD and Lung Cancer CT Scan Datasets not only support the advancement of scientific 

research in the field of lung cancer early detection, but also open up opportunities for the development 

of automated diagnosis systems that are increasingly accurate, efficient, and able to reduce the 

workload of radiology doctors in healthcare facilities [13]. 
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2.2. Generative Adversarial Network (GAN) 

GAN is an innovative form of deep learning specifically designed to generate synthetic data of 

highly realistic quality [14]. This approach is fundamentally different from other conventional 

techniques as it involves a competitive process between two opposing neural networks, the generator 

network and the discriminator network [15]. Instead of simply memorising patterns from the original 

data, GAN creates a new representation that has similar characteristics, but is not a direct duplication 

of the original data [16]. In the context of class imbalance, GAN appears as an effective solution due 

to its ability to generate new data for classes that have a limited amount of data [17]. Class imbalance 

is often an obstacle in medical applications, especially image-based diagnosis such as lung cancer 

detection, where one class (e.g. malignant tumour cases) has much more data than other classes (e.g. 

benign or normal cases). This situation causes the classification model to be biased towards the 

majority class, thus decreasing the sensitivity towards the minority class [18]. This is where GANs 

play a critical role, generating additional synthetic minority class data to improve the dataset 

distribution and reduce bias in the classification. The main concept of GANs shown in Fig. 3. 

The GAN architecture generally consists of two neural networks with different roles and 

functions [20]. The first network, called a generator, is responsible for converting random input (noise) 

into synthetic data that resembles the characteristics of the original data [21]. Generators are generally 

built using a series of deconvolution layers or transposed convolutional layers to generate visual data, 

such as medical images, from latent vector inputs. These layers gradually increase the resolution of 

the input until it reaches the desired image shape [22]. The second network, called a discriminator, is 

designed as a classifier that evaluates the realistic level of the received data, and provides feedback to 

the generator regarding the authenticity of the generated data [23]. Discriminators generally use CNNs 

to detect certain visual patterns in both synthetic and original data [24]. Through this process, the 

discriminator gradually hones its ability to recognise fake data generated by the generator. 

 

Fig. 3. The main concept of GANs [19] 

The training of these two networks is done simultaneously through an adversarial or competitive 

mechanism [25]. The generator continues to improve its ability to create synthetic data that is 

increasingly difficult for the discriminator to distinguish, while the discriminator improves its ability 

to detect fake data [26]. This process proceeds iteratively until it reaches a Nash Equilibrium point, 

where the generated synthetic data is almost indistinguishable from the original data. Overall, the use 

of GAN to address data class inequality provides significant benefits [27]. In addition to generating 

additional data for realistic minority classes, GAN also helps enrich the variety of available data, 

which directly contributes to improving the generalisability and performance of classification 

algorithms in medical contexts and other deep learning applications [28]. 

2.3. VGG Architectures 

In the landscape of modern deep learning architectures, VGG occupies an important position as 

an example of systematising convolutional network design based on modular principles [29]. It is not 
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built with complex filter variations or residual connections as ResNet is, but instead with repetitions 

of simple 3×3 convolutional blocks [30]. This gives it the advantage of ease of reconstruction and 

reusability, especially in scientific experiments. The success of VGG lies not only in its performance 

in the ImageNet competition, but also in its role as a “backbone” in transfer learning for various other 

domains such as lesion detection in lung CT scans [31]. CNN architectures shown in Fig. 4. 

 
(a) 

 
(b) 

Fig. 4. CNN architectures: (a) VGG16 and (b) VGG19 [25] 

VGG16 is the most widely used and studied structure, both as a base model and as a feature 

extractor in hybrid architectures [32]. Consisting of 13 convolutional layers, this architecture forms a 

complexity gradation of progressively deeper convolutional blocks, especially in blocks 3-5 which 

each consist of three consecutive layers [33]. VGG16 shows superior performance in distinguishing 

malignant from benign lesions due to its ability to recognise repetitive morphological patterns 

scattered at various levels of resolution. In the medical context, this model is even often used not only 

for classification, but also for segmentation when combined with a decoder such as the FCN or U-Net 

architecture [34]. As for VGG19, it takes the VGG architecture to the highest level of complexity with 

16 more evenly distributed convolutional layers, specifically with four convolutions per block at the 

end. This addition aims to increase the depth of non-linearity, allowing the network to encode more 

complex visual structures [35]. 

In clinical or research applications with high-resolution images, such as lung CT with multilevel 

intensity mapping, VGG19 is able to store detailed information of abnormal tissue texture, including 

microscopic patterns or subtle transitions between tissue layers [36]. However, the consequence is a 

much larger computational burden and longer training requirements, so its use is often restricted to 

systems with high GPU support or as a pretrained, finetuned model. Conceptually, the strength of 

VGG lies not in form innovation, but rather in structural discipline [37]. Each model is built 

consistently, allowing direct comparison between variants for experimental purposes [38]. In the 

context of developing an intelligent system for lung cancer detection, the VGG architecture provides 

a stable basis for evaluating the extent to which the depth of the network is able to distinguish subtle 

visual anomalies that may be missed by shallower or overly complex networks [39]. Its modular 

approach also facilitates integration into medical pipelines, including GAN, segmentation, or end-to-

end classification systems [40]. 

2.4. K-Fold Cross-Validation 

K-fold cross-validation is a model evaluation technique that randomly divides the dataset into K 

different groups (folds), each having approximately the same amount of data [41]. The purpose of this 

division is to ensure that all samples in the dataset can be used as both training and testing data in turn 
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[42]. This cross-validation process is performed in multiple iterations (K times). In each iteration, 1-

fold will be used as test data (test set), while the other K-1 folds are used as training data (training set). 

After the iterations are completed, the average of the evaluation results from each iteration is 

calculated to provide an overview of the model performance [43]. Illustration of k-fold cross 

validation in splitting data shown in Fig. 5. 

 

Fig. 5. Illustration of k-fold cross validation in splitting data [44] 

This method provides great benefits as all the data in the dataset participate as test data in turn. 

Therefore, the evaluation results obtained from K-fold cross-validation tend to be more reliable and 

realistic than when relying on a single train-test split [45]. However, there are some aspects that need 

to be considered. Too small a value of K, such as K=2 or 3, may lead to less accurate evaluation due 

to limited training data. On the other hand, too large a value of K (e.g. K=n, i.e. leave-one-out cross-

validation) will increase the computational burden significantly [46]. In this study, K=10 is chosen as 

the optimal value, providing a good balance between evaluation performance and computational 

requirements. 

2.5. Performance Metrics 

When assessing the effectiveness of lung cancer detection systems that rely on medical imaging, 

selecting appropriate evaluation metrics is crucial to accurately measure the reliability and precision 

of the model’s output [47]. Various performance indicators, such as precision, TPR, FPR, F1-score, 

and overall accuracy, are frequently used to provide a comprehensive view of the model's 

performance, especially considering the common issue of class imbalance in medical datasets [48]. 

Among these metrics, precision evaluates how well the model correctly identifies actual cancer cases 

out of all the instances it predicted as positive. This metric is computed using the formula. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1) 

True Positive Rate (TPR), also known as sensitivity or recall, measures the ability of the model 

to capture all cancer cases that are actually present in the data. The formula is: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

The False Positive Rate (FPR) represents the proportion of false positive predictions out of all 

negative cases. The formula: 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (3) 

F1-score is the harmonic mean of precision and recall. F1-score provides a balance between 

precision and TPR, so it is very useful when we want to avoid too extreme a trade-off between the 
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two metrics, especially in situations of unbalanced data (e.g. cancer cases are much less than normal 

data). Formula: 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑇𝑃𝑅

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑇𝑃𝑅
 (4) 

Accuracy is the most common metric, which measures the proportion of correct predictions out 

of all predictions made. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (5) 

Overall, in developing a lung cancer detection model, a combination of these metrics should be 

considered together. Precision and FPR assess the model's level of vigilance against false positives, 

while TPR and F1-score assess the effectiveness in detecting actual cancer cases. Accuracy, while still 

relevant, should be used with caution and not as the sole reference in clinical decision-making. 

3. Results and Discussion 

3.1. The Use of GAN on the Lung Cancer Datasets 

This research is focused on developing a lung cancer detection method that integrates the GAN 

approach with the VGG convolutional network architecture. The use of GAN aims to increase the 

diversity and balance of training data distribution [49]. By synthesising medical images that resemble 

the original image, the GAN approach is expected to improve model training stability and lung cancer 

detection accuracy [50]. Meanwhile, the VGG architecture is used as the backbone in the deep visual 

feature extraction process, thanks to its convolutional hierarchical structure that has been proven 

effective in various medical image recognition tasks [51]. In this study, two independent datasets are 

used to test the generalisation and reliability of the model. The first dataset is the IQ-OTH/NCCD 

Lung Cancer Dataset, which consists of lung CT scan images and is categorised into three classes 

based on the patient's clinical condition, namely Benign, Malignant, and Normal [11]. This dataset is 

highly relevant for evaluating the model's performance in differentiating cancer conditions based on 

their progressivity. The second dataset used is the Lung Cancer CT Scan Dataset, which offers 

classification based on the histopathological type of lung cancer. This dataset includes four classes, 

namely Adenocarcinoma, Large Cell Carcinoma, Squamous Cell Carcinoma, and Normal, which 

provides more complex classification challenges due to the similarity of visual features between 

cancer subtypes [12]. 

The IQ-OTH/NCCD Dataset and Lung Cancer CT Scan Dataset used in this study have a 

common problem in the medical domain, which is the imbalance in the amount of data between 

classes. In the IQ-OTH/NCCD dataset, the image distribution for each class shows a significant 

difference in number. In some cases, the number of samples for the “Malignant” category dominates, 

while the “Benign” and “Normal” classes are much less. This imbalance causes the model to learn 

better on the majority class and ignore or misclassify the minority class, which is often clinically 

important. Similarly, in the Lung Cancer CT Scan Dataset, categories based on histopathological types 

such as Adenocarcinoma (AC), Large Cell Carcinoma (LC), Squamous Cell Carcinoma (SC), and 

Normal (NL) are not evenly distributed. Cancer types such as Large Cell Carcinoma usually have 

fewer samples than Adenocarcinoma or Squamous Cell Carcinoma. This imbalance increases the risk 

of classification bias, where the model more often predicts the class with the most data, and reduces 

the model's sensitivity to less common cancer types. To overcome these issues, this study utilizes the 

GAN method as a strategy for synthetic data augmentation. GAN is applied to produce additional 

images for underrepresented classes, helping to create a more balanced dataset. The subsequent 

section presents the data distribution in the IQ-OTH/NCCD and Lung Cancer CT Scan datasets before 

and after implementing the GAN technique. 

Fig. 6 shows the data distribution of the IQ-OTH/NCCD Lung Cancer Dataset before and after 

the augmentation process using GANs. The left pie chart shows the original distribution of the dataset, 
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which is clearly imbalanced between classes. The Malignant class dominates with 561 samples 

(51.14%), followed by Normal with 416 samples (37.92%), while the Benign class consists of only 

120 samples (10.94%). This imbalance indicates that models trained without data balancing are likely 

to be biased towards the majority class and have low classification performance towards minority 

classes such as Benign. The right diagram shows the distribution results after applying data 

augmentation using GANs. Through this approach, the number of samples in each class (Benign, 

Malignant, and Normal) is balanced to 100,000 samples each, or about 33.33% of the total dataset. 

This process is done by generating new synthetic images in classes that have a limited number of 

samples, so that all classes now have equal representation in the model training process. 

Fig. 7 shows the distribution of data in the Lung Cancer CT Scan Dataset, both before and after 

augmentation using GANs. The pie chart on the left shows the original distribution of data by 

histopathological type of lung cancer, which includes four classes: NL (Normal Lung), AC 

(Adenocarcinoma), SC (Squamous Cell Carcinoma), and LC (Large Cell Carcinoma). It can be seen 

that the number of samples is not evenly distributed, with the AC class dominating with 120 samples 

(38.10%), followed by SC with 90 samples (28.57%). Meanwhile, the LC and NL classes are much 

smaller, with only 51 (16.19%) and 54 (17.14%) samples respectively. This imbalance creates a 

potential bias in the classification model, where the model is more inclined to recognise the majority 

class and tends to ignore minority classes such as LC and NL. In response to this imbalance, a GANs-

based augmentation process was performed to selectively generate additional synthetic data on 

minority classes. The right diagram shows the result of the process, where the amount of data in each 

class has been increased to 100,000 samples per class, resulting in a balanced distribution (25%) for 

each category. With this balance, the deep learning model used can learn equally from all classes 

without significant bias. 

 

Fig. 6. Data distribution on the IQ-OTH/NCCD dataset before and after using GANs 

 

Fig. 7. Data distribution on the lung cancer CT scan Dataset before and after using GANs 
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3.2. Lung Cancer Detection on IQ-OTH/NCCD Dataset 

This study employs the VGG model to detect lung cancer using the IQ-OTH/NCCD dataset, 

tested under two different scenarios: one without the use of Generative Adversarial Network (GAN) 

and the other incorporating GAN. The comparison aims to highlight the extent of performance 

enhancement achieved through the VGG model, particularly in addressing class imbalance issues 

within the dataset. The dataset is divided into separate subsets, allocating 80% for training, 10% for 

validation, and the final 10% for testing purposes. The IQ-OTH/NCCD dataset organizes its samples 

into three distinct categories: Benign, Malignant, and Normal. This structured division ensures that 

the model is trained effectively while maintaining an unbiased evaluation on unseen data. The clear 

categorization of classes also aids in assessing the model’s ability to distinguish between different 

lung conditions. The following presents the VGG model’s performance results in lung cancer 

detection using this dataset. 

In Table 1 (without GAN), it can be seen that the model has inconsistent performance between 

classes. For example, the Benign class only has a precision of 30.65% and a TPR of 100%, but its F1-

score is low at 46.91%, indicating an imbalance between precision and sensitivity. The Malignant 

class has a very low TPR (54.55%), indicating that the model struggles to recognise most malignant 

cancer cases despite its high precision (100%). Averaging the metrics shows that although the overall 

accuracy reached 82.58%, the imbalance between classes resulted in suboptimal performance, 

especially in the minority classes. In contrast, Table 2 (with GAN) shows a very significant 

performance improvement across metrics and classes. All classes show precision, TPR, F1-score and 

accuracy values close to 100%, with an overall average accuracy of 99.98%. This indicates that 

augmenting the synthetic data with GANs successfully balanced the data distribution and allowed the 

VGG16 model to learn more representatively for all classes. In addition, the FPR is very low (<0.01), 

indicating that the model has an excellent ability to minimise false negative prediction errors, which 

is crucial in the context of cancer detection. 

In Table 3, which shows the performance of VGG19 without GAN, the evaluation results are 

relatively good. The average precision reached 91.21%, TPR was 91.94%, and F1-score was 91.54%. 

The Benign class, which generally has less data, showed slightly lower performance than the other 

two classes, with a precision of 80.00% and F1-score of 82.05%. Meanwhile, the Malignant and 

Normal classes show evaluation values that are close to optimal, especially Malignant with F1-score 

reaching 97.75%. However, the FPR value in the Malignant class (3.41%) is still relatively high, which 

indicates the possibility of false positives that are not ignored. In Table 4, after augmentation using 

GANs, there is a significant improvement in all evaluation metrics. All classes show almost perfect 

precision, TPR, and F1-score values (≥99.99%), and very low FPR (<0.005%), reflecting the very 

high classification accuracy of the model. Even the Benign class, which was previously most affected 

by data imbalance, now achieves 99.99% accuracy, indicating that the data augmentation process has 

significantly improved the model's ability to recognise patterns in the minority class. 

Table 1.  Performance of the VGG16 in lung cancer detection (IQ-OTH/NCCD dataset without GAN) 

Class 
Performance Evaluation (%) 

Precision TPR FPR F1-score Accuracy 
Benign 30.65 100.00 27.39 46.91 75.57 

Malignant 100.00 54.55 0.00 70.59 77.27 

Normal 95.45 91.30 2.80 93.33 94.89 

Average 75.37 81.95 10.06 70.28 82.58 

Table 2.  Performance of the VGG16 in lung cancer detection (IQ-OTH/NCCD dataset + GAN) 

Class 
Performance Evaluation (%) 

Precision TPR FPR F1-score Accuracy 
Benign 99.93 100.00 0.030 99.97 99.98 

Malignant 100.00 99.93 0.000 99.97 99.98 

Normal 100.00 100.00 0.000 100.00 100.00 

Average 99.98 99.98 0.010 99.98 99.98 
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Table 3.  Performance of the VGG19 in Lung Cancer detection (IQ-OTH/NCCD dataset without GAN) 

Class 
Performance Evaluation (%) 

Precision TPR FPR F1-score Accuracy 
Benign 80.00 84.21 2.55 82.05 96.02 

Malignant 96.67 98.86 3.41 97.75 97.73 

Normal 96.97 92.75 1.87 94.81 96.02 

Average 91.21 91.94 2.61 91.54 96.59 

Table 4.  Performance of the VGG19 in Lung Cancer detection (IQ-OTH/NCCD dataset + GAN) 

Class 
Performance Evaluation (%) 

Precision TPR FPR F1-score Accuracy 

Benign 100.00 99.99 0.000 99.99 99.99 

Malignant 99.99 100.00 0.003 99.99 99.99 

Normal 100.00 100.00 0.000 100.00 100.00 

Average 99.99 99.99 0.001 99.99 99.99 

 

From the comparison of these two tables, it can be seen that VGG19 has a better baseline 

performance than VGG16, even before augmentation. However, the application of GAN still provides 

a significant improvement, making the model almost perfect in detecting all three classes. This 

reinforces the important role of GAN-based data augmentation in correcting imbalanced class 

representations and improving the robustness and fairness of deep learning models in lung cancer 

diagnosis [52]. GANs not only increase the amount of data, but also broaden the spectrum of visual 

variation which is important for improving the generalisation of the model to new data [53]. 

3.3. Lung Cancer Detection on Lung Cancer CT Scan Dataset 

As in the case of lung cancer detection using the IQ-OTH/NCCD dataset, this study also applies 

the VGG model to the Lung Cancer CT Scan dataset under two scenarios: one without GAN and 

another with GAN. The objective of these scenarios is to assess the impact of GAN in addressing class 

imbalance within the dataset and to compare the VGG model’s performance before and after 

incorporating GAN. The training and evaluation process for the VGG model follows the same data 

partitioning strategy as used with the IQ-OTH/NCCD dataset, with 80% of the data allocated for 

training, 10% for validation, and 10% for testing. This approach ensures the model is trained on a 

substantial portion of data while maintaining reliability in testing with unseen samples. The Lung 

Cancer CT Scan dataset is categorized into four histopathological types: NL, AC, SC, and LC. The 

following section outlines the performance outcomes of the VGG model in detecting lung cancer using 

this dataset. 

In Table 5, which represents the performance of the VGG16 model without GAN, it can be seen 

that although the Normal (NL) class gets very high evaluation results (Precision 100%, F1-score 

98.31%, Accuracy 99.38%), the performance for cancer classes is still suboptimal. For example, in 

the Large Cell Carcinoma (LC) class, the precision value only reached 67.65%, and the FPR reached 

8.09%, indicating a high misclassification to other classes. Even though the TPR was quite high 

(95.83%), the F1-score value was still below 80%. This reflects the imbalance in the amount of data 

between classes, which causes the model to be biased towards the more dominant class in the dataset. 

The overall average of the metrics also confirms this finding, with a precision of 89.93%, an F1-score 

of 90.30%, and an accuracy of 95.31%, which although high enough, does not yet reflect the fairness 

of classification across classes. 

Meanwhile, Table 6 shows a very significant performance improvement after GAN was applied 

to the VGG16 model. All classes, including the previously low-performing ones such as LC, now 

show almost perfect precision, TPR, F1-score, and accuracy values (all ≥ 99.9%). The FPR value also 

decreased dramatically, averaging only 0.01%, indicating that the model very rarely made the mistake 

of classifying samples into the wrong class. The overall average of the metrics is also close to 

perfection, with an average precision and accuracy of 99.98%, proving that data augmentation with 

GANs not only augments the data, but also improves the representation of visual feature distribution 
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across classes [54]. This improvement highlights the effectiveness of GAN in addressing class 

imbalance, especially in medical datasets where minority classes are clinically significant but 

underrepresented [55]. The balanced and diverse synthetic images generated by GAN allow the 

VGG16 model to learn class-specific features more comprehensively [56]. As a result, the model 

exhibits greater generalization capability and reduced bias towards dominant classes [57]. These 

findings validate the strategic use of GAN as a powerful tool to enhance the reliability and fairness of 

deep learning models in healthcare applications [58]. 

In Table 7 (without GAN), the performance of VGG19 is already high, with an average accuracy 

of 95.94% and F1-score of 92.05%. However, there are differences in performance between classes. 

While the Normal (NL) and SC classes performed well, the LC class recorded the lowest precision 

(77.42%) and highest FPR (5.15%), indicating that the model struggled to distinguish this cancer type 

from other classes. The AC class also had a high FPR (4.90%) with a TPR of only 91.38%. This shows 

that VGG19, although architecturally robust, is still affected by data imbalance and limited visual 

variation in minority classes. After applying GAN (Table 8), the performance of VGG19 improved 

dramatically and evenly. All metrics are close to perfect, with an average precision, TPR, F1-score, 

and accuracy of 99.99%, and a very small FPR (0.001%). Even the LC class, which previously had 

low performance, is now on par with the other classes, showing that GAN successfully overcomes the 

bias towards minority classes and improves the generalisability of the model. 

Table 5.  Performance of the VGG16 in Lung Cancer detection (Lung Cancer CT-Scan without GAN) 

Class 
Performance Evaluation (%) 

Precision TPR FPR F1-score Accuracy 
NL 100.00 96.67 0.00 98.31 99.38 

AC 94.34 86.21 2.94 90.09 93.13 

SC 97.73 89.58 0.89 93.48 96.25 

LC 67.65 95.83 8.09 79.31 92.50 

Average 89.93 92.07 2.98 90.30 95.31 

Table 6.  Performance of the VGG16 in Lung Cancer detection (Lung Cancer CT-Scan + GAN) 

Class 
Performance Evaluation (%) 

Precision TPR FPR F1-score Accuracy 

NL 100.00 99.99 0.00 100.00 100.00 

AC 99.89 100.00 0.04 99.94 99.97 

SC 100.00 99.89 0.00 99.94 99.97 

LC 99.99 100.00 0.00 100.00 100.00 

Average 99.98 99.98 0.010 99.98 99.98 

Table 7.  Performance of the VGG19 in Lung Cancer detection (Lung Cancer CT-Scan without GAN) 

Class 
Performance Evaluation (%) 

Precision TPR FPR F1-score Accuracy 
NL 100.00 96.67 0.00 98.31 99.38 

AC 91.38 91.38 4.90 91.38 93.75 

SC 97.62 85.42 0.89 91.11 95.00 

LC 77.42 100.00 5.15 87.27 95.63 

Average 91.60 93.37 2.74 92.02 95.94 

 

When compared with Table 5 and Table 6 using VGG16, there are some important findings. 

Before applying GAN, VGG19 (Table 7) performed better than VGG16 (Table 5), with higher average 

accuracy (95.94% vs. 95.31%), and more stable F1-score across all classes. This shows that the deeper 

architecture of VGG19 is able to capture more complex features in CT scan images. However, after 

applying GAN, both VGG16 (Table 6) and VGG19 (Table 8) showed very high and almost identical 

performance, with evaluation metrics close to 100%. This proves that data augmentation plays a much 

more important role than architectural complexity in overcoming the data imbalance problem [59]. 

GAN is able to improve the performance of simple models like VGG16 to match and even surpass 

deeper models like VGG19 in the context of balanced data [60]. 
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Table 8.  Performance of the VGG19 in Lung Cancer detection (Lung Cancer CT-Scan + GAN) 

Class 
Performance Evaluation (%) 

Precision TPR FPR F1-score Accuracy 
NL 100.00 100.00 0.000 100.00 100.00 

AC 99.99 100.00 0.002 99.99 99.99 

SC 99.99 100.00 0.002 99.99 99.99 

LC 100.00 99.99 0.000 99.99 99.99 

Average 99.99 99.99 0.001 99.99 99.99 

 

Overall, these results confirm that in the lung cancer detection task, model performance is highly 

dependent on the quality and balance of the training data [61]. Complex models such as VGG19 excel 

under initial conditions, but GAN augmentation is key in achieving optimal classification 

performance, regardless of the architecture used [62]. 

3.4. The Proposed VGG + GAN Approach Compared with Existing Methods 

The results of VGG model testing on both the IQ-OTH/NCCD and Lung Cancer CT Scan 

datasets indicate that incorporating GANs for data augmentation effectively boosts classification 

performance, although the extent of improvement varies across different classes. Combining the VGG 

architecture with GAN-generated data notably strengthens the model’s capability to identify various 

lung cancer types, especially in detecting underrepresented classes that were previously difficult to 

classify. The use of GANs plays a vital role in balancing and enriching the dataset, leading to a marked 

enhancement in the VGG model’s classification accuracy. The next section provides a comparative 

analysis between this proposed method and other existing approaches in the field. 

Table 9 shows the performance comparison between the proposed model (GAN+VGG) and 

various other methods that have been developed in CT image-based lung cancer detection. This table 

summarizes information from various previous studies, including the type of dataset used, model 

architecture, and accuracy values achieved. The compared models come from various approaches, 

ranging from conventional architectures such as CNN, to complex model combinations such as 3D-

CNN + RNN, YOLOv8, Squeeze-Inception-ResNeXt, and Mask R-CNN. Most of the methods listed 

achieved high accuracy, ranging from 91.56% to 98.39%. For example, the MinClassNet approach on 

the LC25000 dataset by Talib et al. (2024) achieved 98.39% accuracy [65], while CNN + YOLOv8 

by Elhassan et al. (2024) on the IQ-OTH/NCCD dataset achieved 97.67% accuracy [66]. Although 

this performance is considered excellent, there is still room for improvement, especially in recognizing 

minority classes and maintaining classification consistency across diverse datasets. 

Table 9.  Comparison of the performance of the proposed GAN + VGG with existing methods 

Research Dataset Models Accuracy 
Pandian et al. (2022) [5] CT Images CNN and Google Net 98% 

Wankhade et al. (2023) [63] LUNA16 3D-CNN + RNN 95% 

Yan et al. (2023) [64] IQ-OTH/NCCD CNN 96.58% 

Talib et al. (2024) [65] LC25000 MinClassNet 98.39% 

Elhassan et al. (2024) [66] IQ-OTH/NCCD CNN + YOLOv8 97.67% 

Basha et al. (2025) [67] 
LIDC-IDRI + IQ-

OTH/NCCD 
PCA-F-SHCNNet 91.56% 

Lakshmi et al. (2025) [68] CT Images Squeeze-Inception-ResNeXt 97.7% 

Lavanya et al. (2025) [69] LIDC Locust Assisted CS based CNN 96.33% 

Akintola et al. (2025) [70] IQ-OTH/NCCD CNN + Mask R-CNN 95.6% 

Ansari et al. (2025) [71] LIDC-IDRI SVMVGGNet-16 97.22% 

Proposed models 
IQ-OTH/NCCD + Lung 

Cancer CT-Scan 
GAN + VGG 99.99% 

 

Moreover, the proposed GAN+VGG model shows outstanding results, with accuracy reaching 

99.99% when tested on two large datasets combined: IQ-OTH/NCCD and Lung Cancer CT-Scan. 

This performance is consistently higher than all the methods in the table. This reflects the successful 

integration of GAN as an augmentation method to balance data distribution between classes and enrich 
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visual features, as well as the reliability of the VGG architecture in extracting spatial patterns from 

medical images in depth [72]-[74]. In other words, the combination of GAN and VGG effectively 

overcomes the limitations of unbalanced medical datasets, and improves the sensitivity and specificity 

of the model to all classes. 

4. Conclusion 

The results of tests conducted on the VGG16 and VGG19 models in detecting lung cancer using 

two different datasets, namely IQ-OTH/NCCD and Lung Cancer CT Scan Dataset, show that the 

application of GAN has a very significant impact on improving model performance. Prior to data 

augmentation, both VGG16 and VGG19 performed quite well in general, but not consistently across 

classes. This was especially evident in minority classes such as Benign in the IQ-OTH/NCCD dataset 

and Large Cell Carcinoma (LC) in the Lung Cancer CT Scan dataset, where precision, TPR, and F1-

score were much lower than the majority classes. The model tends to be biased towards classes that 

have more data, and the misclassification error (FPR) in the minority class is quite high, even reaching 

more than 8% in some cases. However, after data augmentation using GAN, all performance metrics 

improved drastically and evenly across all classes. The average precision, TPR, F1-score, and 

accuracy increased to close to or reach 100%, while the FPR decreased drastically to an average of 

only about 0.001%. This indicates that GAN contributes not only to balancing the number of samples 

across classes, but also to enhancing the diversity of visual features, which is essential for boosting 

the model's sensitivity and specificity in detecting cancer-related image patterns. Notably, following 

the augmentation process, the performance of the VGG16 and VGG19 models becomes nearly 

identical, implying that the quality of training data may influence model performance more 

significantly than the architectural complexity of the network. 

The consistent performance improvement on two datasets with different label characteristics, IQ-

OTH/NCCD with clinical classification (Benign, Malignant, Normal) and Lung Cancer CT-Scan with 

histopathological classification (AC, SC, LC, Normal), shows that this approach is robust and widely 

applicable. Thus, the application of GAN proved effective in overcoming data imbalance and 

improving the generalisation ability of the VGG model in lung cancer classification. These findings 

confirm that the combination of GAN and CNN architectures such as VGG is a very promising 

strategy for the development of artificial intelligence-based lung cancer diagnosis support systems, 

especially under conditions of limited and imbalanced medical data. For future research, it is 

recommended to explore the use of more advanced GAN variants, such as StyleGAN or CycleGAN, 

to further improve the realism of synthetic images. Additionally, evaluating this approach on larger 

and more diverse datasets, including multi-center or real-world clinical data, would enhance its 

practical relevance. Investigating its performance in multimodal frameworks, such as combining 

imaging with clinical or genomic data, could also extend its applicability. 
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