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1. Introduction  

Multiphase systems present several advantages over their three-phase counterparts, including 

enhanced performance, greater robustness, lower torque fluctuations, the capacity for higher power 

output, and a more stable speed response [1]-[3]. In [4], the authors provide a thorough review of 

recent advancements in multiphase machines, covering their advantages, modeling methods, and the 
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 Direct Torque Control (DTC) is a powerful method for multiphase drive 

systems, offering significant performance and efficiency gains, but its 

implementation is challenged by complexities like uncertainties and 

disturbances. This research addresses these issues, particularly the 

variable switching frequencies of hysteresis controllers with switching 

table and the limitations of conventional proportional-integral (PI) 

controllers in the outer loop, to enhance DTC for superior control in 

multiphase drives. The study proposes an improved DTC technique for a 

five-phase permanent magnet synchronous motor (5Ph-PMSM). This 

strategy integrates a robust nonlinear third-order super-twisting sliding 

mode control (TOSMC) with a modified space vector modulation 

(MSVM) algorithm. The MSVM is based on calculating the minimum 

and maximum of the five-phase voltages, contributing to optimized 

performance. This proposed DTC-TOSMC-MSVM approach 

significantly outperforms conventional DTC (DTC-Conv). It achieves 

tighter control, substantially reducing flux and torque ripple, and 

minimizing response time. Furthermore, it lowers the total harmonic 

distortion (THD) and improves disturbance rejection. The merits of the 

proposed strategy of 5Ph-PMSM are demonstrated through various tests. 

MATLAB simulations confirm these benefits, showing an 88.88% 

reduction in speed response time compared to DTC-Conv. Additionally, 

the proposed method reduces flux ripple by 51.85%, torque ripple by 

63.15%, and stator current THD by 61.08%. In addition, the proposed 

method demonstrates robust performance when faced with changes in 

machine parameters and load disturbances, making it superior to 

traditional DTC approaches. 
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latest developments in modulation and control techniques for the multilevel converters that supply 

them. The publication also explores future technological trends in the field. Multiphase machines 

have attracted interest in a number of application areas where high dependability is required, such as 

pump drives, robotics, energy conversion, multi-machine systems, and ship propulsion [5]-[9]. 

The traditional Direct Torque Control (DTC) technique has been advanced and studied for its 

potential to supersede the classical Field-Oriented Control (FOC) in AC drives requiring high 

performance [10], [11]. In [12], the authors used the FOC technique and DTC for synchronous 

motors. The DTC approach was shown to be superior in achieving maximum torque per ampere, 

minimal torque ripple, high efficiency, fast response, and a wide speed range. 

DTC technique out due to its strong approach, straightforward calculation method, and rapid 

response in terms of flux and torque. Notably, this method operates without the need for complex 

modulation techniques, current regulation, and coordinate transformation [13]. This technique has 

been employed in the analysis of various electric motors, including the permanent magnet 

synchronous motor (PMSM) [14], [15], induction motor (IM) [16], 6-phase induction motor [17], 

[18], doubly fed induction generator (DFIG) [19], [20], interior PMSM drive [21], five-phase 

induction motor (5P-IM) [22]-[24], dual stator induction generator [25]. 

While the traditional DTC method offers numerous benefits, it also presents certain challenges, 

including significant fluctuations in rotor flux and torque, the presence of multiple current 

harmonics, and limitations at low speeds [26]-[29]. A significant drawback of traditional DTC is the 

substantial torque ripple it produces. This issue primarily arises from the use of hysteresis 

comparators and either switching tables or proportional-integral (PI) controllers in its 

implementation, which can have adverse effects on the overall system performance [30], [31]. Due 

to the inherent drawbacks of PI controllers in electrical systems, much recent research has focused 

on developing the PI controller. To achieve superior control regulation of complex or turbulent 

systems, the Fractional-Order Proportional-Integral-Derivative (FOPID) controller is utilized as an 

alternative [32]-[35]. The FOPID offers increased flexibility through its additional parameters and 

demonstrates better handling of disturbances, leading to improved adaptability, stability, and control 

performance, especially in challenging system conditions [36]. 

Several recent research papers leveraging cutting-edge technological progress have tackled the 

limitations inherent in traditional technical methodologies. These papers highlight a range of 

innovative technologies, including: high-order sliding mode control (HOSMC), artificial neural 

networks (ANNs) [37], adaptive backstepping controller (ABC), sliding mode controller (SMC), 

fuzzy logic (FL), super-twisting sliding mode control (STSMC), adaptive-network-based fuzzy 

inference system algorithm (ANFIS), genetic algorithms (GA), Harris Hawks algorithm (HHA) 

[38], [39] and synergetic control (SC). In [40], the authors discuss a nonlinear adaptive position 

controller for a PMSM that utilizes a newly developed ABC approach. This innovative method 

specifically aims to provide robustness when faced with parameter uncertainties and load force 

disturbances. An optimal controller for a PMSG-based wind turbine (WT) system is developed using 

the new wild horse optimizer (WHO) method. This approach allows for the effective tuning of PI 

controller gains, which in turn improves the PMSG's dynamic performance and the overall system 

response during both normal and abnormal situations [41]. To address this limitation of the 

traditional DTC method, researchers have proposed various alternative methods [42]-[46]. These 

strategies involve incorporating modern techniques instead of relying on switching tables and 

hysteresis comparators, with the goal of preserving the key performance advantages of the DTC 

method. In [47], the authors introduced a method for controlling a five-phase PMSM (5Ph-PMSM) 

without sensors, utilizing a 7-level torque hysteresis within the DTC technique. They highlighted 

that the motor's torque responsiveness and the amount of torque fluctuation are directly influenced 

by the magnitude and placement of the voltage vectors employed in this hysteresis-based DTC 

approach. Furthermore, they explained that using torque hysteresis controllers with varying levels 

allows for the generation of a diverse set of voltage vectors. In [48], the authors explored a technique 

to improve the DTC for 5Ph-PMSM. Traditional DTC using space vector modulation (SVM) faces 

https://www.sciencedirect.com/topics/engineering/doubly-fed-induction-generator
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issues like stator flux and torque ripples, and higher current total harmonic distortion (THD). It is 

proposed to replace traditional PI controllers and hysteresis comparators (HC) with artificial neural 

networks (ANNs) in the DTC-SVM strategy. Dynamic response is improved, torque and flux ripples 

are reduced, and stator current is reduced in 5Ph-PMSM drive.  

Compared to other control methods, SMC has garnered significant attention in recent years. 

This is largely due to its strong resilience to external disturbances, straightforward nature, ease of 

application, and minimal susceptibility to variations in system parameters [49], [52]. Utkin first 

proposed this approach in 1977 [53]. It stands as a nonlinear control technique that employs a 

discontinuous control signal to alter a system's behavior, compelling it to move along a predefined 

switching surface. Within the realm of 5Ph-PMSM control, SMC has become a focal point of 

research and practical use. For instance, reference [54] demonstrates the successful implementation 

of SMC to regulate the speed of a 5Ph-PMSM. In [55], the authors evaluated the dynamic 

performance of a 5Ph-PMSM drive, employing both SMC and MRAS observers. Their control 

approach was notably justified by its ability to implement a nonlinear control law that is robust to 

system model uncertainties while maintaining the system's simplicity. 

Many researchers have concentrated on the issue of the chattering phenomenon, a significant 

disadvantage of conventional SMC [56], [57]. This chattering effect leads to oscillations in both 

current and torque, consequently producing unwanted mechanical vibrations. Several approaches 

have been suggested to address the limitations of the SMC technique [58], [59]. These include the 

integration of fuzzy logic [60], the synergetic-SMC-backstepping [61], and the development of 

Integral Sliding Mode algorithms [62], all aimed at enhancing the performance and effectiveness of 

the conventional SMC method. In [63], a study tackled the position tracking problem in PMSMs, 

considering parameter uncertainties and load force disturbances. Their proposed solution involved 

combining adaptive ABC with SMC to manage load force distribution. Simulations on a PMLSM 

system validated the controller's effectiveness and robustness, showing excellent position tracking 

performance in diverse transient and steady-state scenarios, including under various load 

disturbances. 

To mitigate the chattering effect commonly associated with classical SMC, HOSMC presents 

itself as a compelling alternative. Unlike traditional SMC, which applies the discontinuous control 

action directly to the sliding surface, HOSMC techniques, considered advanced forms of SMC, 

apply this discontinuous element to the derivatives of the sliding surface. This indirect application 

significantly diminishes the chattering phenomenon. Within the existing literature, second-order 

sliding mode control methods, including twisting, super-twisting, and sub-optimal algorithms, are 

frequently employed as replacements for conventional SMC across various applications [64]-[67]. In 

[68], the authors introduced a control method that leverages a second-order SMC approach to 

enhance the performance of a 5P-IM. This technique is particularly effective because it applies a 

robust nonlinear control law that addresses system uncertainties without compromising the 

simplicity of the overall system. In contrast to second-order approaches, Third-Order SMC 

(TOSMC) involves a greater number of adjustable parameters. This increased parameterization 

enhances its adaptability, allowing for simultaneous improvements in several performance aspects 

such as precision, robustness, and the reduction of controlled variable oscillations. 

The space vector modulation (SVM) technique, initially proposed by Der Broek and all in 

1988, operates on the principle of angle and sector calculations. In recent years, space vector 

modulation (SVM) techniques have become increasingly significant due to their enhanced 

modulation features and rapid response capabilities. Notably, SVM has demonstrated a reduction in 

voltage and current THD and ripples when compared to traditional PWM and other modulation 

approaches [69]-[71]. Compared to PWM, this method has been shown to decrease voltage and 

current THD and enhance voltage output by 15%. However, implementing SVM is more complex 

than PWM, particularly in multilevel inverter systems. The direct application of traditional SVM 

presents significant cost and experimental challenges. Consequently, researchers have focused on 

refining the conventional SVM approach and exploring alternative modulation strategies.  
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 In Ref [72], a novel SVM approach determines switching actions based on the minimum and 

maximum values of the 3-phase voltages. This method, termed the simplified SVM technique, has 

demonstrated its effectiveness in controlling three-phase inverters. A simplified SVM of 3-phase 

inverters method offers straightforward control of three phase multilevel inverters [73]. Unlike 

conventional SVM, this approach avoids intricate computations. Furthermore, employing this 

modified SVM in multilevel inverters lowers implementation expenses and simplifies practical 

setup. It's well-established that the chosen control method significantly impacts cost-effectiveness, 

performance enhancement, and quicker response times, making this technique a valuable asset for 

inverter control. 

This work proposes a DTC strategy for a 5Ph-PMSM drive that incorporates new nonlinear 

controllers TOSMC. The primary contribution lies in developing this TOSMC-DTC technique for 

multiphase motors, which aims to improve electromagnetic torque and stator flux regulation, as well 

as speed control. While standard SMC is effective against system uncertainties and disturbances, it 

often produces undesirable chattering that can cause mechanical degradation. In contrast, TOSMC 

improves system stability and provides smoother control by reducing or eliminating chattering 

through the use of higher-order derivatives. The suggested approach employs three TOSMC units to 

govern a 5Ph-PMSM drive. To ensure high efficiency and performance, a refined modified space 

vector modulation (MSVM) technique is also put forth to generate the required inverter switching 

pulses based on the reference voltages from the TOSMC controllers. The TOSMC-DTC-MSVM 

algorithm offers numerous benefits, including its simplicity, ease of implementation, strong 

robustness, and remarkable capability to improve the precision of flux and torque control. The 

following points summarize the contributions of this work: 

• The proposed DTC-TOSMC-MSVM method offers a more efficient and reliable approach in 

the field of DTC technique compared to the DTC-Conv method. 

• Reducing the THD value of the stator current of 5Ph-PMSM compared to conventional 

technique; 

• The proposed control technique effectively minimizes flux and torque ripples in the 5Ph-

PMSM. 

• Improving the performance of the control multiphase drives systems, reducing the rotor speed 

tracking error, quickening response times, and a significant enhancement in its robustness 

against variations in machine parameters. 

This paper is structured into five main sections. Section 2 details the fundamentals of the DTC 

method and presents the mathematical model of the 5Ph-PMSM. Section 3, titled “Proposed 

Technique,” introduces the TOSMC approach and MSMC strategy developed in this research for 

controlling the 5Ph-PMSM. Section 4 “Results and Discussion,” showcases simulation outcomes 

and provides comparisons with conventional technique. Finally, Section 5, “Conclusions,” 

summarizes the findings derived from the simulations.  

2. DTC Approach of 5Ph-PMSM 

Although conventional DTC delivers a highly sensitive and efficient method for controlling 

motors, its need for exact switching frequency management and real-time computation can present 

implementation hurdles [75]. Utilizing DTC with an 5Ph-PMSM, however, yields benefits like 

enhanced fault tolerance and reduced torque fluctuations, largely due to the presence of extra phases. 

The following is the equation for the stator voltage of a 5Ph-PMSM in a d-q-x-y rotating frame [48]. 

Where, Rs stator resistance, vds, vqs, vxs and vys design, respectively, the stator voltage 

components in the (d, q, x, y) axis, wr denote angular speed of the 5Ph-PMSM, Lls, Ld, and Lq are the 

leakage, direct, and quadrature stator inductances, ϕf is magnetic flux, and ids, iqs, ixs and iys design, 
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respectively, the stator current components in the (d, q, x, y) axis. The electromagnetic torque Tem of 

the 5Ph-PMSM is given by: 

 

{
 
 
 

 
 
 𝑣𝑑𝑠 = 𝑅𝑠𝑖𝑑𝑠 +

𝑑

𝑑𝑡
(𝐿𝑑𝑖𝑑𝑠 + ∅𝑓) − 𝑤𝑟𝐿𝑞𝑖𝑞𝑠

𝑣𝑞𝑠 = 𝑅𝑠𝑖𝑞𝑠 +
𝑑

𝑑𝑡
𝐿𝑞𝑖𝑞𝑠 +𝑤𝑟(𝐿𝑑𝑖𝑑𝑠 + ∅𝑓)

𝑣𝑥𝑠 = 𝑅𝑠𝑖𝑥𝑠 +
𝑑

𝑑𝑡
𝐿𝑙𝑠𝑖𝑥𝑠

𝑣𝑦𝑠 = 𝑅𝑠𝑖𝑦𝑠 +
𝑑

𝑑𝑡
𝐿𝑙𝑠𝑖𝑦𝑠

 (1) 

 
𝑇𝑒𝑚 =

5

2
𝑃((𝐿𝑑 − 𝐿𝑞)𝑖𝑑𝑠𝑖𝑞𝑠 + ∅𝑓𝑖𝑞𝑠) (2) 

The 5Ph-PMSM used in this study (Ld = Lq), so the machine torque is as follows: 

 
𝑇𝑒𝑚 =

5

2
𝑃 ∅𝑓𝑖𝑞𝑠 (3) 

The equation for dynamics wr is: 

 
𝐽𝑚
𝑑𝑤𝑟
𝑑𝑡

= 𝑃𝑇𝑒𝑚 − 𝑃𝑇𝑟 − 𝑓𝑚𝑤𝑟 (4) 

Where, Jm is the inertia, Tr is the load torque, P is number of pairs poles, fm is the viscous damping.  

The DTC controls the the on/off states of the VSI switches by directly determining the control 

sequence that is applied to these switches [54].  

The diagram in Fig. 1 illustrates a DTC strategy for a 5Ph-PMSM drive. This method employs 

a PI controller to establish the desired torque level based on the motor's speed. Furthermore, the 

technique depends on the estimation of stator flux, sector, and torque. An inverter uses a switching 

table, which has five inputs and five outputs, to create the required switching signals, which in turn 

control the five phases of the 5Ph-PMSM drive [54]. Switch table for Conv-DTC in Table 1. 

 

Fig. 1. Designed DTC approach of 5Ph-PMSM 

E 

Five 

Phase 

Inverter 

 

Switching 

Table 

Sa
 

Sb
 

Sc
 

Sd
 

Se
 

iβ
 

i α
 v β

 v α
 

Φs
*

* 

wr
 

Te
* 

Φs
 

dTe
 

E 


















=

+=

−=

−









 1

22

tan

)(
2

5

s

s

e iiPT

 

 θs 

 

5Ph-

PMSM  

wr
* 

abcde  

   αβ 
 

Te
 

dΦ
 

abcde  

   αβ 

 

 



1630 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 5, No. 3, 2025, pp. 1625-1646 

 

 

Fayçal Mehedi (Third-Order Sliding Mode Control of Five-Phase Permanent Magnet Synchronous Motor Using Direct 

Torque Control based on a Modified SVM Algorithm) 

 

In terms of flux and current stator, the electromagnetic torque of the 5Ph-PMSM is expressed as: 

 
𝑇𝑒𝑚 =

5

2
𝑃(𝜑𝛼𝑖𝛽 − 𝜑𝛽𝑖𝛼) (5) 

The torque errors and flux determines the inverter's switching states, as shown in equation (5): 

 
{
∆𝜑𝑠 = 𝜑𝑠

∗ − 𝜑𝑠
∆𝑇𝑒𝑚 = 𝑇𝑒𝑚

∗ − 𝑇𝑒𝑚
 (6) 

Where,  

Φs
* : Reference flux.  

Tem
* : Reference torque. 

The amplitude of the stator flux is expressed in terms of its concordia quantities: 

 
𝜑𝑠 = √𝜑𝛼

2 + 𝜑𝛽
2 (7) 

The position θs of the stator flux is: 

 𝜃𝑠 = tan
−1
𝜑𝛽

𝜑𝛼
 (8) 

Table 1.  Switch table for Conv-DTC 

dΦ dT S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

0 

-1 V7 V3 V19 V17 V25 V24 V28 V12 V14 V6 

1 V14 V6 V7 V3 V19 V17 V25 V24 V28 V12 

0 V31 V0 V31 V0 V31 V0 V31 V0 V31 V0 

1 

-1 V17 V25 V24 V28 V12 V14 V6 V7 V3 V19 

1 V24 V28 V12 V14 V6 V7 V3 V19 V17 V25 

0 V0 V31 V0 V31 V0 V31 V0 V31 V0 V31 

3. Proposed Method 

3.1. Five-Phase SVM Strategy 

Conventional SVM techniques have relied on space vectors. This is because directly 

determining the sector and angle from the reference voltage presents a complex calculation. Instead, 

these calculations are executed in the stationary (α, β) frame using the Clarke transformation applied 

to the three-phase reference voltages. This classic control technique has been successfully applied to 

various electrical machines, including asynchronous and synchronous motors [69], [70]. Recent 

research has seen widespread use in DTC schemes [31], [46]. Furthermore, its implementation in 

multiphase systems has yielded favorable outcomes [54]. Despite these advantages, implementing 

SVM is more challenging than conventional pulse width modulation (PWM). However, a drawback 

associated with this approach is the high cost of implementing an electrical control system, primarily 

stemming from of the traditional SVM method. In [74], a new simplified SVM algorithm is 

proposed that avoids complex sector and angle calculations found in traditional methods. This SVM 

strategy, based on three-phase voltage minimum and maximum values, offers ease of 

implementation and reduced THD in 2-level inverters. MATLAB/Simulink simulations and 

dSPACE implementation validate its effectiveness. 

This paper puts forth a basic five-phase MSVM strategy. This method identifies the necessary 

switching configurations by computing the minimum and maximum of the five voltages (Va, Vb, Vc, 

Vd, and Ve). The MSVM technique was selected due to its uncomplicated nature and ease of 
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implementation. Furthermore, it is expected to offer improved performance of the systems compared 

to PWM technique and traditional SVM methods. Fig. 2 illustrates the fundamental concept behind 

the five-phase MSVM technique for a two-level inverter. 

The presented five-phase MSVM method involves a four-stage process. First, it identifies the 

lowest value among five voltage inputs (Va, Vb, Vc, Vd, and Ve). Second, it pinpoints the highest value 

among the same five voltages. Third, it calculates the sum of these minimum and maximum voltage 

values. Finally, it generates the pulse sequences for Sa, Sb, Sc, Sd, and Se. 

 

Fig. 2. Five-phase MSVM strategy 

3.2. TOSMC-DTC Strategy Based MSVM of the 5Ph-PMSM 

The traditional DTC approach for multi-phase PMSM commonly employs hysteresis 

comparators alongside switching tables and the PI controller for speed regulation. This methodology 

can compromise the system's reliability by contributing to increased torque and flux fluctuations 

[48], [54]. There are various SMC techniques in the literature, all developed to reduce chattering 

phenomena [73], [76]. Despite these advancements, their application in multiphase systems still 

presents considerable hurdles. 

In this section, a new DTC control system for the 5Ph-PMSM is presented, utilizing TOSMC 

techniques to achieve improved performance over the traditional DTC. This design incorporates two 

TOSMC controllers in place of the usual hysteresis comparators and employs a modified SVM 

strategy instead of the standard switching table. Furthermore, as for the external control loop, the 

speed control unit has been replaced by a proposed TOSMC controller. The methodology for 

estimating electromagnetic torque and stator flux is retained from conventional DTC. 

This suggested TOSMC-DTC-MSVM approach employs two novel TOSMC regulators to 

manage both the stator flux and torque. Instead of a traditional switching table, it utilizes the MSVM 

algorithm. This TOSMC-DTC-MSVM strategy aims to combine the strengths of vector control and 

conventional DTC to mitigate the torque and flux oscillations commonly seen in 5Ph-PMSM drive. 

The integration of TOSMC controllers and MSVM Algorithm is intended to achieve a consistent 

switching frequency and reduce pulsations in both stator flux and torque. 

While various methods exist to control and lessen torque fluctuations in AC motors, the 

STSMC stands out as a distinctive higher-order SMC approach that needs knowledge solely about 

the sliding surface [64], [65]. To overcome the limitations of traditional SMC, a TOSMC has been 

developed [77], [78]. This technique demonstrates effectiveness in systems where uncertainties 
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exist, providing a robust control alternative and solution to both nonlinear and linear control 

approach. Instead of using the first derivative of the sliding surface like standard SMC, the TOSMC 

strategy, similar to the STSMC approach, utilizes the command input on the second-order 

derivative. The control input for TOSMC is constructed from the sum of three distinct components, 

detailed in equation (9). 

 𝑢(𝑡) = 𝑢1(𝑡) + 𝑢2(𝑡) + 𝑢3(𝑡) (9) 

Therefore, equation (9) is presented as: 

 

{
 
 

 
 𝑢1(𝑡) = ℷ1. √|𝑆|)𝑠𝑖𝑔𝑛(𝑆)

𝑢2(𝑡) = ℷ2. ∫ 𝑠𝑖𝑔𝑛(𝑆)𝑑𝑡

𝑢3(𝑡) = ℷ3. 𝑠𝑖𝑔𝑛(𝑆)

 (10) 

Here, S indicates the switching surface. 

The constants λ1, λ2, and λ3 indicate the positive gains that have changed. 

The following is the selection of the sliding surfaces based on (4) and (6): 

 

{

𝑆(𝑤𝑟) = 𝑤𝑟
∗ −𝑤𝑟

𝑆(𝑇𝑒𝑚) = 𝑇𝑒𝑚
∗ − 𝑇𝑒𝑚

𝑆(𝜑𝑠) = 𝜑𝑠
∗ − 𝜑𝑠

 (11) 

The errors identified in Equations (11) served as the input for the TOSMC controllers. 

Specifically, the TOSMC regulators for speed, electromagnetic torque Tem, and stator flux were 

employed to manipulate the reference values Tem*, and the stator voltage components in the x and y 

axes (Vx* and Vy*) respectively. Fig. 3 illustrates the internal architecture of a TOSMC strategy 

designed to regulate the speed, flux, and torque of a 5Ph-PMSM drive. 

 

Fig. 3. Architecture of the TOSMC approach 

The bloc diagram for proposed TOSMC-DTC-MSVM approach, illustrated in Fig. 4. The 

suggested control approach demonstrates a greater potential for minimizing flux and torque ripple 

compared to DTC-Conv and other existing control strategies. To govern the flux and torque of a 

5Ph-PMSM drive, a control principle termed TOSMC-DTC-MSVM approach is introduced. Within 

this framework, the y axis voltage (Vy∗) is employed to regulate the torque, while the x axis voltage 

(Vx∗) manages the stator flux. 

4. Results and Discussion 

Using a MATLAB/Simulink model, we performed simulations to evaluate the efficacy and 

efficiency of the created DTC system, which employs a TOSMC approach based on the modified 

SVM algorithm of the 5Ph-PMSM. With results in terms of torque ripples, THD of stator current, 
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response time, and flux ripples, compared to the traditional method. Consequently, two tests are 

suggested to examine the contrast between DTC-Conv and the DTC-TOSMC-MSVM strategy, 

tracking performance test under the influence of load torque Tr variation and robustness test. Table 2 

lists the values of the 5Ph-PMSM parameters [43]. 

 

Fig. 4. Structure of the proposed TOSMC-DTC-MSVM approach of the 5Ph-IPMSM 

Table 2.  The 5Ph-PMSM parameters 

Parameter P φf Rs Lq Lq f Jm 

Values 2 0.2 web 0.67 Ω 0.0085 H 0.0085 H 50 Hz 0.004 Kg/m2 

4.1. The First Test Case  

The suggested DTC-TOSMC-MSVM approach for 5P-PMSM is evaluated in a tracking 

performance scenario, and the traits of both methods are examined with regard to their sensitivity to 

the Tr variation. Under no load, the 5Ph-PMSM operates at 100 rad/s, ramping up to 150 rad/s at t = 

0.2s. A nominal Tr = 10 Nm was applied at t = [0.4, 0.6s], followed by a consign inversion (-50 

rad/s) at t = 0.8s. The 5Ph-PMSM speed is shown in Fig. 5 for the DTC-Conv and DTC-TOSMC-

MSVM approach used in this investigation. As illustrated in Fig. 9, the traditional method exhibited 

a speed reduction from 150 rad/s to 137 rad/s when torque Tr was applied at t = 0.4 s. This 

performance contrasts with the DTC-TOSMC-MSVM approach, which effectively sustained its 

reference speed. The rejection rate of speed disturbance was estimated at about 2% using the 

suggested approach, compared to the traditional technique, which reached 9%. The suggested 

control method significantly reduces response time compared to the DTC-Conv technique. 

Specifically, its speed response time is estimated at 0.01 s, a notable improvement over the 

traditional method's 0.09 s response. As presented in Table 3, the response time is cut by 

approximately 88.88%. Both methods avoid overshooting the reference value. 

As shown in Fig. 6, the simulation results for torque (Tem ) indicate that the DTC-TOSMC-

MSVM method delivers superior performance compared to the conventional technique. Fig. 10 

shows the zoom of torque Tem. Employing the DTC-TOSMC-MSVM strategy significantly reduces 

torque oscillations compared to the conventional DTC method. The suggested approach achieves a 

torque ripple of only 2.8 Nm, a substantial improvement over the 7.6 Nm ripple observed with the 

conventional approach. This results in a torque ripple decrease of almost 63.15% as shown in Table 

3. 

The stator flux for both control strategies is displayed in Fig. 7, where it takes a constant value 

and closely resembles the reference value despite variations. When compared to the traditional DTC 

approach, the DTC-TOSMC-MSVM strategy shows extremely reduced ripples. Fig. 11 illustrates 
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that the proposed method significantly reduces stator flux ripples to a mere 0.0065 Wb, which is 

considerably less than the 0.0135 Wb ripple produced by the traditional approach. A reduction of 

approximately 51.85% is observed in the flux ripple (See Table 3). The stator flux component 

trajectories, Фαs and Фβs, are depicted in Fig. 8 for both control strategies. The paths are circular for 

both, maintaining a diameter of 0.8 Wb. However, the DTC-TOSMC-MSVM strategy demonstrates 

a clear benefit in terms of reduced ripples in the flux when compared to the traditional technique. 

The stator current's THD values for both methods are presented in Fig. 12 and Fig. 13. The Fig. 

13 clearly shows that the proposed DTC-TOSMC-MSVM technique achieved a THD of 10.87%, 

significantly outperforming the classical control technique's 27.93% (Fig. 12). This indicates that the 

proposed method substantially improves current quality, reducing the THD by approximately 

61.08%. The THD of current values are shown in Table 3. 

 

Fig. 5. Rotation speed (Test 1) 

 

Fig. 6. Electromagnetic torque (Test 1) 

 

Fig. 7. Stator flux (Test 1) 
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Fig. 8. Stator flux vector α-β axis trajectories (test 1), when: (a) DTC-Conv, (b) TOSMC-DTC-SVM 

 

Fig. 9. Zoom in the rotation speed (test 1) 
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Fig. 10. Zoom in the electromagnetic torque (test 1) 

 

Fig. 11. Zoom in the stator flux (test 1) 

 

Fig. 12. THD of phase current Ias (DTC-Conv) 
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Fig. 13. THD of phase current Ias (DTC-TOSMC-MSVM) 

Table 3.  Comparative performance of DTC-Conv and DTC-TOSMC-MSVM technique  

 DTC-Conv DTC-TOSMC-MSVM Ratios (%) 
Response Time [s] 0.09 0.01 88.88 

Torque Ripples [N.m] 
[6.2 – 13.8] 

7.6 

[8.7 – 11.5] 

2.8 
63.15 

Flux Ripples [Wb] 
[0.393 – 0.4065] 

0.0135 

[0.3970 – 0.4035] 

0.0065 
51.85 

Current THD [%] 27.93 10.87 61.08 

4.2. The Second Test Case 

A robustness test was conducted to determine how effectively the proposed DTC-TOSMC-

MSVM method handles parameter variations in a 5Ph-PMSM. The control system's robustness was 

assessed under three main parameter changes: a 20% reduction in nominal stator inductances Ld and 

Lq, and a 100% increase in both the inertia moment Jm and stator resistance Rs. Table 4 provides the 

new parameter values for this test.  

Table 4.  New values for the 5Ph-IPMSM parameters 

 Rs Lq Lq Jm 

Old values 0.67 Ω 0.0085 H 0.0085 H 0.004 Kg/m2 

New values 1.34 Ω 0.0068 H 0.0068 H 0.008 Kg/m2 

 

Fig. 14, Fig. 15, Fig. 16, Fig. 17, Fig. 18, Fig. 19 display the test's findings. The stator flux, stator 
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differently by these variations. Fig. 14, illustrates the 5Ph-PMSM speed for both the DTC technique. 
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PMSM drive, the DTC-Conv speed responses are more affected by machine parameter changes, 

according to the data displayed in Fig. 17. The overshoots of speed wr were 111 Rad/s and 103 rad/s 
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technique, which took approximately 0.1s. As a result, the DTC-TOSMC-MSVM strategy greatly 

decreased speed response time, which was calculated to be 83%. This suggests that the suggested 

approach performs exceptionally well. 

As illustrated in Fig. 15, the DTC-TOSMC-MSVM strategy results in lower torque pulsations 

compared to the traditional DTC method when applied to a 5Ph-PMSM drive. This indicates that the 

DTC-TOSMC-MSVM technique enhances the quality of the torque even when the parameters of the 

5Ph-PMSM drive change. This improvement highlights the superiority and significant potential of this 

strategy over the conventional DTC approach. Fig. 18 shows the zoom of torque Tem. The DTC-

TOSMC-MSVM technique significantly decreased torque ripples, achieving values of 3.1 N.m 

compared to 11.3 N.m with the DTC-Conv method. This represents an approximate 72.56% reduction 

in torque ripples using the proposed DTC-TOSMC-MSVM strategy over the conventional DTC 

approach. 

Fig. 16 shows the stator flux value change pattern of the two techniques according to the given 

flux reference value. Fig. 19 shows the zoom of stator flux. The proposed method offers a distinct 

advantage over DTC-Conv by maintaining a stable stator flux with a ripple of just 0.0075 Wb, even 

when machine parameters fluctuate. Conversely, DTC-Conv exhibits a higher flux ripple of 0.0205 

Wb under the same conditions, indicating its susceptibility to such changes. 

 

Fig. 14. Rotation speed (second test)  

 

Fig. 15. Electromagnetic torque (second test) 

As illustrated in Fig. 20 and Fig. 21, which present the stator current's THD, the proposed 

DTC-TOSMC-MSVM technique exhibits superior performance. Its THD of 11.95%, clearly visible 

in Fig. 21, is a marked improvement over the 37.01% recorded by the classical control approach, as 
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shown in Fig. 20. This indicates that the proposed method effectively boosts current quality, cutting 

the THD by roughly 67.71%. The outcomes unequivocally confirm that the DTC-TOSMC-MSVM 

strategy is superior in improving system robustness and dynamic accuracy for applications that need 

high reliability in the face of parametric uncertainties and external disturbances. 

 

Fig. 16. Stator flux (second test) 

 

Fig. 17. Zoom in the rotation speed (second test)  

 

Fig. 18. Zoom in the electromagnetic torque (second test) 
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Fig. 19. Zoom in the stator flux (second test) 

 

Fig. 20. THD of phase current Ias (DTC-Conv) 

 

Fig. 21. THD of phase current Ias (DTC-TOSMC-MSVM) 
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5. Conclusion 

This research introduces an advanced control approach for a 5Ph-PMSM drive. By integrating a 

TOSMC strategy with a MSVM algorithm, the proposed method significantly enhances the 

performance of DTC technique. Our MATLAB simulations under various operating conditions 

demonstrate that the proposed DTC-TOSMC-MSVM method outperforms conventional DTC, 

proving its effectiveness and potential for improved drive system performance. The effectiveness of 

the presented technique was investigated based on several key performance indicators: Current 

THD, reference tracking, response time, robustness, and ripple reduction in flux and torque. The 

effectiveness of the presented technique was investigated based on several key performance 

indicators: Current THD, reference tracking, response time, robustness, and ripple reduction in flux 

and torque. Furthermore, the DTC-TOSMC-MSVM approach significantly reduced the ripple 

content in both stator flux and torque, achieving reduction rates of 51.85% and 63.15%, 

respectively, when compared to the DTC-Conv method. The use of the designed technique is 

estimated to enhance THD quality by 61.08% when compared to the DTC-Conv method. Also, this 

proposed approach improved the response time of machine speed by an estimated 88.88% compared 

to the DTC approach. 

Future research is expected to propose innovative and highly effective approaches, such as 

combining hybrid nonlinear algorithms with artificial intelligence. This will involve experimental 

validation and comparison with simulated results. 
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