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1. Introduction 

Emerging technology has piqued interest in enabling machines to imitate and replicate human 

capabilities. One of the exclusive capabilities of humankind is to process and understand visual data 

to recognize and distinguish things from one another. The ability is mirrored as object detection, an 

essential fundamental aspect of computer vision that enables machines to effectively analyse, 

interpret, and comprehend visual data by detecting and localizing objects inside images or video 

sequences [1], [2]. In general, object detection is categorized into traditional algorithms and deep-

learning algorithms, where the traditional approaches rely on fundamental steps of image processing 

such as preprocessing, feature extraction, feature selection, classification, and post-processing [3]-[5].  

Despite the traditional methods, such as Histogram of Gradient (HOG), Scale-Invariant Feature 

Transformation (SIFT), and Viola-Jones detectors have shown excellent performance, the emergence 

of deep learning has revolutionized the field of computer vision, especially in object detection, 
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 The expansion of the application of drones has dispersed in wide range 

across military and civilian sectors. The application in such search and 

rescue missions are applicable with integration of computer vision and 

machine learning. A key feature of the drone for such applications is the 

capability to detect and locate objects and targets. Despite traditional 

methods perform excellently, deep-learning methods are the game changer 

in detection due to their better accuracy and robustness, rendering them 

ideal for real-time applications. The methods, including the YOLO series, 

are in continuous development to further enhance their performance. 

however, the regular issuance of updated and newer versions has intrigued 

curiosity regarding the potential superiority of the newer version over the 

previous versions in drone application. Hence, this paper has chosen the 

YOLOv8, YOLOv5u and YOLOv11 models for implementation on a DJI 

Tello drone to detect a custom target. A dataset for the target as a single 

class to be trained and validated is generated through images annotation. 

The target is required to be captured in the position of middle of the frame. 

However, the analysis upon performance metrics found that every model 

recorded high rates of precision, accuracy and recall. Yet, the simulations 

and experimentations displayed the ability of the model to accurately 

recognize the target. Thus, in order to evaluate the performance of each 

model thoroughly, it is advisable to ensure the data is sufficient and 

unbiased, while properly choosing the right setting parameters to the 

YOLO models. 
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particularly through deep convolutional neural networks (CNN) [6]-[12]. The deep-learning emergent 

is to facilitate detection methodologies to be more accurate and robust by functioning in a manner 

similar to how a human brain works in identifying the object by detecting the features of the images 

automatically [8]-[10], [13]. CNN’s architecture plays crucial roles as their backbone’s architecture 

in deep-learning methods, allowing the methods to extract feature maps from input images and 

preserve their spatial information [14], [15].  

Based on the candidate regions produced by the frameworks of the detectors, the algorithms are 

categorized into two-stage and one-stage detectors, where the two-stage detectors adopt the 

fundamental idea of the traditional methods using convolutional features to enhance the feature 

expression ability significantly [3]. However, two-stage detectors demand a longer period to extract 

all proposals, as they first extract candidate regions before classifying and localizing these regions 

using CNN, as well as complex calculations due to the large number of nodes and layers of the 

network, making them unideal for real-time detection despite offering higher accuracy [5]. On the 

other hand, one-stage detectors offer simplicity and speed, as the algorithms utilize different 

proportions and sizes of predefined boxes to locate objects, effectively bypassing the candidates’ 

regions extraction stage and directly predicting class probabilities simultaneously with feature 

extractions [5], [15]-[17]. 

Hence, to fulfil the demand of accurate and rapid processing in real-time applications, the 

constant development of one-stage algorithms, particularly the YOLO series, has enhanced the 

precision along with great processing time to levels with two-stage algorithms [11], [15], [18], [19]. 

As the YOLO series offers efficient deployment alongside accurate and quick target identification, it 

has become one of the most preferred and widely deployed algorithms especially for mobile devices, 

including drones [11], [20], [21].  

Drones are initially utilized in military forces for target shooting practice, as can be perceived by 

the record of the real first drone; however, drones these days are actively integrated for various tasks 

from various sectors and industries, especially in agriculture, product delivery, transportation, 

telecommunications, and security and surveillance, where proficient vision-based capabilities are one 

of the demands [22]-[25]. At present, the employment of the advancing computerization and 

miniaturization technologies in the drones led to the reduction of production costs while extending the 

range of drone applications, making it an appealing alternative to human labor, particularly in high-

risk tasks and confined workspaces, as drones can access unreachable locations with their agility and 

adaptability to nature [20], [26], [27]. With the possibilities of cooperating with computer vision and 

machine learning techniques, object or target detection has become one of the interests for the drone 

research community [28]. The search and rescue operation of Hurricane Katrina’s survivors in 2005 

remarks the first deployment of drones in performing non-military tasks [22], [23]. Despite the 

limitations of the drones, the utilization exemplified an innovative disaster’s management, ultimately 

laying the foundation for various potential applications of drones.  

With the choices of detection algorithms, including the YOLO series, the target or subject of 

interest, such as the survivors of Hurricane Katrina, can be differentiated from other things, easing the 

rescuers to find them instead of spending more time spotting them among the messiness of the tragedy 

site through the drones' streaming. Since June 2015, the YOLO community has been actively 

developing and launching updates with claims of improving the previous versions and solving any 

perceived issue. One of the mostly used iterations of YOLO is YOLOv5 released by team Ultralytics, 

which the model model has a smaller size with improved processing speed and accuracy compared to 

its predecessors, as well as its integration with being an open-source machine learning framework 

[29]-[31]. Later, the team released YOLOv8 with the aim to boost the performance of detection in 

various sizes, particularly smaller ones, while retaining largely similar backbone architecture of 

YOLOv5 [18], [32].  

A study to compare the performance of YOLOv5 and YOLOv8 in detecting the tear film break-

up based on ophthalmic videos is conducted by Z. Ruoyu et al. [33]. A total of 2808 labeled images 

are used as datasets, yielding the results of YOLOv5 with 51.4% is outperformed by YOLOv8 in 
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terms of accuracy at 54.2%. Living up to its main goal, YOLOv8, with 69.4% also outperformed 

YOLOv5 in accuracy with 47.6% in detecting smaller target. Despite scoring a slightly lower frame 

rate per second when executed on CPU, YOLOv8 remains at a commendable rate for real-time and 

even score higher on GPU. In another comparative study carried out by R.J. Iskandar et al. [34], both 

models are evaluated for detecting objects in low-light condition using a small pre-trained model. A 

total of 4132 images with three classes are used as datasets. The study also showed that YOLOv8 

performed better than YOLOv5, with the accuracy rate of 70.4% over 59.3%, while mAP50 at 0.7019 

by YOLOv8 over 0.5930 by YOLOv5 when trained with 100 epochs. On the other hand, A. Chen [18] 

found that in specific scenarios, YOLOv8 is outperformed by YOLOv5, such as in car detection where 

the precision, recall and accuracy rates of YOLOv8 fallen behind the rates of YOLOv5. The study 

found that the improvement of YOLO models is not in a linear path progression but rather trade-offs 

and tailored according to tasks. 

As in January 2025, Ultralytics released another version of YOLOv11 upon the advancement of 

YOLOv8 with aim to boost the detection accuracy and processing speed, while in the meantime 

YOLOv5 which remain relevant still is updated to YOLOv5u by Ultralytics with improvement made 

to the backbone architecture [29], [32]. However, as the previous related works have concluded that 

YOLOv8 have tendencies of falling behind YOLOv5, the latest updated and released versions have 

intrigued question of whether the newer versions provide better target detection. 

Thus, this paper aims to compare the performance of real-time target detection by a DJI Tello 

drone using YOLOv8, YOLOv5u and YOLOv11. The models are trained using a dataset of the custom 

designed object that acts as the target for the detection by the drone on a Python platform. Each model 

is tested with a DJI Tello drone’s camera, with condition of target need to always be in the center of 

the drone’s view. The performance of each model is evaluated with several standard fundamental 

metrics to quantify the consistency, accuracy and sensitivity of each model. 

This paper is structured into five sections, with Section 2 elaborating on the fundamentals and 

the working principles of YOLO models, while Section 3 outlines the methods of utilizing the models, 

comprising the dataset preparation, model training, evaluation metrics and experiments. The results 

and performance data are analyzed and discussed in Section 4. Finally, Section 5 concludes and 

summarizes the paper, along with a hint of future work progression.  

2. YOLO Series 

YOLO, an acronym for ‘You Only Look Once’, is a detection algorithm that was first developed 

and issued in 2015 by its original team, and as the YOLO community grows and actively develops, 

the series has released several versions throughout the years [29], [35]. Fig. 1 shows the timeline of 

the models released from 2015 until January 2025. The initial team developed YOLOv1 through 

YOLOv3, while the later versions are developed by other active teams in the YOLO community, with 

YOLOv7 and YOLOv9 are developed by one team, whereas YOLOv5, YOLOv8 and YOLOv11 are 

developed by Ultralytics teams [29]. 

 

Fig. 1. The timeline of the YOLO series detector 

Genuinely, YOLO integrates the detection paradigm of the region proposal stage with 

classification stage into unified neural network, ignoring the original method of executing each stage 

sequentially as, hence significantly reduces computational time [2], [11], [14]. The goals of YOLO 



ISSN 2775-2658 
International Journal of Robotics and Control Systems 

1611 
Vol. 5, No. 3, 2025, pp. 1608-1624 

  

 

A’dilah Baharuddin (A YOLO-Based Target Detection Algorithm for DJI Tello Drone) 

 

development are to aim to accurately and quickly detect objects, achieving good real-time 

performance [37]. Due to the high level of generalizability, YOLO is prone to less failure in 

unexpected situations and novel domains application [38]. In general, YOLO algorithms are made up 

of three elements: the backbone, the neck and the head [37], [39]. Fig. 2 shows the general architecture 

of YOLO [40]. 

 

Fig. 2. General architecture YOLO [40] 

The YOLO network is made of a backbone that encodes image features into multi-scales feature 

maps, a neck that processes these feature maps into integrated and refined representations, and a head 

that uses these processed features to generate prediction the bounding box and labels for classes [36], 

[39]. The backbone is the component that captures features from various scales and extract the 

characteristics from the input image via a trained CNN, before generalizing feature maps [39], [40]. 

The feature maps from the various layers of the backbone are then combined and merged in the neck 

of the algorithm and forwarding them to the head to make predictions according to confidence score, 

bounding boxes and the classification score [39], [40]. As the same general network is utilized by 

every model, the approaches taken by YOLO to detect the object are generally the same in every 

model. 

Fundamentally, the input image is analyzed in its entirety in a single pass using residual blocks, 

in which the image is constructed into ‘S x S’ grid cells, with each cell obligated to predict the 

bounding boxes, the probability of an object existing within the underlying grid, and specific class 

probabilities [14]. With the employment of bounding box regression, the model is able to predict the 

position of the object as well as estimate the parameters of the bounding boxes, which comprise the 

coordinates of the center, the height, and the width of the box, as well as the class of the objects, as 

the model refines the bounding boxes during the training with the dataset to enhance the accuracy in 

prediction [1]. 

In ensuring the predicted bounding boxes overlap and align with the actual boundary of the 

object, the Intersection over Union, IoU, as defined in equation (1) is used as a normalized measure 

to effectively measure the localization performance, as the metric focuses on comparing the areas of 

the compared objects, while taking account the relevant parameters [14], [19], [30]. The ratio result 

should be obtained from (1) should be in between 0 and 1, where 0 represent no intersection and 1 

represents the perfect intersect. Commonly, the prediction is considered as successful if the IoU 

calculated resulted in ratio exceeding 0.5 [1]. 

 𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 (1) 

Among the released iterations, YOLOv5 has been the most used iteration, as the model has a 

smaller size with improved processing speed and accuracy compared to its predecessors, as well as its 

integration with being an open-source machine learning framework [29]-[31]. The enhancement in 

the iteration is attributable to the adaptation of cross-stage partial network (CSPNet) which 

represented by C3 module into the backbone, which enhances the gradient combinations of the 
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network by dividing the feature maps of the base layer into two distinct parts through cross-stage 

hierarchy [9], [31].  

Meanwhile, YOLOv8 is constructed upon the framework of YOLOv5, retaining largely similar 

backbone architecture, with aim to boost detection performances of objects in various sizes, 

particularly smaller ones [9], [18]. In order to enhance the efficiency of features extraction, the 

backbone is refined by replacing the C3 module with C2f module, whereas an anchor-free mechanism 

with additional heads is adopted into the model tasks including instance segmentation, pose key point 

detection, oriented bounding box (OBB) detection and classification tasks to enhance the detection 

precision especially the small objects [9], [29]. As the aim of YOLOv8 is achieved, the anchor-free 

split head feature is then adopted to the YOLOv5u, an updated version of YOLOv5, to refine the 

architecture of the model as an alternative to enhance the detection and processing speed of the model 

[41]. 

Notably, YOLOv11 is built upon the advancement of YOLOv8, featuring the enhancements to 

the backbone network to improve the processing speed without sacrificing the performance by 

substituting the C2F module with C3K2 module [9], [29]. To optimize the configuration across 

datasets and boost the detection accuracy, an adaptive anchor box mechanism is refined in YOLOv11 

[18]. By preserving and extending the supports of various tasks by YOLOv8, YOLOv11 become one 

of the most capable and versatile detectors [29]. 

In general, YOLOv5 is designed to balance between the detection precision and processing speed, 

which contributes to its popularity for real-time applications, whereas YOLOv8 is tailored for real-

time applications to predict the bounding boxes and class probabilities of the object with exceptional 

processing speed and accuracy, and YOLOv11 is built to enhance the feature extraction while 

achieving superior efficiency and precision [42]. 

3. Methodology 

These three iterations released by Ultralytics vary into five different variants. The first variant is 

the ‘n,’ which is a compact yet the smallest and fastest model, while the next variant is the ‘s,’ which 

is an appropriate model for inference tasks. Another variant is the ‘m,’ a versatile choice for 

applications with a wider range and datasets, where it is a mid-size variant that offers the best trade-

off between computational efficiency and precision. Due to the employment of a more complex 

feature extraction process, variant ‘l’ is meant for applications that require higher precision. Lastly, 

the largest and most complex model is the variant ‘x,’ in which it takes longer processing time and 

requires high-end processors for real-time inference but becomes the best choice for applications 

where the accuracy cannot be compromised [1], [35], [36], [43]. As this paper aims to perform simple 

target detection, the ‘n’ variants of YOLOv5u, YOLOv8, and YOLOv11 are used for the application 

3.1. Custom Dataset 

Dataset is important in training a machine to learn to recognize the target. The YOLO series 

accommodates several open-source datasets with the Common Objects in Context (COCO), Visual 

Object Classes (VOC) and Roboflow datasets being commonly used for general and unspecified 

objects or targets, such as humans, animals and vehicles. For the uses of non-general custom objects 

as a target, a custom dataset should be prepared to be used for training [44]. A total of 1050 images of 

the target under varying light intensity, different angles and backdrops are captured and partitioned 

into training and validating datasets adhering to 1000 images allocated for training and the remaining 

50 images for validation [45], [46]. (The data is available on: https://drive.google.com/drive. 

The images are annotated with CVAT, an open-source annotation tool to extract information of 

the images in the form of quantitative elements, which are the numerical values of each bounding 

boxes, and the form of qualitative element which categorized the of the target and the look-alikes. Fig. 

3 illustrates the target and the impostors that possess almost the same features as the target, while Fig. 

4 shows the annotation process, wherein the targets are bounded with red colored boxes labeled as 

‘Target’. 

https://drive.google.com/drive/folders/16mJeFVTrU8f0f6iP7h5GC4RP8JwUFuWi?usp=drive_link)


ISSN 2775-2658 
International Journal of Robotics and Control Systems 

1613 
Vol. 5, No. 3, 2025, pp. 1608-1624 

  

 

A’dilah Baharuddin (A YOLO-Based Target Detection Algorithm for DJI Tello Drone) 

 

 

Fig. 3. The illustrations of targets and several look-alikes 

 

Fig. 4. Image annotation process 

Each box in the annotation process produced a text line respectively, consisting of the class of 

the object and the normalized coordinates of the box, formatted as shown in Fig. 5. The data listed in 

Fig. 5 are examples of the text lines generated from the annotation process of the image in Fig. 4. The 

data are stored in a text file, named identically to each image. To enable each model to access these 

files during the training process, a YAML-formatted configuration file that specifies the dataset’s 

directory and the class labels is created, as written in the snippet shown in Fig. 6. The numbers listed 

in Fig. 5 under <class> column, are defined as names in the configuration file, as shown in Fig. 6, 

which also referred to as the labels of the bounding boxes [46], [47]. 

 

Fig. 5. Data extracted from annotation process 

 

Fig. 6. Configuration file for training 
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3.2. Model Training 

To ensure consistency and comparability, the hyperparameters are conFig.d in a manner that is 

standardized across all models [42]. Table 1 summarizes the specifications of the hyperparameters 

used in the training sessions. The pre-trained weights, which are yolov5nu.pt, yolov8n.pt and 

yolo11n.pt are employed during the training phase to accelerate convergence process and improve 

detection accuracy [42]. These pre-trained weights are summoned in each model’s training 

accordingly, as well as the previously created configuration file. In order to train and use YOLO, 

Ultralytics package is installed in the python environment. Fig. 7 represents the snippet of training 

commands for YOLOv5u, and the same commands are also used in other models. 

Table 1.  Specification of hyperparameters for training [42] 

Hyperparameters Description Value 

Epochs Number of complete training dataset passes 300 

Batch Size Processed sample before model updates parameters 16 

Momentum Weight updates smoother & convergence accelerator 0.937 

Weight Decay Model overfitting reducer 0.0005 

Warmup Epochs Initial epochs  3.0 

 

 

Fig. 7. YOLO models' training commands 

3.3. Evaluations Metrics 

In order to evaluate the target detection of each model, in which trained with annotated dataset, 

the standard foundational metrics are used to quantify the predicted bounding boxes relative to the 

ground truth and measure the models’ performance. The models are evaluated metrics including mean 

Average Precision (mAP), recall, precision, box loss, class loss and object loss upon the completion 

of training and validation phases.  

The accuracy of the detection is evaluated via precision, P in which a higher value measured 

indicates the ability of the model to minimize incorrect identification of the target, and demonstrating 

high accuracy [30]. The precision is defined by equation (2), where the True-Positive, TP represents 

the detection and classification are appropriately identified by the model in consistent with the 

annotation, while False-Positive, FP represents the model incorrectly detects non annotated object or 

incorrectly labels the class of the object [30], [42], [45], [48]. 

 𝑃 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑃)⁄  (2) 

The sensitivity of a model is reflected by recall, R as the metric measures the ability of model 

identifying all positive samples or relevant objects within the annotate dataset. The metric focuses on 

minimizing failure in detecting the object that existed in the annotations. Recall is defined by equation 

(3) where False-Negative, FN denotes the inaccurate classification of the object predicted [30], [42], 

[49]. 

 𝑅 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄  (3) 

The efficiency of the model in accurately identifying the positive cases which are represented by 

recall, R and correct cases which represented by precision, P is accessed through the F1 score, as 

defined in equation (4), which the measurement ranges from 0 to 1. A lower F1 score, which calculated 

as harmonic mean between a high recall rate and low precision rate, or the other way around, signifies 

suboptimal performance of the model [30], [45], [50]. 
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 𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2(𝑃 × 𝑅) 𝑃 + 𝑅⁄  (4) 

The average precision, AP is the area under precision-recall curve, that evaluates the ability of 

the model to identify relevant things and abandon those that are irrelevant. In order to evaluate the 

detection performance across all classes, the mean average precision, mAP is calculated, with a certain 

degree of mistakes related to the placement of object and the dimensions of bounding box are allowed 

[31], [42], [51], [52]. Both AP and mAP are defined as in equation (5) and equation (6), respectively 

where N represents the numbers of object classes. 

 𝐴𝑃 = ∫ 𝑃(𝑅)𝛿𝑅
1

0

 (5) 

 𝑚𝐴𝑃 =
∑ 𝐴𝑃𝑖

𝑁
𝑖=1

𝑁
 (6) 

3.4. Simulation 

Each version of YOLO trained in the study is tested in real-time through webcam simulation. 

The streaming window of the real-time simulation is divided and partitioned into nine-sections as 

shown in Fig. 8. 

 

Fig. 8. The partitioned streaming window 

The object to be detected needs to be in the desired position, which is the center of the frame. 

The same requirement will be applied to the detection with DJI Tello drone. The example shown in 

Fig. 8 represents the streaming window’s view when the target is not detected. For the case the target 

is detected in any partition, a message or two of required action to be done will be displayed on the 

window.  

3.5. Experiment 

DJI Tello drone is utilized to perform real-time detection with drone. Tello drone is a small 

quadrotor that capable of providing stable flights, that it is expected to able to fly in challenging 

weather conditions and reaching 100-meter distance with maximum speed of 8m/s in a wind free 

environment [53], [54]. The drone offers a visual positioning system that allows it to hover in place 

and altitude holding function despite being compact and cost friendly [55]-[57]. The features are the 

result of the combination of IMU data with the mages taken by the built-in optical flow sensor at the 

bottom of the drone that analyzes the longitudinal and lateral movements across the time [53], [58]. 

For this study, the nose-mounted onboard camera is utilized to detect the target in real-time. The 

camera is capable of capturing 5MP images and streaming a 720pixel video and by featuring an 

electronic image stabilization (EIS), the images captured, and videos streamed are more stable even 

though vibrations occurred [59], [60]. 
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In order to connect with the drone, djitellopy package is installed along with opencv-py package 

that processes the images and conducts the detection [59]. The drone real-time streaming is turned on 

and broadcasted to the connected laptop for observation and analysis process. The frame captured by 

the drone is also partitioned into nine-section as shown in Fig. 8 in the previous section. To ensure the 

target is captured in the center of the frame, the adjustment commands are made for the drone to adjust 

and position itself accordingly.  

4. Results and Discussion 

Each model of the chosen YOLO is trained with 300 epochs at a learning rate of 0.01 with a total 

of 16 batches in a time frame of around 20 to 24 hours. The training and validation process yields 

metrics that can be used for comprehensive analysis to assess the accuracy and consistency of 

detection and the efficiency of computation. Both the target and the target look-alike are annotated in 

order to test the models’ ability to distinguish between the two. The evaluations are analyzed and 

discussed based on the performance of the models across all classes. As YOLOv5u is the updated 

version of YOLOv5, YOLOv8 becomes the predecessor of both YOLOv5u and YOLOv11. This is 

due to the fact that the base architecture of YOLOv11 is derived from the architecture of YOLOv8, 

while the architecture of YOLOv5u merges the elements from both the original YOLOv5 and 

YOLOv8 architectures. 

Fig. 9 shows the captures of simulation and experimentation conducted on each version of 

YOLO. Each detection shows a successful detection with bounding box and label upon each detection. 

In the simulation, the messages are displayed in the frame as indicator the action needs to be taken to 

position the target in the center of the frame. Despite placing both target and impostor in the frame 

together, each version of YOLO tested successfully detect the target. Even though the target in each 

capture is in the center partition, every target does not fully fill the partition, thus a message of 

command is displayed for the user to move the target accordingly. 

The target is also successfully detected by each version of YOLO during the real-time detection 

using DJI Tello drone. The message displayed on the frame upon detection is an indicator of the drone 

moving and adjusting it position to meet the requirement of capturing the target in the center of the 

frame and fully filled the partition. However, as the movement of the drone is initiated according to 

the preset command during the programming, the drone is having difficulties in repositioning itself. 

The movements of the drone during repositioning process are out of order and eventually cause the 

drone to lose the target from the frame. 

Therefore, it is significant for the drone to be integrated with a robust controller such as PID 

controller, or intelligence algorithm controller to ensure that the movement initiated during 

repositioning process is in orderly mannered. In addition, it is also advisable for the system to be 

integrated with a prediction algorithm, such as Kalman filter. With the ability to predict, the system 

can make a prediction of the target location when the drone loses the target in a sudden during the 

repositioning process. 

As the simulation and the experiment outputs are in visual data, the versions of YOLO utilized 

are evaluated with the data acquired from the training and validating process. Fig. 10 shows the result 

graph of training and validation performance of every model, where the loss functions and 

performance metrics are measured and visualized. The results in Fig. 10 demonstrate that the bounding 

box regression loss (box_loss), classification loss (cls_loss), and distributed focal loss (dfl_loss) 

curves exhibited a gradual decline and approached stability in every model. These patterns indicate 

that the features of the objects have been acquired more precisely by the models during training, 

resulting in a progressive enhancement of accurate position and classification prediction capabilities 

in detecting the objects. 

In the meantime, the curves of performance metrics in both test and validation sets of every model 

shown in Fig. 10 are observed with an upward trend. This pattern is a validation of the effect of 

learning and generalization capabilities of the models. To further analyze the performance of the 
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models, the performance metrics are broken into several assessments focusing on the accuracy of the 

detection, the consistency of the detection, the computational efficiency, and the classification 

performance. The details of performance metrics, as reflected in the curves shown in Fig. 10, which 

includes the precision, recall, and mean average precision at the threshold of 0.5 or higher (mAP@0.5) 

for all classes, are organized accordingly in Table 2. 

 

Fig. 9. The result graph of loss functions and performance metrics 

Table 2.  Performance metrics resulted from the training and validation process 

Performance Metrics 
Model (variant) 

YOLOv8(n) YOLOv5u(n) YOLOv11(n) 
Precision, P 0.974 0.964 0.960 

Recall, R 0.982 0.980 0.990 

mAP@0.5 0.990 0.973 0.973 

 

The data listed in Table 2 reflected very small differences of rate in precision, recall and accuracy. 

The high rate of precision is an indicator of lower possibility of false negative detection where a 

detection with fewer incorrect recognitions and labels increases the probability of accurate label 

predictions, as well as the identification of class and location. Meanwhile, the rate of recall represents 

the false-negative detection, where the model erroneously fails to recognize and labels. From the rates 

record in this study, the possibility of false positive and false negative detection is concluded to be 

unlikely to happen as every version scored almost perfect accuracy and precision in detection. Such 

high rates are recorded as a result form the training for each version where only a single class with a 

total of 4645 instances is defined and annotated for the model training.  

Further analysis is conducted upon the F1-score, where the graph reflects a model’s ability to 

precisely capture positive cases, which involve the precision and recall of the model, in a balanced 

and maintained manner. On the other hand, the mean average precision (mAP) is evaluated to quantify 

the capability of the models in identifying the relevant things and excluding the erroneous ones. The 

F1-score reflects a model’s ability to precisely capture positive cases, which involve the precision and 

recall of the model, in a balanced and maintained manner. The curves in Fig. 11 demonstrated that all 

models achieved and maintained high F1-scores across the wide range of confidence, which indicate 

and prove the robustness of the models. 

The ability of the model to capture positive cases is mapped out in confusion matrices, which 

provide details of classification performance and error patterns of the models. The matrices present 

the true-positive rate of the detections in diagonal elements and the erroneous classification in off-

diagonal elements. The confusion matrices are reorganised into Table 3. As the study define only one 

class of object, the confusion matrices data is formed by recognizing target from background, a class 

automatically generated by the YOLO framework. 
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Fig. 10. The result graph of loss functions and performance metrics 
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Fig. 11. The result graphs of F1-confidence 

Table 3.  Confusion matrices normalized 

Pattern 
Model (variant) 

YOLOv8 (n) YOLOv5u (n) YOLOv11 (n) 
True-Positive 0.98 0.97 0.96 

True-Negative 0.02 0.03 0.04 

False-Positive 1.00 1.00 1.00 

 

From the data of the confusion matrices, every model reflects the high accuracy detection via the 

high rates of true-positive detection, and almost no true-negative cases recorded. However, the false-

positive rates are at the maximum for each model. The false-positive detection is the result of the 

models implicit learn from the training, any false-positive, where the non-present target’s frame is 

detected as target-present in the frame, is misclassified as background. This misclassification can be 

overcome with optimization of classes interest by removing any blank annotation data from the 

dataset. 

In addition, even though the high training accuracy is desirable, a very high accuracy rate is also 

an indicator of the overfitting case, especially when the validation or test accuracy is much lower. In 

contrast, the lost graph of validation shows no sign of overfitting as can be observed from Fig. 10, 

where every model’s training and validation errors are decreasing throughout the sessions. For the 

case of overfitting, the validation errors’ graphs will eventually be increasing upon reaching 

overfitting iterations. Hence, the training sessions of the YOLO versions in this study are unlikely to 

be overfitting despite having a very high accuracy rate by each version. Nevertheless, the high rates 

of accuracy are plausibly due to data biases. The study defined only one class of object to be detected, 

where a total of 4645 instances is trained for single class detection. In addition, the high rates of 

accuracy are also plausibly due to the perfect fit of the data to the training model. Hence, to avoid such 

unclear evaluation, it is recommendable to train more than one class with perfectly chosen model 

parameters setting, including the epoch size. 

Equally important, the computational efficiency of these YOLO models also recorded and 

analyzed. In large-scale real-time applications, computational efficiency plays a critical role in 

evaluating detection methods. Even though the scale of the study conducted in this paper can be 

considered small scale, the computational efficiency of each model is evaluated as the applications of 

detection models are employed in real-time. Efficiency reflects the ability of the model to immediately 

analyze and respond, which is the most important demand in real-time detections. Table 3 lists the 

processing times obtained from training reports of the models. 

The preprocessing and post processing time for every model shows very small differences to one 

another. Due to the pattern of preprocessing and post-processing times of all models being relatively 

similar, the inference time of the models becomes the determiner of computational efficiency. The 

processing time indicates the time taken by the models to process the input image throughout their 

framework. The data in Table 4 shows that YOLOv11 took a slightly longer time to process the input 
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image as compared to YOLOv5 and YOLOv8. This is plausibly due to the complex architecture and 

framework of YOLOv11 that require more time for thorough decision-making processes. However, 

the difference can affect the performance of real-time applications that require very high-speed 

decision making as the model has the tendencies of slower detection. Hence, a proper parameter tuning 

or properly chosen additional algorithm can be integrated into the model to overcome the differences. 

In a whole this study is unable to compare the performance of each model as the evaluations of 

each model reflects uncertainty of either the model is trained with perfect fit that contributes to a very 

high accuracy rate and speedy processing, or the model is trained with data biases as only a single 

class is defined and annotated for the training and evaluation. 

Table 4.  Processing time of YOLO versions 

Efficiency Metrics 
Model(variant) 

YOLOv8(n) YOLOv5u(n) YOLOv11(n) 
Preprocessing Time, ms 1.40 1.30 1.30 

Inference Time, ms 54.9 54.0 64.4 

Postprocessing Time, ms 0.40 0.40 0.50 

5. Conclusion 

This paper studies and compares the performance of target detection for a drone using a custom 

dataset. The YOLOv5u, YOLOv8 and YOLOv11 models are trained and validated with a dataset 

prepared by annotating the images of the target. YOLOv8 is defined as the oldest out the models, as 

both YOLOv5u and YOLOv11 adopt the model’s architecture. 

The evaluation of the accuracy, consistency, and efficiency of each model is conducted through 

the results of training and validating processes. However, each model recorded high rates of precision, 

recall and accuracy. Even so, no sign of overfitting is observed from any model. The high rate of 

training accuracy is likely due to the data bias occurrence or an indicator to a perfect fitness of the 

training as the study defined a single class of object. Thus, it is recommended to define more than one 

class of object to be trained with the models for better insight of the accuracy evaluations. 

In the meantime, YOLOv11 took the longest time to process with 10ms slower than others. 

Despite being slower with a very small amount of difference, the performance of the model in the 

real-time application could be affected. Thus, it is recommendable to fine tune the parameters of the 

model in order to reduce the processing time. In conclusion, this study is unable to point out a model 

with the most excellent performance, to solve the question of whether the later version outperforming 

its predecessor. In the future, the study will be enhanced with thorough training session by properly 

chosen parameters setting and defined classes of object 

The simulation and experimentation with DJI Tello drone also show that the drone has no issues 

in detecting the target with each model’s integration. However, in order to position the target in the 

center frame of the drone, a robust and intelligence controller is required to ensure the drone able to 

capture a stable frame with a stable flight. The model with the most convincing performance will be 

chosen to be integrated with a properly tuned controller in a study of target tracking and following 

drone. 
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