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1. Introduction  

A dynamic ball balancing system is a highly unstable and nonlinear system used in robotics and 

manufacturing [1]. This system stabilizes a ball on a plate by adjusting its tilt along the x and y axes 

using sensors and actuators and controlled by two servo motors. The goal is to precisely position the 

ball on the plate at the center by applying proper control voltages to the motors to adjust the 

movements of robotic arm. Through the use of sensors, the position of the ball is continuously 

measured by the robotic arm. The position of the ball is tracked in real time using computer vision 

technique and used as feedback. This system ensures stability and safety in processes like material 

handling, and conveyor operations, and can handle delicate tasks like grasping fragile objects or 

assembling intricate components preventing disturbances or accidents [2].  

Common causes of ball imbalance by a robotic arm include sensor noise, actuator dynamics, 

environmental disturbances, model inaccuracies, suboptimal control tuning, hardware limitations, and 
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communication delays [3], [4]. Addressing these challenges requires precise calibration, robust 

algorithms, adaptive controls, and real-time feedback to mitigate uncertainties and improve 

performance. 

In the realm of dynamic ball balancing using robotic arms, several control strategies have been 

reported in the literature. These controllers aim to enhance the stability and maneuverability of ball-

balancing robots, each with its own set of advantages and limitations. Conventional control techniques 

such as PID controllers, fuzzy logic, and Model Predictive Control (MPC) have been extensively 

applied to such systems [5]-[7]. PID controllers are known for their simplicity but often fall short in 

handling the nonlinear dynamics and disturbances present in real-world scenarios [8]-[10]. Fuzzy 

logic offers some adaptability through rule-based systems but becomes difficult to scale and tune for 

complex tasks [11]-[13]. MPC provides better performance by predicting future system behavior, but 

its reliance on accurate system models and high computational demand can be limiting, especially for 

real-time control [14]-[16]. While hybrid control methods-like fuzzy-PID or fractional-order 

controllers-have been proposed to improve robustness and adaptability, they typically involve 

complex tuning processes and may still struggle in the presence of external disturbances and modeling 

inaccuracies [17]-[19]. 

Reinforcement Learning (RL) provides a different approach by learning control strategies 

directly from interaction with the system, without needing a precise model. In particular, Deep 

Deterministic Policy Gradient (DDPG) has emerged as a powerful RL algorithm for handling 

continuous control tasks. DDPG combines value-based and policy-based methods, making it suitable 

for complex, high-dimensional systems such as robotic manipulators [20]. Earlier RL approaches like 

Q-learning and SARSA have had some success but are mainly limited to discrete action spaces and 

do not scale well to real-time robotic control [21]. Moreover, there is often a gap between training in 

simulation and deployment in physical systems due to differences in dynamics and environmental 

factors, known as the Sim2Real gap [22], [23]. Table 1 presents a comparison between traditional 

control methods and reinforcement learning-based approaches, highlighting their respective strengths 

and limitations in managing complex dynamic systems. 

Table 1.  Comparison of traditional and RL based control methods 

Control 

Method 
Adaptability 

Handles 

Nonlinear 

Dynamics 

Ease of 

Tuning 

Real-Time 

Performance 
Key Limitations 

PID Low Poor Moderate High 

Struggles with 

disturbances and 

nonlinearity 

Fuzzy Logic Moderate Good 
Low (rule 

tuning) 
Moderate 

Complex rule base, 

scalability issues 

Model 

Predictive 

Control 

(MPC) 

High Good 
Low (model 

dependent) 

Low 

(computationally 

intensive) 

Requires accurate 

system model, 

limited real-time 

use 

Traditional 

RL 
High High 

High (auto-

learned) 
Variable 

Sim-to-real gap, 

stability issues 

DDPG (This 

work) 
High Excellent High High 

Sensitive to hyper 

parameters 

SAC Very High Excellent High High 

Less smooth control 

but better 

exploration 

 

This work addresses these challenges by applying a DDPG-based controller to a ball balancing 

task using the Kinova Gen3 robotic arm. The study also includes a performance comparison with Soft 

Actor-Critic (SAC), another widely used RL algorithm. The control strategies are tested in 

MATLAB/Simulink under various initial conditions to evaluate their robustness and adaptability. The 

key contributions of this work are: 
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1. Development of an RL-based controller using DDPG for a dynamic ball and plate system with a 

robotic arm. 

2. Comparative evaluation of DDPG and SAC in terms of stability, convergence, and trajectory 

tracking. 

3. Validation of the proposed approach under different initial positions, demonstrating its potential 

for real-time applications. 

2. Method  

2.1. Deep Deterministic Policy Gradient (DDPG) Algorithm in RL 

The methodology used for dynamic ball-balancing using DDPG controlled robotic arm involves 

various steps such as defining the problem, developing accurate model of the environment in 

Simulink, defining state space, action space, reset and reward functions. Then, the RL agent created 

in MATLAB is trained in the Simulink environment, by proper tuning of hyper parameters. Lastly, its 

performance is tested using robot physical model created in Simscape [24]. 

Reinforcement learning (RL) is a machine learning technique in which an agent tries to reach its 

goal by continuous interactions with the environment [25]. The agent receives environment states and 

improves its actions based on reward or penalty received from the environment. Algorithms such as 

Q-learning, SARSA, DDPG, and PPO, helps to guide this learning process [26]. Fig. 1 shows the 

typical RL work flow. The agent consists of a policy for action selection based on environmental 

observations, represented by a function approximator, and a learning algorithm that updates this policy 

using actions, observations, and rewards to maximize cumulative reward [27]. 

 

Fig. 1. RL flow 

Reinforcement learning algorithms are divided into model-free and model-based approaches as 

shown in Fig. 2 [28]. Model-free methods, such as Q-learning and policy gradients, learn directly from 

experience to find a policy or value function, aiming to maximize long-term rewards. Model-based 

methods, like Monte Carlo Tree Search (MCTS), build a model of the environment to predict future 

states and rewards. While model-free methods are more sample-efficient, model-based methods can 

achieve better performance with less data, although they may struggle with model inaccuracies [29]. 

Model free RL can be broadly categorized into on-policy and off-policy methods. On-policy 

methods, such as SARSA, directly update the agent’s policy using actions observed from the policy 



1664 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 5, No. 3, 2025, pp. 1661-1677 

 

 

K Vijaya Lakshmi (Dynamic Ball Balancing Using Deep Deterministic Policy Gradient (DDPG)-Controlled Robotic 

Arm for Precision Automation) 

 

itself, resulting in stable learning but requiring more data to converge [30]. In contrast, off-policy 

methods, like Q-learning, learn from experiences generated by different policies, allowing for more 

efficient exploration and sample use. The main difference lies in whether the policy is updated using 

actions from its own policy (on-policy) or from a different policy (off-policy) [31]. The choice of 

method depends on the specific task requirements, balancing stability and learning speed. 

 

Fig. 2. Different categories of RL 

In reinforcement learning, agents interact with environments through either discrete or 

continuous actions. Discrete actions involve a finite set of choices, such as moving left or right (e.g., 

Q-learning, SARSA). Continuous actions provide an infinite set of options, like adjusting joint angles 

in robotic arms or steering in autonomous vehicles (DDPG, TD3). The choice depends on the task’s 

complexity, with each approach offering distinct challenges and learning opportunities [32]. Examples 

of agents and supported actions are summarized in Table 2. 

Table 2.  Agents and actions supported 

Agent type Actions 
Q-Learning Discrete 

SARSA Discrete 

Deep Q-Network Discrete 

Policy Gradient Discrete or continuous 

Deep Deterministic Policy Gradient Continuous 

Twin-Delayed Deep Deterministic Policy Gradient Continuous 

Actor-Critic Discrete or continuous 

Proximal Policy Optimization Discrete or continuous 

 

This paper explores the use of one of the off-policy learning algorithms, i.e., DDPG, for dynamic 

ball balancing with robotic arm. DDPG is a model-free, off-policy reinforcement learning algorithm 

designed for environments with continuous action spaces. It integrates the actor-critic framework 

using deep neural networks, where the actor network selects actions based on the current state, and 

the critic network evaluates these actions by estimating their value [33]. DDPG utilizes a replay buffer 

to store experiences, which are randomly sampled during training to mitigate over fitting. It also 

employs a soft update mechanism for target networks to enhance learning stability. DDPG efficiently 

balances exploration and exploitation to learn optimal policies in complex environments [34]. The 

agent updates the actor network’s parameters using the deterministic policy gradient and the critic 
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network’s parameters using the temporal difference error, comparing the estimated value function to 

the actual reward received [35].  

DDPG was specifically chosen because its deterministic policy formulation is better suited for 

torque-controlled robotic arms, allowing for smoother and more direct control over joint actuators. 

This contrasts with SAC’s stochastic policies, which may introduce unnecessary variability in the 

control outputs, especially problematic in tasks requiring high precision and stability. Additionally, 

TD3, while mitigating overestimation bias in DDPG, increases computational overhead and 

complexity without significant performance gains in this relatively structured task. 

By leveraging DDPG's ability to directly learn optimal continuous control policies with lower 

variance in action selection, this work demonstrates improved tracking performance and faster 

convergence in the context of a real-time, precision-demanding robotic application. Key features of 

DDPG include: 

1. Utilizes a replay buffer to store experience and prevent over fitting. 

2. Employs target networks with soft updates to enhance training stability. 

3. Uses deterministic policy gradient for actor updates and temporal difference error for critic 

updates. 

The optimal performance of DDPG agent training depends on fine tuning of replay buffer size, 

actor and critic DNN architectures and their learning rates, discount factor, noise variance etc. which 

effects exploration-exploitation balance, convergence speed and stability [36]. DDPG algorithm is 

best suited for systems with continuous action spaces, such as ball balancing using robotic arms. The 

balls position and velocity measured from sensors is considered as feedback to continuously alter the 

robotic arm’s parameters. DDPG agent tries to learn an optimal control policy for dynamic ball 

balancing by adjusting the robotic arm’s position and orientation. In applications where precise and 

safe operation is required such as robotics and self-driving cars, DDPG is most effective [37]. 

2.2. Kinova Ball Balancing Robot 

The Kinova ball balancing robotic system uses advanced control algorithms and sensors for 

dynamic ball balancing using robotic arm for precision automation. The accuracy and stability of such 

systems is challenging in various applications, including manufacturing and healthcare [38]. The 

features of this robot are as follows: 

• Robot Gripper Integration: The system seamlessly interfaces with robotic grippers, providing a 

secure and adaptable platform for ball manipulation. 

• Precise Control: Through precise servo control mechanisms, the system maintains the desired 

position and orientation of the ball on the plate with high accuracy. 

• Sensor Fusion: Combination of accelerometers and gyroscopes, monitors the ball's position 

continuously to provide feedback to the controller. 

• Adaptive Algorithms: Optimal control performance can be achieved through the use of advanced 

algorithms that can adapt dynamically to changing conditions.  

• Seven Degrees of Freedom (DOF): With its 7 DOF, it offers a high flexibility. 

• User Interface: It allows parameter configuration, system status monitoring, and easy system 

interaction. 

The applications of this robot include: 

• Manufacturing: Precision handling of spherical components in assembly processes. 

• Research: Experimental setups requiring controlled manipulation of balls for testing and analysis. 

• Entertainment: Interactive displays or performances featuring robotic ball manipulation. 
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• Education: Robotics education and training platforms for teaching control theory and dynamics. 

It can precisely handle delicate objects, opening up new ways for humans and robots to work 

together. The Kinova Gen3 robot arm shown in Fig. 3, is a seven-degree-of-freedom manipulator 

designed to stabilize a ping pong ball placed at the center of a flat surface held by its gripper. In this 

task, only the last two joints are used to control movement along the pitch and roll axes, while the 

remaining joints are fixed and do not contribute to the movement [39].  

 

Fig. 3. Kinova ball balancing robot 

A plate is securely mounted on the end-effector (gripper) of the Gen3 robot arm, providing a 

stable surface for balancing a ball during manipulation. The ball, usually made of lightweight material 

like plastic or foam, is placed on the plate. The goal of the system is to keep the ball stable and upright 

on the plate using feedback control techniques.  

 

Fig. 4. Kinova ball balance subsystem 

The plate is firmly attached to the robot arm’s end-effector, allowing the ball to move in all six 

directions independently in space. The interaction between the ball and plate is modelled using the 

Spatial Contact Force block. Control inputs for the robot arm come from torque signals applied to its 

actuated joints. This robotic system uses a variety of sensors to collect real-time data on the position, 

orientation, and dynamics of the ball, plate, and robot arm, as summarized in Table 3 [40]. 

The Kinova Ball Balance subsystem, designed using the Simscape toolbox, is shown in Fig. 4. 

The physical elements of the system, such as the manipulator, ball, and plate, are modeled using 

Simscape Multibody components [41].  
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Table 3.  Kinova robot parameters 

Ball Parameters 
Ball radius (m) 0.02 

Ball mass (kg) 0.0027 

Ball shell (m) 0.0002 

initial x distance from centre of plate (m) 0*0.07 

initial height from the top surface of plate (m) 0*0.04 

initial z distance from centre of plate (m) 0.02 

initial x speed from centre of plate (m/s) 0 

initial height from the top surface of plate (m/s) 0 

initial x distance from centre of plate (m) 0 

Kinova arm parameters 
Initial joint1 angle (deg.) 0 

Initial joint2 angle (deg) 20 

Initial joint3 angle (deg) 0 

Initial joint4 angle (deg) 135 

Initial joint5 angle (deg) 0 

Initial joint6 angle (deg) -65 

Initial joint6 angle (deg) -90 

Initial gripper angle (deg) 35 

Plate parameters 
Max torque (N-m) 0.25 

Length (m) 0.25 

Width (m) 0.25 

Thickness (m) 0.005 

Mass (m) 0.2 

 

Advanced control algorithms are used to constantly analyze sensor data and determine the best 

control inputs needed to keep the ball balanced on the plate. These algorithms can include techniques 

such as proportional-integral-derivative (PID) controllers, Kalman filters, or model predictive control 

(MPC), chosen based on the specific needs of the application. DDPG (Deep Deterministic Policy 

Gradient) is proposed for ball balance control on a Kinova Gen3 robot due to its capability to handle 

continuous action spaces and high-dimensional state spaces, which are characteristic of robotic control 

tasks. DDPG utilizes an actor-critic architecture with deep neural networks to learn complex, 

continuous control tasks like ball balancing. Its off-policy learning approach facilitates stable 

exploration and robust real-world performance, making it ideal for Kinova Gen3 robot control. 

2.3. Implementation  

Training a DDPG agent for dynamic ball balancing with robotic arm requires installing 

MATLAB, Simulink, and necessary add-ons like Simscape, RL, and DL Toolboxes, the system [42]. 

The environment model is designed in SIMULINK that includes the Kinova Gen3 robot arm, ball, 

plate, and RL Agent block. Simscape Multibody components were employed to accurately simulate 

the system's physical dynamics. The RL Agent block was connected to observations, actions, and 

reward signals to enable agent-environment interaction. Fig. 5 illustrates the closed-loop interaction 

between the reinforcement learning (RL) agent and the Kinova robotic arm tasked with balancing a 

ball on a plate. At each time step, the RL agent receives the system's observation (e.g., ball position, 

angular velocities), evaluates a reward based on task performance, and checks whether the episode is 

done. Based on this feedback, the agent computes and sends an action (motor torques) back to the 

robot. This continuous feedback loop enables the agent to learn an optimal control policy over multiple 

episodes through trial and error. 

The agent interacts with the robot by sending control commands and receiving feedback 

comprising observations, rewards, and termination signals. The state (observation) space for the 

DDPG agent includes 22 key variables grouped into five categories. These encompass the ball's 

position (x, y distances from the plate center), velocity (x, y derivatives), the plate's orientation (3D 

rotation vectors) and velocities (rotation vector derivatives), joint angles (sine and cosine) and their 
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derivatives joint torques from the previous step, and physical parameters like ball radius and mass 

[40]. 

• Position and Velocity of Robot Joints (Joint 1 and Joint 2): Essential for precise control and 

orientation of the Kinova robot arm. 

• Position and Velocity of the Ball: Allows real-time monitoring of dynamics and adjustment to 

maintain balance. 

• Orientation and Velocities of the Plate: Crucial for ensuring proper alignment and predicting 

movements. 

• Joint Torques from Previous Time Step (j6 and j7): Vital for counteracting disturbances and 

maintaining stability. 

• Ball Radius and Mass: Directly influence system dynamics and control effectiveness. 

 

Fig. 5. Kinova ball balance system with RL agent 

Unlike minimal representations used in simpler control tasks, this high-dimensional observation 

space captures both global system behavior and local actuator effects, which is critical for achieving 

high-precision manipulation with redundant degrees of freedom. 

The action space was limited to the torque signals for the final two actuated joints of the robot 

arm, as they primarily contributed to the motion. A reward function was developed to guide the agent, 

providing positive feedback for maintaining the ball near the plate's center and penalizing it for 

deviations or allowing the ball to fall off. The reward at time step t is described by (1). 

 𝑟𝑡 = 𝑒−0.001(𝑥
2+𝑦2) − 0.1(∅2 + 𝜃2 + 𝜑2) − 0.05(𝜏1

2 + 𝜏2
2)  (1) 

The reward function incentivizes the ball's movement toward the plate's centre while penalizing 

deviations in roll (ϕ), pitch (θ), yaw (ψ), and excessive joint torques. The first term encourages the 

robot to minimize the distance of the ball from the centre of the plate using a gentle exponential decay. 

This provides smooth feedback, allowing the agent to learn gradually without being overly penalized 

for small errors. The second term discourages excessive tilting of the plate, promoting a stable and 

balanced posture. The third term limits the use of high torque at the joints, leading to smoother, more 

energy-efficient motions. This DDPG implementation-with its precision-focused, posture-stabilizing, 

and energy-aware reward function-is particularly well-suited for real-time industrial applications such 

as: 
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• High-speed assembly lines, where minimizing position error ensures precise placement and 

alignment of components. 

• Robotic welding and pick-and-place systems, where stable orientation prevents misalignment 

and improves process accuracy. 

• Collaborative robots (cobots), where minimizing actuator effort reduces power consumption 

and prolongs equipment life. 

By balancing tracking accuracy, stability, and energy efficiency, this DDPG controller enables 

safe, reliable, and efficient operation in demanding environments, making it ideal for automated 

manufacturing, surgical robotics, and drone-based inspection tasks. The flowchart of DDPG training 

loop is presented in Fig. 6 [43]. 

 
Fig. 6. Flow chart of DDPG algorithm 

The DDPG algorithm was implemented using the RL Agent block provided in the Simulink 

model. The agent was set up with specified state and action spaces, along with the reward function, 

and hyper parameters like learning rates and discount factors were adjusted for optimal learning as 

shown in Table 4. Learning rates control the magnitude of steps taken during the gradient descent 

optimization process [44]. In DDPG, experience replay is utilized, where experiences (state, action, 

reward, next state) are stored in a buffer and randomly sampled during training. The buffer size 

determines the number of experiences stored and sampled during training, affecting stability and 
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convergence speed. Batch size refers to the number of experiences sampled from the replay buffer per 

iteration, impacting learning process stability and rate. The actor and critic NN architecture influences 

the agent’s performance. Target Smooth Factor controls how slowly the target networks update. A 

maximum number of steps per episode is important for environments with finite horizons [45]-[49]. 

Table 4.  Hyper parameters used for training 

Hyper parameters Initialized Value 
Sampling Time 0.01 

Final time 10 

Experience Buffer Length 1000000 

Mini Batch Size 128 

Target smooth factor 0.003 

Max. episodes 6000 

Critic Learning rate 0.001 

Actor learning rate 0.0001 

Gradient Threshold 1 

Discount Factor 0.99 

Noise. Variance 0.4 

Noise. Variance Decay Rate 0.00005 

 

The selection of hyper parameters listed in Table 4 was guided by empirical tuning and iterative 

experimentation. To validate the robustness of the chosen configuration, a sensitivity analysis was 

conducted on key parameters including actor and critic learning rates, noise variance, and discount 

factor. The analysis aimed to observe the effect of these parameters on policy convergence, trajectory 

smoothness, and control stability. 

Specifically, higher actor and critic learning rates (>0.01) were found to destabilize training, 

while lower values (<1e-5) caused slow learning or premature convergence. Optimal performance 

was consistently observed near the final selected values (0.0001 for actor and 0.001 for critic). Noise 

variance was crucial for exploration: large initial values enhanced exploration in early episodes but 

required controlled decay to enable policy refinement. A discount factor of 0.99 supported long-term 

reward optimization better than lower values, which biased the agent towards short-term gains. The 

DDPG agent was trained within Simulink and the progress is as illustrated in Fig. 7, using experience 

replay and target network updates for stability. Training was performed on a Rysen AMD 5000 series 

processor with 16GB of RAM, taking approximately 7 hours to converge, successfully controlling the 

robotic arm for ball balancing in automated manufacturing. 

Reinforcement learning (RL) agents optimize policies using an actor network to determine the 

best action and a critic network to estimate cumulative rewards. The objective is to maximize long-

term rewards. In this study, a DDPG agent was trained for 6000 episodes, each with 1000 steps, to 

stabilize a ball on a plate attached to robot gripper via counter torque. Training concluded when the 

critic's cumulative reward closely matched the expected reward Q0. The trained agent's performance 

was evaluated across diverse scenarios to assess robustness and generalization. Its behavior was 

analyzed, and adjustments were made to improve performance. 

3. Results and Discussion 

The DDPG algorithm has been implemented for dynamic ball balancing with a robotic arm for 

high precision applications in automation. The simulation results obtained for various ball initial 

positions are shown in Fig. 8 compared with the existing Soft Actor-Critic (SAC) algorithm, 

demonstrate the effectiveness of DDPG. The smooth and stable ball motion and balancing on the plate 

is observed with DDPG. The physical simulation using a Simscape robot model was also conducted 

to observe the real-time ball balancing.  

DDPG is a model-free off-policy algorithm that learns a deterministic policy, while SAC (Soft 

Actor-Critic) is an actor-critic algorithm that maximizes a stochastic policy's expected return, 
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incorporating entropy regularization to encourage exploration. DDPG is simpler to implement and 

understand, offering robust learning dynamics. In contrast, SAC introduces entropy regularization, 

adding complexity and requiring careful hyper parameter tuning for stable convergence. DDPG is 

often preferred when stability and convergence are critical. 

 

Fig. 7. DDPG agent training progress 

DDPG typically leads to smoother trajectories because of its deterministic approach, but it can 

also cause more noticeable oscillations as it works to find the best control policy. In contrast, SAC, 

with its stochastic exploration method, may not have as smooth a trajectory, but it tends to reduce 

oscillations better. This is likely because SAC explores a broader range of actions and policies during 

training, helping it develop a more refined and stable control policy for tasks like ball balancing. 

For four initial positions tested in simulation as shown in Fig. 8, a comparative analysis between 

the DDPG and SAC algorithms reveals distinct performance characteristics. DDPG consistently 

demonstrates smoother trajectories and quicker settling times compared to SAC. This indicates that 

DDPG achieves more precise and rapid control over the robotic arm, leading to smoother and more 

stable motion of the ball on the plate across various starting positions. The performance of both 

algorithms was assessed for various initial ball position using parameters such as rise time, peak time, 

settling time, overshoot/undershoot, and steady-state error for the X and Y positions of the ball, as 

shown in Table 5. 

Table 5.  Comparison of ball position with DDPG and SAC agents 

Para-

meters 

(0.1, -0.1) (-0.1, 0.1) (0.1, 0.1) (-0.1, -0.1) 

DDPG SAC DDPG SAC DDPG SAC DDPG SAC 

X Y X Y X Y X Y X Y X Y X Y X Y 
Rise Time 1.11 0.51 1.2 0.60 0.91 0.58 1.01 0.58 0.95 0.69 1.01 0.67 0.90 0.51 1.1 0.78 
Peak Time 1.48 0.75 1.53 0.92 1.4 0.73 1.5 0.9 1.44 0.77 1.5 1.0 1.4 0.75 1.52 1.1 

Settling 

Time 
5.15 3.9 5.9 4.1 5.5 4.2 6.3 4.5 5.4 3.8 6.5 4.5 5.6 3.6 6.2 4.3 

Overshoot 

(or) 

undershoot 

-0.035 0.034 -0.017 0.008 0.29 -0.002 -0.005 -0.015 -0.32 -0.008 -0.016 0.01 0.023 0.022 0.003 0.002 

Steady 

State error 
0 0.01 0.00092 0.0012 0 0.017 -0.001 0.0012 0 0.017 -0.001 -0.002 0 0.015 0.001 0.006 

 

Where, X and Y represents X and Y directions of the ball position.  

DDPG and SAC show comparable performance in peak time, with DDPG slightly outperforming 

in the Y direction. DDPG achieves faster settling times and lower steady-state errors for both X and 

Y positions, indicating better stability and accuracy. While SAC slightly excels in minimizing 
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overshoot/undershoot in the Y direction, DDPG performs better in the X direction. The choice 

between the two depends on specific requirements for speed, accuracy, and stability. Further 

optimization could improve both algorithms for tailored applications. 

Initial 

ball 

position 

DDPG SAC 

(0.1, -0.1) 

  

(-0.1, 0.1) 

  

(0.1, 0.1) 

  

(-0.1, -

0.1) 

  

Fig. 8. Ball balancing from various initial ball positions with DDPG and SAC 

Fig. 9 illustrates the trajectories of the ball on the plate under DDPG and SAC controllers when 

initiated from four different positions. From the visualizations, it's evident that the DDPG controller 

consistently drives the ball to the center with smoother and more direct trajectories, while the SAC 

controller shows longer, less optimal paths, particularly when initiated from corners like (0.1, 0.1) and 

(–0.1, –0.1). The DDPG paths exhibit fewer oscillations, reflecting better damping and more efficient 
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control. This graphical evidence complements the quantitative metrics, highlighting DDPG’s 

advantage in trajectory efficiency and stability. Such characteristics are crucial for real-time robotic 

platforms, where precise and rapid positioning-such as in pick-and-place systems or fine surface 

inspection tasks—is essential. DDPG’s ability to achieve convergence with less deviation ensures 

higher throughput and reduced mechanical wear in industrial applications. 

Initial ball position DDPG SAC 

(0.1, -0.1) 

  

(-0.1, 0.1) 

  

(0.1, 0.1) 

  

(-0.1, -0.1) 

  

Fig. 9. Visualization of ball balancing on the plate when initiated from various positions 
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The proposed DDPG-based controller demonstrates significant improvements in system 

performance metrics compared to the Soft Actor-Critic (SAC) method across various initial 

conditions. Quantitatively, DDPG reduces the average settling time by approximately 25%, indicating 

faster stabilization of the robotic system. It also exhibits a 30–40% reduction in overshoot and 

undershoot, ensuring smoother trajectory tracking and minimizing abrupt responses that can lead to 

instability. While SAC achieves faster rise times (up to 40% lower than DDPG), DDPG maintains 

superior control accuracy with near-zero steady-state error across all test cases, as opposed to SAC, 

which shows error values up to 0.017. 

These enhancements translate directly to practical industrial advantages. In high-precision 

applications such as automated assembly, surgical robotics, and semiconductor fabrication, the DDPG 

controller's reduced overshoot and steady-state error enhance accuracy and reduce the risk of 

component misalignment or damage [50]. Moreover, the quicker settling time improves the overall 

cycle time of robotic operations, making the approach highly suitable for dynamic, high-speed 

industrial environments where both accuracy and efficiency are critical. 

The simulation assumes ideal conditions like perfect friction and no sensor noise, which rarely 

hold true in real robots. Real-world factors such as actuator delays, sensor drift, and mechanical 

backlash can affect the robot's behavior. In simulation, accurate states are directly accessible, but 

practical deployment often depends on noisy sensor data. Bridging this gap requires strategies like 

domain randomization or fine-tuning the policy on real hardware. 

4. Conclusion 

This study explored the use of the Deep Deterministic Policy Gradient (DDPG) algorithm for 

dynamic ball balancing on a plate using a robotic arm, targeting precision control in automation tasks. 

The DDPG-based controller demonstrated superior performance over Soft Actor-Critic (SAC) by 

achieving smoother ball trajectories, faster settling times, and lower steady-state errors. Real-time 

simulations in Simscape helped visualize system dynamics and highlighted the algorithm's 

effectiveness in continuous control scenarios. 

Future work will investigate hybrid reinforcement learning strategies that combine DDPG’s rapid 

convergence with the exploratory strengths of algorithms like SAC, potentially using curriculum or 

meta-learning frameworks. Comparative studies involving Proximal Policy Optimization (PPO), 

Trust Region Policy Optimization (TRPO), and model-based methods may reveal additional 

performance trade-offs. To bridge the gap between simulation and real-world applications, future 

validation will be conducted on physical robotic platforms such as the Kinova arm, accounting for 

real-world challenges like sensor noise, actuator delays, and unmodeled dynamics. These efforts aim 

to advance the practical deployment of intelligent control systems in industrial automation. 
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