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 Industrial applications rely heavily on induction motors (IMs). Even 

though any IM problem can seriously impair operation, rotor bar failures 

(RBFs) are among the toughest to identify because of their detection 

challenges. RBFs in IMs can significantly impact performance, leading to 

reduced efficiency, increased vibrations, and potential IM failure. This 

research provides a thorough analysis of diagnosing these issues by 

detecting RBFs and evaluating their severity using three sophisticated 

signal processing techniques (Fast Fourier Transform (FFT), Short-Time 

Fourier Transform (STFT), and Discrete Wavelet Transform (DWT)). The 

three techniques (FFT, DWT, and STFT) are used in this work to assess 

the stator currents. An accurate mathematical model of the IM under RBFs 

serves as the basis for the simulation. The robustness of Direct Torque 

Control (DTC) is assessed by examining the IM's behavior in both normal 

and malfunctioning situations. Although the results show that DTC 

successfully preserves motor stability even when there are flaws, the 

current analysis offers some significant variation. The findings show that 

when it comes to identifying RBFs in IMs and determining their severity, 

the STFT performs better than FFT and DWT. The suggested method 

maintains low estimation errors and strong performance under various 

operating situations while providing high failure detection accuracy and the 

ability to discriminate between RBFs. 
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1. Introduction  

Due to their high reliability, cost-effectiveness, and robustness, induction motors (INMs) are 

widely used in industrial environments [1]-[6]. However, like any other electromechanical system, 

they are susceptible to faults that can lead to unexpected failures and reduced performance. Among 

these, rotor bar faults are particularly critical, as they cause torque oscillations, increased losses, 

unbalanced magnetic fields, and INMs overheating [7]-[11]. Because of their effectiveness, 

longevity, affordability, and minimal maintenance needs, INMs are regarded as the most significant 

and extensively utilized INMs in practically all industries. They are essential to modern industry 

since they are involved in many different areas, such as production, transportation, and home 

appliances. INMs' position as the foundation of industrial applications is further cemented by the fact 

that they frequently come with power electronic converters to handle speed control concerns. INMs 

are crucial, as evidenced by the fact that they are used in about 70% of industrial applications [12]-

[17].  

Notwithstanding their resilience, INMs are susceptible to a range of physical issues brought on 

by warm air, motorized, and electric stressors. These issues can interfere with regular operations, 

resulting in large financial losses, decreased production, and expensive emergency repairs [18]-[23]. 

Fault data show that about 10% of the inside electric failures in INMs are rotor problems, while about 

37% are stator defects. Over 36% of INM stator failures are caused by stator turn-to-turn, or inter-

turn faults (ITFs), which make up a sizable fraction of the various fault categories [24]-[26]. ITFs 

are especially important since they can cause serious harm very quickly, making early detection 

essential to avert unplanned malfunctions and guarantee system dependability. Because they assist 

in preventing possible damages, saving downtime, and increasing the working lifetimes of these 

INMs, effective methods for identifying internal problems in INMs are therefore crucial for modern 

industry. Model-based techniques (MBTs), signal analysis-based techniques (SABTs), and artificial 

intelligence-based techniques (AIBTs) are the three main strategies for identifying ITFs in INMs 

[27]-[30]. To find differences suggestive of problems, model-based approaches entail building a 

mathematical model of the INM and contrasting it with its real behavior [31]-[36]. These techniques 

demonstrate important developments in MBT fault identification. High accuracy, flexibility in 

response to changing circumstances, and efficient fault separation are the main benefits. These 

methods do, however, have drawbacks, including the requirement for exact parameter adjustment, 

computational complexity, implementation difficulty, and dependence on intricate INM settings. 

Early detection of RBFs is essential for preventing system breakdowns and enhancing 

maintenance planning. Traditional fault detection techniques mainly rely on mechanical and thermal 

monitoring; however, these methods can be costly and inefficient for early-stage detection. Stator 

current analysis has emerged as a powerful, non-invasive diagnostic technique capable of identifying 

faults by examining variations in current signals [37]. The difficulties with MBTs' diagnosis have 

led to the development of several SABTs. These methods examine particular electrical signal 

properties to find anomalies that point to the existence of problems. The usefulness of SABTs is 

demonstrated in [31], who emphasize the significance of INM current signature analysis (INMCSA) 

and DWT for detecting frequency shifts in the INMC under fault situations. Similar to this, [38] 

extracted pertinent features from INMC and voltage signals and used INMCSA in combination with 

harmonic analysis to diagnose stator winding defects, including inter-turn short circuits (ITSC). By 

employing AIBTs and studying current waveforms, [39], [40] highlighted the possibility of MCSA 

for ITF detection. A technique for identifying ITSC failures using zero crossing instant (ZCI) analysis 

was presented in [41], albeit its efficacy might be reduced in noisy environments or with different 

load profiles. For defect detection, both Park's vector analysis and Fortescue transformation were 

applied, as demonstrated in [42], [43]. Refs. [44]-[46] investigated the use of acoustic signal analysis 

for fault diagnosis, utilizing non-invasive monitoring to identify a variety of defects.  

A recent technique, which merges vibration and acoustic signals for fault diagnostics in INMs 

and other rotating machinery, has just been developed [47]. By converting signals into time-

frequency spectra using an MI-CNN and the CQ-NSGT, this technique achieves excellent accuracy 
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in fault detection under a variety of circumstances. Although it requires high sample rates and may 

be impacted by power supply variations. Ref. [48] concentrates on instantaneous power analysis, 

discovering deviations in power consumption patterns to detect defects. As shown in [49], [50], 

thermal imaging has been successfully applied to INM problem detection. Furthermore, [51] 

examined how image-based intelligent approaches have advanced condition monitoring (CM) and 

fault detection (FD) for instant messaging. Their analysis emphasizes the benefits of visualizing 

temperature distributions that may point to possible issues with the INM parts through the use of 

thermal imaging. Although these methods are dependent on environmental conditions and call for 

specialized equipment, they show the potential of thermal imaging for non-contact, real-time 

problem detection in instant messaging. In conclusion, SABTs provide several benefits, such as real-

time applicability, non-invasive monitoring, and the capacity to identify a variety of defects. These 

techniques do have several drawbacks, though, namely their high computing demands, noise 

sensitivity, and requirement for specialist equipment. 

AIBTs have been increasingly important in recent years as potent diagnostic tools for 

discovering and diagnosing problems in INMs [52], [53]. These techniques provide exceptional skills 

in precisely identifying and isolating flaws.  AIBTs are essential for maintaining and keeping an eye 

on these vital INMs because they offer the requisite sophistication and precision [54]. Refs. [55]-[57] 

covered a variety of AIBTs and their efficacy in detecting various INM fault types, as well as recent 

developments in applying AIBTs for fault detection in INMs. A thorough analysis of the use of 

AIBTs for identifying stator problems in INMs was presented in [58]. Deep learning approaches 

were used in [59] to propose FD, which achieves high classification and localization accuracy for 

defects. Ref. [60] suggested using a robust method like ANN to identify and gauge the severity of 

problems; however, the model was intricate, and the outcomes were inconsistent.  ANN 

demonstrated superior accuracy than other AI tools, such as K-nearest neighbors, Naïve Bayes, 

random forest, SVM, and decision tree, when estimating fault severity using attributes taken from 

the DWT of current signals [61]. Ref. [62] trained an MLP for estimating stator winding shorted 

turns using analytical and finite element models, showing efficacy with accuracy ranges between 88 

and 99%. Ref. [63] employed RBFN and MLP to identify defects under unbalanced voltage with a 

93–99% accuracy rate. Ref. [64] calculated an MLP-NN coefficient and achieved 99.6% fault 

detection accuracy. The DTC is a widely used control strategy for high-performance induction motor 

applications. Its fast dynamic response and high efficiency make it a strong candidate for fault-

tolerant motor control. However, further research is needed to evaluate its performance under faulty 

operating conditions [65]. The objectives of this study are to: 

• Evaluate the performance of DTC in the presence of RBFs. 

• Assess the effectiveness of FFT, DWT, and STFT techniques in detecting and classifying RBFs. 

• Discuss the advantages and limitations of integrating advanced signal processing methods with 

INM control strategies. 

2. System Modeling 

The three-phase, 1.1 kW squirrel-cage INM utilized in the simulations is described in Table 1. 

A system of differential equations, derived from Park’s transformation and coupled circuit theory, 

can be used to numerically model a three-phase INM [66], [67]. The following assumptions are 

considered in the modeling process: (magnetic saturation is neglected, the magnetic field produced 

by the stator is assumed to be sinusoidal, iron losses are disregarded, and rotor bars are assumed to 

be electrically insulated. The stator and rotor voltage equations in the (d,q) reference frame are given 

as follows [68]-[70]: 

 
[𝐿]

𝑑[𝐼]

𝑑𝑡
= [𝑉] − [𝑅][𝐼] (1) 
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where: 

 

[𝐿] =

[
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[𝑉] =

[
 
 
 
 
𝑣𝑑𝑠

𝑣𝑞𝑠

𝑣𝑑𝑟

𝑣𝑞𝑟
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 (4) 

 

[𝐼] =

[
 
 
 
 
𝑖𝑑𝑠

𝑖𝑞𝑠

𝑖𝑑𝑟

𝑖𝑞𝑟

𝑖𝑒 ]
 
 
 
 

 (5) 

where the symbols (𝑖𝑑𝑠, 𝑖𝑞𝑠, 𝑖𝑑𝑟, 𝑖𝑞𝑟) are the stator and rotor current components in the park reference 

frame, (𝑅𝑠, 𝑅𝑟) represent the resistances of the rotor and stator, (𝐿𝑠, 𝐿𝑟)  are the stator and rotor 

inductances, and 𝑀𝑠𝑟 is the mutual inductance. The following equation provides the expression for 

electromagnetic torque [71], [72]: 

 
𝑇𝑒 =

3

2
𝑝𝑁𝑟𝑀𝑠𝑟(𝐼𝑑𝑠. 𝐼𝑞𝑟 − 𝐼𝑞𝑠. 𝐼𝑑𝑟) (6) 

where P is the number of pole pairs. 

This model enables an analytical approach to fault diagnosis and provides insight into how rotor 

bar issues affect motor dynamics. The DTC is a widely used control method for IMs due to its 

simplicity and fast dynamic response. DTC employs a predefined switching table to select the 

appropriate voltage vectors, enabling direct control of stator flux and electromagnetic torque [73], 

[74]. The following equations are used to estimate the stator flux and torque: 

 
𝜓𝑠 = ∫ (𝑉𝑠(𝛼, 𝛽) − 𝑅𝑠𝑖𝑠(𝛼, 𝛽))

𝑡

0

. 𝑑𝑡 (7) 

 
𝑇𝑒 =

3

2
𝑃(𝜓𝑠𝛼𝑖𝑠𝛽 − 𝜓𝑠𝛽𝑖𝑠𝛼) 

(8) 

where 𝜓𝑠 is the stator flux, 𝑉𝑠 is the stator voltage, 𝑅𝑠 is the stator resistance, and 𝑇𝑒 is the 

electromagnetic torque. 
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Table 1. Parameters of IM used in the simulation 

Parameters Value Parameters Value 
Pn: output power (kW) 1.1 kW Le: inductance of end ring (H) 1e-7 

Vs: stator voltage (V) 220 V Lb: rotor bar inductance (H) 1e-7 

P: pole number 1 Lsf: leakage inductance of stator (H) 0.0265 

Rs: stator resistance (Ω) 7.58 Ns: number of turns per stator phase 160 

Rr: rotor resistance (Ω) 6.3 Nr: number of rotor bars 16 

Rb: rotor bar resistance Ω) 150e-6 L: length of the rotor (m) 0.065 

Re: resistance of ring segment (Ω)  150e-6 e: air-gap mean diameter (m) 0.0025 

J: inertia moment (kg · m2) 0.0054   

3. Implemented Techniques for Stator Current Analysis  

Stator current analysis is among the most effective non-invasive techniques for diagnosing RBFs. Various 

signal processing methods offer distinct advantages in the detection and classification of these faults [75], [76]. 

3.1. FFT Technique 

The FFT is a widely used frequency-domain technique for detecting RBFs in electrical machines 

[77], [78]. The RBFs generate characteristic sideband frequencies, which can be determined by the 

following relation: 

 𝑓𝑏𝑟𝑏 = (1 ± 2𝑘𝑠)𝑓𝑠 (9) 

where  𝑓𝑠  is the supply frequency, and s  is the slip. 

3.2. DWT Technique 

The DWT is highly effective for identifying transient and intermittent RBFs, as it enables time-

frequency analysis [79], [80] . 

3.3. STFT Technique 

The STFT is useful for tracking the evolution of RBFs over time, as it provides localized 

frequency analysis [81]. 

4. Simulation Results and Discussion 

In this section, MATLAB/Simulink software is used to simulate the DTC that was previously 

covered in theory. Three steps make up the presentation of the simulation findings, which include a 

DTC comparison. The PI controller is used by both control methods to regulate speed, where these 

gains are obtained with Ziglar Nicolas. In a startup, the load is applied by 𝑇𝑒 = 3.5 𝑁.𝑚. Speed 

responses (rad/sec) for DTC shown in Fig. 1, Electromagnetic torque for DTC shown in Fig. 2, Stator 

current at startup and steady state for DTC shown in Fig. 3, Flux magnitude of a stator for DTC 

shown in Fig. 4, Flux circular trajectory (α, β) of the stator shown in Fig. 5, Speed reference reversing 

(157 rd/sec; - 157 rd/sec):  rotor speed response for DTC shown in Fig. 6.                                  

4.1. FFT Analysis  

The FFT spectra of stator current are commonly used to detect broken RBFs in IMs. This part 

tries to analyze and compare some frequency contents. The characteristic frequencies can indicate 

the potential of broken RBFs. Fig. 7 is plotted in blue and likely represents a healthy IM and a faulty 

IM (BRB fault), which is in red. 

Both spectra show a dominant peak at the fundamental frequency (probably at the supply 

frequency, fs=28.35 Hz). In the healthy motor spectrum, the amplitude level is lower, and the 

harmonic components appear less pronounced. But in the faulty motor spectrum, additional peaks 

appear at characteristic fault frequencies, which may correspond to sideband frequencies due to BRB, 

according to this formula: 



1446 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 5, No. 2, 2025, pp. 1441-1457 

 

 

Radouane Bousseksou (Utilizing Short-Time Fourier Transform for the Diagnosis of Rotor Bar Faults in Induction 

Motors Under Direct Torque Control) 

 

         

Fig. 1. Speed responses (rad/sec) for DTC 

 

Fig. 2. Electromagnetic torque for DTC 

      

Fig. 3. Stator current at startup and steady state for DTC 
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Fig. 4. Flux magnitude of a stator for DTC 

        

Fig. 5. Flux circular trajectory (α, β) of the stator 

 𝑓𝐵𝑅𝐵 = (1 ± 2 ∗ 𝑘 ∗ 𝑠)𝑓𝑠 (10) 

The faulty spectrum (red) exhibits higher noise levels and stronger harmonics, which could be 

an indicator of increased rotor asymmetry and instability. The healthy spectrum (blue) maintains a 

relatively stable noise floor, indicating a more balanced rotor operation. The faulty motor spectrum 

likely exhibits sideband components around the fundamental frequency and other harmonics as 139 

Hz, 195 Hz, 307 Hz, 362 Hz, etc., due to the broken rotor bars, causing a BRB fault. The value of 

the additional sideband frequency is 2 ∗ 𝑠 ∗ 𝑓𝑠 = 5.992𝐻𝑧. Fig. 8 represents some sideband 

frequencies that indicate the presence of a BRB fault. 
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Fig. 6. Speed reference reversing (157 rd/sec; - 157 rd/sec):  rotor speed response for DTC 

 
(a) Healthy IM 

 
(b) Faulty IM 

Fig. 7. Stator current spectra in healthy (blue) and fault (red) IM 
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(a) Healthy IM 

 
(b) Faulty IM 

Fig. 8. Sideband harmonic values from 0-300Hz 

In addition, Table 2 shows clearly the new harmonic values of some sideband frequencies.  

Table 2. Some additional harmonic values 

IM Frequency 
Healthy IM Faulty IM (BRB Fault) 

State of 

Around 28 Hz 
𝑓𝐵𝑅𝐵

(+)
=/ 𝑓𝐵𝑅𝐵

(+)
= 34 𝐻𝑧 

𝑓𝐵𝑅𝐵
(−)

=/ 𝑓𝐵𝑅𝐵
(−)

= 22 𝐻𝑧 

Around 139 Hz 
𝑓𝐵𝑅𝐵

(+)
=/ 𝑓𝐵𝑅𝐵

(+)
= 145 𝐻𝑧 

𝑓𝐵𝑅𝐵
(−)

=/ 𝑓𝐵𝑅𝐵
(−)

= 133 𝐻𝑧 

Around 195 Hz 
𝑓𝐵𝑅𝐵

(+)
=/ 𝑓𝐵𝑅𝐵

(+)
= 201𝐻𝑧 

𝑓𝐵𝑅𝐵
(−)

=/ 𝑓𝐵𝑅𝐵
(+)

= 189 𝐻𝑧 

 

The comparison between spectra suggests that the presence of additional frequency components 

and higher noise levels in the faulty motor spectrum is a key indicator of a rotor fault. This type of 

analysis is crucial in predictive maintenance to detect broken rotor bars at an early stage before severe 

degradation occurs. 

4.2. DWT Analysis 

This part uses DWT decompositions to analyze the stator current signal. Based on the 

comparison of DWT results in healthy motor (blue) and a faulty motor (red) can be a good decision 

about the IM state. Both figures show multi-level wavelet decompositions to detect BRB faults. We 

can see clearly that the signal components are more uniform and exhibit smooth variations in the 

healthy state of IM. But in a faulty state, the differences in the lower-level components (high-

frequency bands) show more abrupt variations. This is due to increased noise or abrupt energy 

changes under faults and broken rotor bars. 

The faulty IM exhibits higher energy in high-frequency components, indicating the presence of 

a BRB fault. Precisely, this variation is clear in d10. The DWT analysis complements the FFT by 

highlighting transient behaviors that spectral methods might overlook. The faulty motor exhibits 
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clear disturbances at different decomposition levels, suggesting wavelet-based fault detection is an 

effective method. DWT analysis of the stator current (healthy and faulty IM) shown in Fig. 9. 

 
(a) Healthy IM 

 
(b) Faulty IM 

Fig. 9. DWT analysis of the stator current (healthy and faulty IM) 

4.3. STFT Analysis 

To exploit the information in d10, we try to analyze this signal carefully based on the STFT 

tool. The STFT is a technique used to analyze how the frequency content of a signal changes over 

time. Unlike the FFT, which provides a global frequency analysis, the STFT allows tracking 
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frequency variations over time, making it ideal for detecting intermittent or evolving faults. We can 

define some spectrogram interpretations as follows: (X-axis (horizontal): Time (s), Y-axis (vertical): 

Frequency (Hz), Color Scale: Signal amplitude in dB, Red: High energy (high signal amplitude), 

Blue: Low energy (low signal amplitude). 

So, in healthy cases, the energy is mainly concentrated around specific frequency bands, likely 

around the fundamental frequency (28.35 Hz) and its harmonics (see Fig. 10). The time evolution is 

relatively stable, with no significant fluctuations or sudden appearance of new components. There is 

some dispersion in higher frequencies, which is normal for a healthy motor. But in the faulty case 

(Fig. 10), it’s clear that the energy is increased in multiple frequency bands, especially in the high-

frequency range. Additional modulations and intensity variations indicate disturbances caused by a 

BRB fault. Unlike the healthy motor, intermittent frequency components appear in the high-

frequency range, which is characteristic of broken rotor bar faults. Low-frequency components are 

also affected, meaning the fault impacts not only high frequencies but also the overall motor 

performance. Finally, the healthy motor spectrogram is relatively homogeneous with stable 

frequency components. The faulty motor exhibits irregularities in frequency bands and increased 

high-frequency energy, indicating possible issues under a broken rotor bar fault. 

 
(a) Healthy IM 

 
(b) Faulty IM 

Fig. 10. STFT of d10 under two conditions for (a) Healthy IM and (b) Faulty IM 
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5. Conclusions 

RBFs can severely impact IM performance, leading to decreased efficiency, elevated vibrations, 

and even IM failure. Signal analysis is a powerful tool for monitoring IMs. A thorough analysis of 

identifying these defects using sophisticated signal processing techniques has been presented in this 

research. To assess the robustness of DTC, the behavior of the IM has been examined in both normal 

and abnormal conditions. FFTs show the impact of a fault on characteristic frequencies. However, 

DWTs reveal distortions in the signal's temporal structure. A hybrid approach combining FFT and 

DWT improves the early detection of BRB faults. In addition, STFT also allows a good visualization 

of frequency variations over time, which is a significant advantage over traditional FFT analysis. 

Therefore, STFT was effective in detecting gradual variations over time. This paper attempted to 

track fault evolution over time using three different techniques. STFT detects specific modulations 

caused by rotor or stator faults. This work also used and combined FFT and DWT to provide a 

comprehensive analysis dedicated to detecting broken RBFs. Although the system analyzed the 

signals in the presence of the DTC command, the results clearly distinguished between the different 

conditions. Our perspective will exploit other techniques and faults to make a good decision about 

the state of the IM. 
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