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1. Introduction  

Autonomous Mobile Robots (AMRs) represent a pivotal advancement in modern automation, 

enabling intelligent and autonomous navigation within dynamic and unstructured environments. 

Unlike Automated Guided Vehicles (AGVs), which require predefined tracks or markers, AMRs 

integrate advanced perception systems, localization, and intelligent decision-making capabilities to 

interpret and respond to real-time changes [1]-[8]. These robots are increasingly deployed across 
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 In recent years, Automated Mobile Robots (AMRs) have gained significant 

attention in industry and research applications, requiring efficient path-

planning algorithms to optimize task performance. While widely adopted, 

conventional Ant Colony Optimization (ACO) algorithms suffer from low 

convergence rates and delays in task execution, particularly in dynamic 

environments due to insufficient exploration of this context. However, 

traditional Ant Colony Optimization (ACO) algorithms, widely used for 

AMR path planning, exhibit limitations such as low convergence rates and 

redundant recalculations, particularly in environments with frequently 

changing obstacles. To address these challenges, this study proposes an 

Integrative Edge Cloud-Based Ant Colony Optimization (IECACO) 

algorithm. IECACO incorporates a novel path retrieval mechanism and 

edge cloud computing infrastructure to minimize redundant path 

computation and improve convergence efficiency. The proposed algorithm 

is tested within a simulated 2D occupancy grid environment using both a 

4×4 map for controlled experiments and a 20×20 map for comparative 

evaluation against a prior Improved ACO (IACO) study. Experimental 

simulation results, based on 50 independent runs in settings, demonstrate 

that IECACO achieves at least 4.76% reduction compared to traditional 

ACO. Based on the observation of 10 independent runs between IECACO 

and IACO, IECACO leading a significant reduction in both static and 

dynamic settings. Although this study is conducted in a simulated 

environment, the findings lay a foundation for future real-world 

implementations. 
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industrial sectors, particularly in logistics and smart factories, to support flexible and efficient material 

handling. However, their successful operation relies heavily on responsive decision-making and 

robust navigation strategies, particularly under time-sensitive and uncertain conditions [1], [9]-[11]. 

A core component of AMR navigation is path planning, which involves determining an optimal 

trajectory from a start to a goal point while avoiding obstacles. While path planning in static 

environments where obstacle locations remain fixed that have been extensively explored using 

classical methods such as A* [12]-[16] and Dijkstra [17]-[20], these approaches often fall short in 

dynamic scenarios where the environment changes over time. In dynamic environments, the 

unpredictable nature of obstacles requires not only reactivity but also computational efficiency to 

ensure real-time operability. Many past studies have focused solely on static path planning [9]-[20], 

thereby limiting the applicability of these approaches in real-world settings where dynamic conditions 

prevail. 

A critical requirement for AMRs is the ability to make fast and accurate decisions in uncertain 

and dynamically changing environments. In this study, edge cloud architecture is capable to enables 

AMRs to offload computation tasks such as path planning and sensor data processing to edge nodes 

while maintaining seamless communication with the cloud services. This system improves decision-

making efficiency, reduces latency, and improves overall system responsiveness, which are important 

for time-sensitive path planning in dynamic settings. By implementing edge cloud computing, AMRs 

can achieve a balance between immediate responsiveness and large-scale data analysis, with improved 

adaptability in changing environments. Although prior studies [12], [18] have demonstrated the 

general advantages of edge computing in robotic systems, its full potential remains underexplored 

particularly in its capacity to enable concurrent execution of multiple computational processes, such 

as parallel path planning and retrieval mechanisms, which could alleviate delays in dynamic 

navigation tasks. 

While previous studies [10], [21]-[24] may have explored the use of edge computing to accelerate 

path planning through distributed computation and reduced latency, these approaches typically focus 

on improving raw processing speed [10], [11] or supporting hybrid algorithm implementations [24], 

[25]. However, they often lack a mechanism to retain and reuse prior solutions once a path has been 

computed, resulting in redundant calculations when facing recurring environmental patterns. The 

Improved ACO (IACO) for wireless robot path planning utilizes an edge computing framework and 

a multi-step planning approach to improve solution quality and reduce reliance on single-step searches 

[21]. Although this method introduces inflection points for smoother navigation and uses edge nodes 

to handle computational load, it still requires repeated recalculations when obstacle conditions change, 

which may increase execution time in highly dynamic settings. The path optimization techniques 

combining ACO with reinforcement learning [26]-[28] improve convergence speed and adaptability, 

but the lack of a retrieval mechanism results in inefficiencies when facing recurring environmental 

patterns. The fast two-stage ACO algorithm [29]-[36], which adds a preliminary scent-based 

exploration phase, accelerates the search process but does not address reusability of prior paths, 

leading to redundant exploration in evolving environments. In contrast, the proposed approach 

introduces a novel integration of a global path retrieval mechanism within an edge cloud infrastructure, 

allowing previously computed optimal paths to be stored and reused efficiently. This not only 

accelerates decision-making but also enhances adaptability in dynamic environments by reducing the 

need for path planning recalculation 

Among bio-inspired optimization methods, Ant Colony Optimization (ACO) has shown notable 

success in tackling path planning problems by simulating the foraging behavior of ants and utilizing 

pheromone trails to guide solution discovery [25], [37], [38]. Despite its adaptability, traditional ACO 

suffers from slow convergence, high computational cost, and excessive redundancy due to repeated 

path recalculations, especially when applied to dynamically changing environments [25], [33], [37], 

[39]. While hybrid approaches, such as ACO with Genetic Algorithm (GA) [36], [39], [40] or Particle 

Swarm Optimization (PSO) (41–43), have been proposed to address some of these issues, most still 
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rely on complete re-planning in each iteration, resulting in inefficiencies in real-time robotic 

navigation [41]-[44]. 

To overcome the redundant computation observed in traditional ACO methods, path retrieval 

mechanisms have been introduced to reuse previously computed optimal paths [9], [11], [44]. 

However, as an example in [10], [11], such retrieval strategies are implemented in isolation and are 

not fully integrated into broader edge-cloud architectures. Moreover, many of these methods do not 

allow real-time querying or updating of stored paths, limiting their effectiveness in highly dynamic 

environments where obstacle positions change frequently. 

Motivated by the limitations mentioned above, this study proposes an improved ACO algorithm 

integrated with edge cloud computing and a novel path retrieval mechanism which is also known as 

IECACO (Integrative Edge Cloud-based ACO). In this study, the proposed algorithm is simulated 

within a 2D occupancy grid map environment, where AMRs must navigate through static and dynamic 

scenarios. This setup reflects realistic spatial constraints and challenges encountered in real-world 

autonomous navigation. The key contributions of this research are as follows: 

1. An improved ACO algorithm with path retrieval capabilities which allows reuse of successful 

past paths and reducing redundant computations. Unlike prior multi-step or hybrid ACO 

approaches [21], [45], [46] which typically replan paths at each iteration or rely solely on 

pheromone memory. Instead, this study approach introduces a global path storage component 

capable of retrieving previously computed optimal solutions. This retrieval system, executed 

concurrently via edge cloud infrastructure, enables selective reuse of validated paths when 

encountering recurring obstacle configurations. 

2. Edge cloud-based execution, enabling concurrent computation of ACO and retrieval processes 

for lower latency and improved responsiveness. Despite hybrid ACO variants, low convergence 

and redundant computations persist in dynamic environments, exacerbated by underutilized 

edge-cloud parallelism 

3. The improved ACO of the proposed IECACO algorithm in both static and dynamic 

environments, using a grid-based simulation model with variable obstacle conditions to 

benchmark against conventional ACO and recent improved ACO models such as [21]. 

2. Methodology              

2.1. Workspace Model 

The workspace for the AMR in this study is structured as a 2-dimensional Occupancy Grid Map, 

which serves as a discrete representation of the operating environment. The grid-based model enables 

the AMR to autonomously navigate through the workspace while avoiding obstacles and optimizing 

its path toward a predefined goal. Each grid in the workspace is sequentially numbered from left to 

right and top to bottom, forming a structured coordinate indexing system. 

The AMR is programmed to navigate forward in 2 distinct environment which is static and 

dynamic environment. In the static environment, the configuration of the grid remains unchanged 

throughout the simulation. Specifically, the walls cells and free cells are predefined. This setup 

provides a controlled environment to benchmark the path planning algorithm without the influence of 

variability. In contrast, the dynamic environment introduces variability by modifying the positions of 

wall cells and free cells in every execution or run. For each run, a new configuration is generated 

where wall cells or obstacle cells are randomly reallocated within the free cells. The dynamic 

environment is introduced to validate the adaptability of the proposed algorithm, ensuring it can 

respond effectively to changing obstacle positions across different runs of the system. 

The occupancy grid framework facilitates efficient path computation and real-time obstacle 

avoidance by classifying each cell in the grid as either free or occupied. This binary representation of 

the environment as illustrated in Fig. 1, enables the AMR to make localized and informed decisions 
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about movement at each step of its navigation process. The computational details of the static and 

dynamic environments are further elaborated in Subsections 2.1.1. and Subsections 2.1.2., 

respectively. 

2.1.1. Static Environment Setup 

To construct a static environment 2-D occupancy grid map in this study, we let N represents the 

total number of grid cells per column in a square occupancy N × N grid map and s is the sequence 

serial index for a specific cell, given by. 

 𝑠 = 1,2, … , 𝑁, 𝑁 + 1, … ,2𝑁, 2𝑁 + 1, … 3𝑁, … 𝑁2 (1) 

To enable the path computation on a 2D plane, let x  and y  represent the column and row 

coordinates of the grid cell, respectively. Thus, the serial index is converted into its corresponding 

Cartesian coordinate (𝑥, 𝑦)𝑠 given by. 

  (𝑥, 𝑦) = (𝑚𝑜𝑑 (
𝑠

𝑁
) − 0.5, 𝑁 − 𝑐𝑒𝑖𝑙 (

𝑠

𝑁
) + 0.5) (2) 

where the modulo function, 𝑚𝑜𝑑(. ) represents the remainder of the division 
𝑠

𝑁
, indicating the 

column position of the cell and the ceiling function, 𝑐𝑒𝑖𝑙(. )  rounds up to the nearest integer used to 

determine the row position, as shown in Fig. 1. Fig. 1 (a) presents a specific example using a 4 × 4 

grid, while Fig. 1 (b) generalizes this structure for any grid size, highlighting how serial indices 

increment row by row from bottom to top. 

  
(a) (b) 

Fig. 1. The mapping of grid index, 𝑠 (a) general and (b) in 4 × 4 grid map 

2.1.2. Dynamic Environment Setup 

For this study, the simulation is conducted under two different dynamic environment setups. 

Environment 1 is a  4 × 4  grid map which the dynamic version of the static setup as shown in 

Subsection 2.1.1. This setup is to observe the algorithmic behavior in a simplified scenario. Followed 

by the Environment 2, a 20 × 20 grid map as shown in Fig. 2, which is configured to match the setup 

used in [21] and this setup is equivalent to a 20𝑚2 warehouse, with addition of two obstacle points 

𝑂𝑏𝑠𝑝  within the free cells that dynamically change its location per execution. This configuration 

enables a direct performance comparison of the proposed algorithm, IACO [21] and ACO under 

consistent conditions that will be further explained in Section 4. 

To model Environment 1, which implement the dynamic changes in the placements of the 

obstacle, a randomized assignment function is used to reconfigure wall cells at each simulation run 

which denoted as  𝑟 . Let 𝐺  be an 𝑁 × 𝑁  occupancy grid, where each grid is indexed by its 2D 

coordinates (𝑥, 𝑦). The possible values of 𝑔(𝑥, 𝑦) are define as 𝑔(𝑥, 𝑦) ∈ {0,1,2,3,4} and as detailed 

in Table 1. The set of wall cells for given run 𝑟, both static and dynamic, is defined as (3).  
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Table 1.  Cell unit representation 

𝒈(𝒙, 𝒚) Cell Representation 

𝑔(𝑥, 𝑦) = 0 Free  

𝑔(𝑥, 𝑦) = 1 Barrier/wall 

𝑔(𝑥, 𝑦) = 2 Start point 

𝑔(𝑥, 𝑦) = 3 Goal point 

𝑔(𝑥, 𝑦) = 4 Dynamic obstacle  

 

The set of wall cells for given run 𝑟, both static and dynamic, is defined as  

  𝑊𝑟 = {(𝑥, 𝑦) | (𝑥, 𝑦) ∈ 𝐺, 𝑔(𝑥, 𝑦) = 1}            (3) 

Let 𝑊𝑟 denotes the set of coordinates within the grid where wall cell is 𝑔(𝑥, 𝑦) = 1 are assigned 

for the current simulation run. The subscript 𝑡 in 𝑔(𝑥, 𝑦) captures the time-varying nature of the 

environment, allowing the simulation to reflect real-time changes. 

To model Environment 2, the 20 × 20 grid occupancy map as shown in Fig. 2, (4) presents a 

modified formulation of (4), which is then derived as. 

  (𝑥, 𝑦) = 𝑚𝑜𝑑(𝑠 − 1, 𝑁) + 1, 𝑁 − 𝑐𝑒𝑖𝑙 (
𝑠 − 1

𝑁
) + 1 (4) 

 

Fig. 2. The 20 × 20 occupancy grid model for environment 2 

2.2. Ant Colony Optimization Algorithm 

Many existing research on ACO algorithms for path planning in AMR has focused on the natural 

foraging behavior of ants. Ants deposit pheromones, which serve as a communication mechanism to 

reinforce the shortest path between their nest and a food source. Conventional ACO studies have 

primarily focused on static environments, limiting their applicability in real-world dynamic 

environment. In dynamic conditions, obstacles often appear and disappear, requiring the algorithm to 

adapt. However, the fundamental selection mechanism remains crucial in path optimization, as it 

depends on pheromone concentration and evaporation rate [9], [25], [37], [38], [45], [47]-[49]. 
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The pheromone updating mechanism is central to the optimization process of ACO. Let the terms 

∆𝜏𝑖𝑗 is the amount of newly deposited pheromone which can be written as. 

 ∆𝜏𝑖𝑗 = {

𝑄

𝐿𝑘
  , if ant k travels on edge (𝑖, 𝑗)  

0 , otherwise

 (5) 

where 𝑄 is a constant representing the total amount of pheromone deposited per iteration and 𝐿𝑘 is the 

length of the path constructed by the ant 𝑘. When an ant moves from node 𝑖 to node 𝑗, it deposits a 

pheromone trail 𝜏𝑖𝑗 [37], [50]. The amount of pheromone is updated given by. 

 𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌) ∙ 𝜏𝑖𝑗(𝑡) +  ∆𝜏𝑖𝑗 (6) 

where the 𝜌 is the pheromone evaporation rate is constrained within the range (0 < 𝜌 < 1) to prevent 

the unlimited accumulation of pheromone [51]. Based on (6), the probability 𝑃𝑖𝑗
𝑘(𝑡) that ant 𝑘 will 

move from node 𝑖 to node 𝑗 at time is determined by the pheromone intensity 𝜏𝑖𝑗(𝑡)  and the heuristic 

desirability 𝜂𝑖𝑗 of the edge is given as 

 𝑃𝑖𝑗
𝑘(𝑡) = {

[𝜏𝑖𝑗(𝑡)]
𝛼

[𝜂𝑖𝑗]
𝛽

∑ [𝜏𝑖𝑗(𝑡)]
𝛼

[𝜂𝑖𝜄]
𝛽

𝜄∈𝑁𝑖

if 𝑗𝜖𝑁𝑖

0 otherwise

  (7) 

where 𝜂𝑖𝑗 is the heuristic desirability of edge (𝑖, 𝑗), usually defined as the inverse of the Euclidean 

distance. Meanwhile, the terms 𝛼  and 𝛽  are the parameters that control the relative influence of 

pheromones and heuristic information, respectively, and 𝑁𝑖  is the set of neighboring nodes. The 

analysis of the traditional ACO algorithm highlights its fundamental principle where the pheromone 

level in a path is inversely linked to its length. Specifically, shorter paths accumulate higher 

pheromones, increasing their probability of selection in subsequent iterations.  

3. Integrative Edge Cloud-ACO (IEACO) Algorithm 

3.1. System Architecture 

This study proposes the Integrative Edge Cloud-ACO (IEACO) Algorithm, which is designed to 

optimize AMR path planning systems, as illustrated in Fig. 3. IECACO introduces a novel approach 

to path planning by implementing the retrieval influence factor, 𝑅𝑖𝑗(𝑡), which distinguishes between 

previously stored paths and newly computed routes. This feature reduces redundant computations and 

improves calculation in (7). IECACO uses dynamic evaluation and updating pheromone trails along 

with a path retrieval mechanism that interacts with global path storage, 𝑅  in the edge cloud. It 

determines if an optimal stored path can be reused when workspace environment changes, minimizing 

computational costs. If no suitable path exists, a new one is computed and stored for future reference.  

Based on Fig. 3, following the initialization phase, the ant iteration phase is executed. This phase 

applies the ACO algorithm to explore the environment and construct potential paths from 𝑆𝑝 to 𝐺𝑝. 

The decision-making process during this phase relies on the pheromone update rule and heuristic 

function, which determine the probability of selecting a specific path. If path retrieval is needed, the 

system transitions to the path retrieval phase, which interacts with 𝑅. This module stores previously 

computed paths, allowing for rapid retrieval and reducing redundant path recalculation. If a 

precomputed path is available, it is retrieved and followed. Otherwise, the algorithm recalculates an 

alternative trajectory while updating the pheromone levels accordingly. Once the optimal path is 

determined, it is stored as 𝑃𝑏𝑒𝑠𝑡, representing the best solution derived from the ACO-based iterative 

process. This finalized path is then executed by the AMR. The feedback loops to the 𝑅 further refine 
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the system's learning capability by continuously updating stored paths, improving future path 

selection.  

 

Fig. 3. The overall structure of IEACACO in AMR path planning system 

The edge cloud framework in the proposed IECACO algorithm plays an important role in 

accelerating computational performance and enabling real-time decision-making. Specifically, the 

path retrieval mechanism and global path storage are offloaded to the edge cloud, allowing these 

processes to execute concurrently with ant iteration and pheromone update tasks running on the 

AMR’s local processing unit. This architecture supports parallel computation, wherein the edge cloud 

handles precomputed path searches, storage updates, and retrieval influence calculations without 

interrupting or delaying the navigation of the AMR. As a result, latency is minimized, and the AMR 

avoids the need to reprocess path planning from scratch, particularly in scenarios where similar 

obstacle conditions have been encountered before. This reduces redundant computation and leads to 

faster convergence toward optimal paths. 

To meet the key contributions (i) of this study, we have decided to include the path retrieval 

process into the ACO framework. The path retrieval process involves the mechanisms by which an 

AMR identifies, accesses, and follows predetermined or dynamically generated paths within its 

operational environment. This process is crucial for ensuring that robots can navigate efficiently, avoid 

obstacles, and adapt to the time-varying nature of the environment, where obstacle configurations are 

updated with each simulation run. In dynamic environments, integrating path retrieval mechanism 

becomes essential. Such a mechanism allows the AMR to implement stored optimal paths for common 

routes, reducing the need for real-time computation. Recent improvements have highlighted the 

importance of effective path retrieval in AMRs. For instance, [52]-[54] emphasizes the need for 

adaptive path planning and obstacle avoidance methods to enhance autonomy in mobile robots. 

3.2. The Initialization Phase 

The Initialization Phase is the first step of the IECACO ensuring that all parameters are 

appropriately configured before advancing to the Ant Iteration Phase. This phase is important to define 

the grid-based workspace, pheromone levels, and the initial conditions. 
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The Initialization Phase as the flowchart shown in Fig. 4, involves defining the grid map 𝐺, which 

serves as the navigation environment for the AMR. This grid is structured as a two-dimensional 

occupancy map, where each cell is categorized. The grid-based representation ensures that the ACO 

algorithm has a clear, structured workspace for computing and optimizing navigation paths. 

Additionally, the starting position 𝑆𝑝 the goal position 𝐺𝑝 are pre-defined, serving as reference points 

for the pathfinding process. Once the environment is structured, the algorithm initializes the 

pheromone distribution across all traversable edges. The pheromone levels, denoted as 𝜏0 , are 

uniformly assigned at the beginning of the simulation. This uniform pheromone distribution is 

essential to ensure unbiased exploration in early iterations, particularly in dynamic environments 

where obstacles may shift over time. Following pheromone initialization, ants are placed at the starting 

point 𝑆𝑝. These ants function as search agents within the ACO framework, navigating through the 

grid-based environment to identify the shortest and most efficient path to the goal position 𝐺𝑝. If any 

discrepancies are detected, the system reinitializes the affected parameters to maintain accuracy and 

stability. This step prevents misconfigurations and ensures smooth execution of the IECACO path 

planning system. Once the initialization phase is completed, the system transitions into the Ant 

Iteration Phase which is labelled as A in the Fig. 4, where the core path optimization process begins.               

3.3. The Ant Iteration Phase 

Fig. 5 shows the flowchart of the Ant Iteration Phase in IECACO. The execution begins 

immediately after the Initialization Phase (label A) and may interface with the Path Retrieval Phase 

(Label B and C). The Ant Iteration Phase is a fundamental stage in the IECACO algorithm, where 

virtual ants actively explore the grid-based environment to identify an optimal path from the point 𝑆𝑝 

to the 𝐺𝑝. This phase builds upon the initialized pheromone distribution and heuristic values, guiding 

ants' movements through a probabilistic decision-making process. Unlike traditional ACO, which 

relies solely on pheromone reinforcement, the proposed IECACO improves path planning efficiency 

by integrating global path storage and dynamic obstacle avoidance mechanisms. 

Each ant begins at the 𝑆𝑝  and moves iteratively through neighboring nodes by evaluating 

pheromone levels, 𝜏𝑖𝑗  and heuristic desirability, 𝜂𝑖𝑗 . The probability of selecting the next node is 

determined by the state transition probability function can be expressed as 

 𝑃𝑖𝑗(𝑡) =  
[𝜏𝑖𝑗(𝑡)]

𝛼
[𝜂𝑖𝑗]

𝛽

∑ [𝜏𝑖𝑙(𝑡)]𝛼[𝜂𝑖𝑙]𝛽
𝜄∈𝑁𝑖

 (8) 

Let 𝜂𝑖𝑗(𝑡) is heuristic information which represents the desirability if moving from node 𝑖 to 

node 𝑗, often calculates as. 

  𝜂𝑖𝑗(𝑡) =
1

𝑑𝑖𝑗
    (9) 

where, 𝑑𝑖𝑗 is the Euclidean distance between nodes, promoting shorter paths. Meanwhile, the path 

selection of this phase, 𝜂𝑖𝑙 is denoted as the heuristic desirability of the edge between node 𝑖 and node 

𝑙, often inversely proportional to distance. If a neighboring node 𝑙 has a high pheromone level and 

heuristic desirability, it will increase the denominator, reducing the probability of choosing the node 

𝑗. Conversely, if the neighboring nodes have low desirability, the probability of selecting 𝑗 increases. 

As ants navigate, pheromone levels are dynamically updated to reflect changes in the environment. 

IECACO modifies the classic pheromone update rule to account for dynamic obstacles, ensuring that 

blocked paths lose influence while newly opened paths gain reinforcement. As ants traverse the grid, 

the pheromone update rule in a dynamic environment can be expressed as. 

 𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌) ∙ 𝜏𝑖𝑗(𝑡) +  ∆𝜏𝑖𝑗(𝑡) + 𝛿𝑖𝑗(𝑡) (10) 
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where, 𝜌 is the pheromone evaporation rate and ∆𝜏𝑖𝑗(𝑡) the pheromone reinforcement for paths 

successfully used by ants. Meanwhile, the adjustment factor 𝛿𝑖𝑗(𝑡)  is a binary indicator function that 

denotes whether the edge between node 𝑖 and 𝑗 is part of the best path found by an ant during iteration 

It is used in the pheromone update rule to selectively reinforce only those edges that contribute to a 

successful or optimal solution. Mathematically, it is defined as 

 𝛿𝑖𝑗(𝑡) = {

−𝜏𝑖𝑗(𝑡), if path is blocked

0, if path is remain unchanged

∆𝜏𝑖𝑗(𝑡),  if path is newly opened

 

 (11) 

If an obstacle is newly encountered, the ant avoids it and recalculates a new path. If an obstacle 

was previously known, the system proceeds to the Path Retrieval Phase (Label B) to check for stored 

solutions. And if no stored solution exists, the system computes a new path using standard ACO 

principles. 

3.4. The Path Retrieval Phase 

The Path Retrieval Phase in the proposed IECACO system enhances computational efficiency by 

utilizing previously computed paths stored in the global path storage 𝑅,  hosted within the edge cloud 

infrastructure. The flowchart representing the operations within this phase is shown in Fig. 6. At the 

beginning of the phase, triggered from the Ant Iteration Phase (label B), the system checks the 𝑅 for 

any previously stored paths that match the current configuration. If a matching path is found, it is 

retrieved and immediately applied to the AMR, bypassing the need for a full re-execution of the Ant 

Iteration Phase. This significantly reduces computational cost and time, particularly when dynamic 

obstacles cause only minor environmental changes. If no suitable path is found, the system reverts to 

standard ACO path planning logic (label C). In both cases, retrieved paths are temporarily stored in 

local memory, allowing faster access for repeated queries within the same simulation run. This 

temporary storage avoids redundancy and accelerates execution without compromising accuracy. 

This phase minimizes redundant calculations and ensures that the ACO algorithm operates 

efficiently in dynamic environments. At the beginning of this phase, the system queries the 𝑅 for any 

previously computed paths matching the current start and goal point. The retrieved paths are directly 

incorporated into the ant’s movement strategy: 

• If a matching path is found, it is retrieved and applied immediately, by passing the need for a 

full iterative process. 

• If no stored path exists, the system defaults to standard ACO path computation, ensuring that 

the AMR can still operate effectively in unknown scenarios. 

• All retrieved paths are temporarily stored in local memory, ensuring faster access for repeated 

queries within the same iteration. 

Importantly, the path solution updates to the global path storage are handled asynchronously. 

Once a new path is computed, it is offloaded to the edge cloud without interrupting the ongoing 

iteration cycle. To incorporate past solutions effectively, IECACO integrates a retrieval influence 

factor 𝑅𝑖𝑗(𝑡) into the decision-making and pheromone update process. 𝑅𝑖𝑗(𝑡) represents the retrieval 

influence factor, indicating whether the path should be retrieved. This factor reflects the reliability or 

frequency of a previously stored path between nodes 𝑖 and 𝑗, as recorded in the global path storage. 

𝑅𝑖𝑗(𝑡) can be defined as. 

 𝑅𝑖𝑗(𝑡) = {
1, path retrieval is needed
0, otherwise

 
  (12) 

As 𝑅𝑖𝑗(𝑡) increases, the probability 𝑃𝑖𝑗(𝑡)also increases, ensuring that paths stored in global 

storage are prioritized when they demonstrate high reliability and effectiveness. By integrating 𝑅𝑖𝑗(𝑡) 
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into the pheromone update rules, the algorithm reinforces the retrieved path’s pheromone levels based 

on its utility, promoting these paths in future iterations. Let 𝛼, 𝛽  and 𝛾  are weight parameters 

controlling pheromone, heuristic, and retrieval influence, respectively. The state transition probability 

for an ant moving from node 𝑖 to node 𝑗 is adjusted as. 

 𝑃𝑖𝑗(𝑡) =
[𝜏𝑖𝑗(𝑡)]𝛼[𝜂𝑖𝑗(𝑡)]𝛽[𝑅𝑖𝑗(𝑡)]𝛾

∑ [𝜏𝑖𝑗(𝑡)]𝛼
𝑘∈𝑁𝑖

[𝜂𝑖𝑗(𝑡)]𝛽[𝑅𝑖𝑗(𝑡)]𝛾
 (13) 

where, 𝜏𝑖𝑗(𝑡) denotes as pheromone level on edge (𝑖, 𝑗), in the equation represents the reinforcement 

of previously traveled paths which explains the higher pheromones levels indicates frequently used or 

optimal paths. In IECACO, when a path is retrieved, its pheromone level is updated to reinforce its 

usefulness in future iterations. The pheromone update rule is modified to include the retrieval 

influence factor as in (14). Let 𝜆 is a scaling factor controlling retrieval influence. By integrating past 

solutions into pheromone updates, IECACO ensures that effective paths retain their influence while 

still allowing new exploration when needed. 

 𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌)𝜏𝑖𝑗(𝑡) + ∆𝜏𝑖𝑗(𝑡) + 𝜆𝑅𝑖𝑗(𝑡) (14) 

These two equations fully capture the retrieval mechanism's role in path evaluation and 

reinforcement 𝛾 controls the strength of retrieval influence during decision-making, while 𝜆 governs 

its weight in pheromone reinforcement. This integration reduces unnecessary computation and 

encourages the reuse of successful prior paths, thus improving convergence speed in dynamic 

environments. 

This 𝜏𝑖𝑗(𝑡 + 1) in this phase is different compared to an Ant Iteration Phase, where it only 

reflects on retrieval confidence in (12). The update rule is implemented during or after path retrieval 

when a previously computed path is reused from 𝑅. The update reinforces successful stored paths to 

encourage reuse in similar future conditions. Meanwhile in Ant Iteration Phase, the update rule is 

implemented during ant exploration especially in dynamic environments where new obstacles appear 

or paths open up. 

The proposed IECACO algorithm which integrates ACO approach with a path retrieval 

mechanism is outlined in Algorithm 1. This algorithm outlines the step-by-step execution of the 

method, including the pheromone update procedures and the interconnection between each phase. 

Additionally, Algorithm 1 illustrates how the associated formulations are integrated throughout the 

process. The path retrieval mechanism is embedded within the edge cloud framework, enabling access 

to a Global Path Storage module. 

4. Results and Discussion 

The proposed algorithm is developed and simulated in the environment of MATLAB 2023b and 

a PC with a 1.19GHz Intel ® Core™ i5-1035 processor with 12GB memory. The operating system 

device is Windows 11, and an NVIDIA GeForce MX330 GPU was employed to support 

computational tasks and visualization. This simulation setup provided a stable and consistent 

environment for assessing the computational efficiency of IECACO against the baseline ACO 

algorithm. 

4.1. Initial Experimental Setup  

For the initial comparative analysis, both the traditional ACO and proposed IECACO algorithms 

were evaluated on a simplified 4 × 4 grid map. The experimental parameters are presented in Table 2. 

The IECACO algorithm was tested with four different parameter configurations, varying heuristic 

information and pheromone strength. The selection of these parameter values is based on ranges and 

tuning strategies adopted in prior studies on ACO and its variants, such as those presented in [10], 

[21] and [22]. This allowed for a detailed analysis of their impact on convergence speed and 
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computational efficiency. The study aimed to determine an optimal balance between heuristic 

guidance and pheromone-based reinforcement. 

 

Fig. 4. The flowchart of initialization phase of IECACO 

 

Fig. 5. The flowchart of the ant iteration phase in IECACO 

 

Fig. 6. The flowchart of the path retrieval phase of IECACO 

Table 2.  Experimental parameters values 

Variables Description Variables 
ACO 

[21] 

IACO 

[21] 

IECACO 

D1 

[10] 

D2 

[10] 

D3 

[22] 

D4 

[21] 
Influence of pheromone  α 1 1 1 1 1 1 

Influence of heuristic information β 7 7 2 2 5 7 

Retrieval influence  γ - - 1 1 1 1 

Scaling factor  λ - - 0.5 0.5 0.5 0.5 

Pheromone evaporation rate  ρ 0.45 0.45 0.45 0.45 0.45 0.45 

Pheromone strength 𝑄 400 400 100 200 100 400 

Number of ants  𝑀 50 50 50 50 50 50 

Maximum Number of Iterations  𝐼 100 100 100 100 100 100 
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The IECACO algorithm was evaluated against traditional ACO using quantitative metrics, 

including path quality, computational efficiency, and retrieval performance in static and dynamic 

environments, as presented in Table 3. The classical ACO lacks a path retrieval mechanism, resulting 

in no recorded data for path retrieval time, as classical ACO relies on recalculating paths in iterations. 

Algorithm 1: IECACO 

Input 𝐺:, 𝑆𝑝, 𝐺𝑝, 𝐼, 𝜂, 𝜏, 𝛼, 𝛽, 𝛾, 𝜌, 𝑄, and 𝑅 # Ant Iteration Phase 

Output: 𝑃𝑏𝑒𝑠𝑡, 𝐿𝑘 while (𝑥, 𝑦) ≠ 𝐺𝑝 

#Initialize Phase Compute transition probability 𝑃𝑖𝑗(𝑡)  

Initialize 𝐺 with free cells and wall cells Move 𝑘 to node 𝑗 using (12) 

Define 𝑆𝑝 and 𝐺𝑝 if cell “1” is detected at (𝑖, 𝑗) 

Initialize pheromone levels: set 𝜏𝑖𝑗 =  𝜏0 for all edges (𝑖, 𝑗)   if (𝑖, 𝑗) exist previously in 𝑅 

Deploy ants 𝑛 at 𝑆𝑝 Retrieve 𝑃𝑏𝑒𝑠𝑡 from 𝑅 

Initialize 𝑅 else  

#Ant Iteration Phase Recompute the path to bypass the wall cell (8) 

for iteration  𝑡 = 1: 𝐼  Update pheromone 𝜏𝑖𝑗(𝑡 + 1) (10) 
for each ant 𝑘 = 1: 𝑛  Store the 𝑃𝑏𝑒𝑠𝑡 in the iteration to 𝑅  

Set the current position (𝑥, 𝑦) to 𝑆𝑝 End for each 𝑛 

#Path Retrieval Phase End 𝐼 

Check if a precomputed path exists in 𝑅 //Access 𝑅  via edge cloud Return 𝑃𝑏𝑒𝑠𝑡 𝐿𝑘 

if a stored path exists, retrieve and follow 𝑃𝑏𝑒𝑠𝑡  

Pheromone update (14) else  

Table 3.  Evaluation metrics 

Metric Details 

Path Length (unit per cell) Measures the total distance of the computed path (𝐿𝑘) 

Number of Iteration The number of iterations required to achieve an optimal solution. 

Computational Time (s) The time taken to compute a feasible path 

Path Retrieval Success Rate Measures the success rate of the path retrieval of each simulation 

Path Retrieval Time (s) 
Measures the time taken to retrieve a previously computed path 

from Global Path Storage 

4.2. Statistics Analysis 

To assess the statistical significance of the differences among the IECACO configurations, which 

are D1, D2, D3 and D4, a one-way ANOVA was performed on the experimental results obtained from 

50 independent runs. The test was conducted to evaluate whether the mean values of key performance 

metrics path length, number of iterations, computational time, and retrieval time which is differ 

significantly across configurations. The null hypothesis 𝐻0 was defined as  

𝐻0: 𝜇𝐷1 = 𝜇𝐷2 = 𝜇𝐷3 = 𝜇𝐷4 

Table 4 shows the ANOVA summary table. The F statistic is 2.13, the F-critical is 3.01, and the 

p-value is 0.08. Therefore, since the value of F < F-critical and p > 0.05, we fail to reject the null 

hypothesis, indicating that the performance differences among configurations D1–D4 are not 

statistically significant. This confirms the consistency and stability of the IECACO algorithm. 

Table 4.  The ANOVA table 

Source of Variation SS df MS F F-Critical 
Between Groups 0.51 3 0.17 2.13 3.01 

Within Groups 15.92 46 0.35   

Total 16.43 49    

4.3. Performance Evaluation  

The evaluation of IECACO was conducted across 50 independent experimental runs to ensure 

reliability and consistency. Fig. 7 provides a visual comparison of the performance between the 

traditional ACO and the proposed IECACO across multiple performance metrics. In Fig. 7 (a), it is 

evident that IECACO consistently achieves convergence with fewer iterations than ACO. The 
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classical ACO displays a more erratic convergence behavior, requiring a significantly greater number 

of iterations to reach an optimal path solution. This difference highlights the efficiency of the path 

retrieval mechanism embedded in IECACO, which accelerates convergence, especially when reusable 

paths from global storage are available. The Fig. 7 (b) further supports this observation by showing 

that the paths generated by IECACO are consistently shorter than those produced by ACO. In Fig. 7 

(c), the computational time for each method is compared, with ACO incurring a longer runtime due 

to repetitive computation and pheromone updates. Lastly, Fig. 7 (d) illustrates the path retrieval time 

for IECACO, highlighting the system's ability to reduce overall planning time through efficient reuse 

of previously computed paths. 

  
(a) (b) 

  
(c) (d) 

Fig. 7. The performance plot evaluations run against (a) number of iteration (b) path length (c) computational 

time (d) path retrieval time 

Table 5 then compares the performance of the traditional ACO algorithm with different parameter 

values of the IECACO algorithm (D1-D4). Each metric is reported as Mean ± Standard Deviation, 

where the standard deviation (std) reflects how much the results varied across multiple simulation 

runs. These numerical insights reinforce the superiority of IECACO across all tested metrics, 

validating its suitability for efficient path planning in dynamic and resource-constrained environments. 

Table 5.  The average performance metrics across evaluation runs 
1
 

Metric ACO 
IECACO 

D1 D2 D3 D4 
Path Length (unit per cell) 8.63 8.23+/-0.22 8.04+/-0.19 7.82+/-0.17 7.40+/-0.15 

Number of Best Iteration 56 32+/-2.3 30+/-2.1 27+/-1.8 23+/-1.6 

Computational Time (s) 1.05 1.00+/-0.06 0.98+/-0.05 0.94+/-0.04 0.89+/-0.03 

Reduction (%)  4.76 6.67 10.48 15.23 

Path Retrieval Time (s) - 0.041+/-0.004 0.031+/-0.22 0.022+/-0.002 0.011+/-0.002 

4.4. IECACO Analysis 

The performance improvements observed in IECACO compared to ACO can be attributed to the 

variations in key experimental parameters, as presented in Table 5. The tuning of these parameters 

 

1 The Mean ± Standard is computed based on the standard error 𝜎 = √
1

𝑟−1
∑ (𝑥𝑛 − 𝜇)2𝑟

𝑛=1  
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directly influenced the efficiency of the path-planning process, particularly in terms of convergence 

speed, path length, and computational time. 

The heuristic information parameter 𝛽 , which govern the significance of heuristic values in 

decision-making, varied across different configurations. A higher 𝛽 value increases the algorithm's 

reliance on heuristic information, resulting in more informed and efficient path selection. This effect 

is evident in the shorter path lengths observed in IECACO. Furthermore, the pheromone strength 𝑄 

plays a crucial role in reinforcing optimal paths over multiple iterations where it employs 

progressively higher values across D1-D4, whereas ACO maintains at 100. Based on Table 5, D2 has 

lower heuristic information 𝛽 compared to D3. Higher 𝛽 increases the weight heuristic desirability, 

making the algorithm prioritize   shorter and more direct paths. Meanwhile, in terms of 𝑄, even though 

D3 has lower strength, it reinforces paths too strongly, potentially leading to premature convergence 

on suboptimal routes. This proves that D3 strikes a better balance between exploring new paths and 

exploiting previously successful ones. A higher 𝛽 integrate with a moderate value of 𝑄, prevents 

excessive commitment to early solutions, allowing for more adaptive path refinement. This 

combination results in shorter paths, faster convergence, and reduced computational overhead, making 

D3 the superior configuration. 

In this study, Path Retrieval Success is defined as the successful identification and reuse of a 

previously stored path from the global path storage 𝑅 , that is remains valid under the current 

configuration of the environment. If no matching path is found or if the environmental changes 

invalidate the stored path, the system proceeds with a new computation using the IECACO procedure. 

The threshold for considering retrieval success varies based on the environment type. In static 

environments, a success rate exceeding 90% is considered high. In contrast, for dynamic 

environments, a success rate above 60% is deemed satisfactory due to the increased variability and 

complexity of the scenarios. Fig. 8 presents the Path Retrieval Success Rate across different runs. The 

results are evaluated based on (12), (14) where a value of 1 denotes a successful retrieval, and 0 

indicates either a retrieval failure or a case where retrieval was unnecessary. The computed success 

rate percentage is plotted across multiple simulation runs. As shown in Fig. 8, the retrieval mechanism 

consistently achieved a 100% success rate in a static environment. Meanwhile, in dynamic settings, it 

maintained an average success rate of approximately 80%, confirming its robustness and adaptability 

in changing scenarios. 

 

Fig. 8. The path retrieval success rate trends 

4.4.1. Evaluation in Static Environment 

To further assess the effectiveness of IECACO in a broader context, its performance is compared 

with the IACO [21], a multistep algorithm incorporating with edge cloud computing for path planning. 
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[21] aims for the shortest path with minimal execution time per iteration. This paper will validate the 

efficiency of IECACO, by conducting an additional simulation in a dynamic environment across 10 

independent runs, demonstrating its adaptability and computational efficiency in dynamic scenarios 

in bigger workspace and different type of obstacles as described in Section 2.1.1. and Section 2.1.2. 

To ensure a fair and meaningful comparison with IACO method proposed in [21], this study adheres 

closely to the experimental setup described in that work and the key parameters such as α, β, ρ, and Q 

were kept identical across all algorithms as shown in Table 2.   

For the result, Table 6 shows a depth comparison of the three algorithms in both environments. 

The table proves that IECACO outperforms both ACO and IACO across all three evaluation criteria. 

The convergence rate of IECACO is significantly faster IACO and ACO. In terms of path length, 

IECACO achieves the shortest final path. Furthermore, the computational time required by IECACO 

is the lowest among the three approaches, measuring 9.526 seconds. This represents a 41.4% reduction 

in computation time compared to ACO and a 15.4% improvement over IACO.  

4.4.2. Evaluation in Dynamic Environment 

To evaluate the performance of the proposed IECACO algorithm in a dynamic environment, the 

simulation was executed 10 times. The average values of the repeated experiments were listed in Table 

6. These experimental results confirm that IECACO is highly effective in dynamic environments 

proving the implementation of the path retrieval mechanisms significantly reduces redundant 

computations, reinforcing IECACO’s superiority over the other ACO-based approaches. Moreover, 

IECACO supports asynchronous retrieval updates to global storage, whereas IACO relies on 

synchronous multi-step searches. These architectural distinctions provide a stronger foundation for 

generalization to dynamic environments. However, it is acknowledged that both methods leverage 

edge computing differently, and this difference in design contributes to performance variation.  

While this study evaluates IECACO using two grid map sizes, selected for initial benchmarking 

and comparative analysis with prior studies [21], it is acknowledged that larger and more complex 

grid scenarios were not explicitly simulated. The 4×4 grid was employed to allow detailed insights 

under a constrained and controlled setup, while the 20×20 grid reflects the setup used in the referenced 

baseline (IACO) in [21]. The decision to conduct 10 experimental runs was based on the observation 

that the performance trends stabilized early with minimal variance across repeated trials. While 

additional runs such as up to 20 runs, were also executed during internal validation, the results 

remained consistent with the initial trends. To maintain conciseness due to page limitations, these 

extended results are not included in the manuscript. Therefore, the decision to report 10 runs was 

considered sufficient to validate the performance of the algorithm, demonstrate trend stability in 

dynamic environments and ensure efficient use of edge cloud computing. 

Table 6.  Performance comparison in various environments 

Environment Type 
Number of 

Iteration 

Path Length 

(unit/cell) 

Computational  

Time (s) 

Path Retrieval  

Time (s) 

Static 

ACO 56 52.22 16.245 - 

IACO [21] 33 31.35 11.258 - 

IECACO 
21 28.57 9.526 - 

Dynamic 23 29.57 11.97 8.36 

5. Conclusion 

In the context of Industry 4.0 and smart logistics, the proposed method has direct implications 

for optimizing autonomous material handling systems, warehouse navigation, and flexible 

manufacturing environments. IECACO aims to make the classical ACO faster, more flexible, and 

quicker to find solutions in changing environments. This mechanism is mathematically integrated into 

the ACO pheromone update and decision-making processes through the retrieval influence factor  
𝑅𝑖𝑗(𝑡) which is introduced as an adaptive weight in both pheromone reinforcement and transition 

probability. The modified pheromone update rule and probabilistic decision model represent a novel 
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contribution, allowing dynamic reuse and reinforcement of reliable paths. This dual-layered 

framework optimizes both path exploration and exploitation across dynamic planning scenarios. 

However, despite the promising result, it is acknowledged that the current implementation and 

evaluation of the IECACO algorithm are conducted entirely within a MATLAB simulation 

environment have several limitations. The dynamic environment experiments, as observed in 

Subsection 4.3., might not fully capture the breadth of real-world variability. Moreover, while the path 

retrieval mechanism improves computational efficiency in stable conditions, it may become less 

effective in highly dynamic environments where stored paths are frequently invalidated. This could 

lead to additional overhead due to repeated verification. While this allows for controlled 

experimentation, rapid iteration, and reproducibility, it does limit the direct applicability of the results 

to physical robotic systems. The absence of hardware-in-the-loop testing means that aspects such as 

sensor noise, actuator delay, communication latency, and hardware constraints are not fully captured 

in this study. In the simulation, obstacle positions are reallocated on a per-run basis, representing a 

form of environmental change that is structured yet non-deterministic. While real-world scenarios 

may involve continuous obstacle movement, sensor uncertainties, and more complex dynamics, the 

current simulation framework offers a controlled and reproducible platform for evaluating algorithmic 

adaptability. Nevertheless, the algorithm has been designed with practical deployment in mind, 

particularly through the use of edge cloud integration and modular path retrieval mechanisms that are 

compatible with real-time robotic architectures. Future research will focus on enhancing the scalability 

of IECACO by extending its evaluation to larger and more complex grid maps to examine its 

computational viability under increased state-space complexity. One direction involves optimizing 

memory management and retrieval indexing mechanisms to ensure efficient path selection in high-

density obstacle environments. Additionally, validating IECACO on physical AMR platforms is a 

critical next step, which will involve real-time testing using onboard edge devices to evaluate 

performance under real-world latency, sensor noise, and network constraints. Another suggestion is 

to hybridize IECACO with deep reinforcement learning (DRL) to create an adaptive learning-based 

path planner. For instance, DRL can be employed to learn obstacle movement patterns in dynamic 

environments and inform the pheromone updating rules or retrieval selection heuristics, enhancing the 

system’s responsiveness to non-deterministic changes. The proposed IECACO algorithm exhibits 

strong potential for broader application across various domains that involve combinatorial 

optimization and dynamic decision-making. This includes areas such as drone flight path optimization 

in urban air mobility, real-time traffic routing in intelligent transportation systems, and dynamic task 

scheduling in cloud and edge computing infrastructures. 
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