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1. Introduction 

With the rapid advancement of intelligent transportation systems [1] and automobile technology 

[2], fully automated vehicles have garnered significant attention from researchers due to their broad 

potential applications [3]. These vehicles rely on multidisciplinary frameworks, with perception [4], 

decision-making [5], and control [6] serving as the three core pillars of their software architecture. 

Among these, path-planning and path-tracking are central to ensuring reliable autonomous operation 

[7]. Effective path planning is vital for safety, comfort [8], and vehicle controllability in extreme and 

high-speed conditions [9]. 

In the context of autonomous driving, both path and motion planning are critical. Path planning 

determines a collision-free route from the current location to a destination while considering road 

geometry, traffic rules, and obstacles. Motion planning, in contrast, focuses on real-time trajectory 

generation that ensures kinematic feasibility, smooth movement, and safe execution of the path. While 

the former handles strategic routing, the latter manages the tactical control necessary for safe and 

comfortable vehicle operation under dynamic conditions. This paper concentrates on motion planning, 

especially for highway scenarios, where high-speed navigation, lane-keeping, and rapid 

responsiveness to traffic changes are crucial. The process integrates data on the ego vehicle’s state 
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(e.g., speed, orientation), environmental context (e.g., obstacles and traffic), and road conditions to 

generate a collision-free, smooth, and optimized trajectory [10]. 

1.1. Components of the Path Planning 

The motion planning process in autonomous vehicles builds upon multiple interconnected 

modules, from environmental mapping to control execution. Key components include: 

1. Perception and environment mapping: acquisition of sensor data (LiDAR, radar, GPS, cameras) 

[11]. Object and pedestrian detection/tracking [12]-[14]. Construction of an up-to-date 

environment map. 

2. Localization: estimation of vehicle position using GPS, IMU, and map data [15], [16]. 

3. Route Planning: High-level navigation with global path planning and waypoint generation [17]. 

4. Behavior planning: evaluation of driving scenarios (merges, lane changes) and behavior 

selection [5], [18]. 

5. Path generation: feasibility checks and generation of smooth paths using spline or polynomial 

techniques [19], [20]. 

6. Trajectory planning: detailed trajectory generation with optimization and collision avoidance 

strategies [21]. 

7. Speed profile generation: optimal velocity planning with comfort and safety considerations [21], 

[22]. 

8. Control interface: translation of trajectory into control commands with feedback monitoring 

[18], [19]. 

Together, these components operate in a feedback loop to ensure adaptive and efficient vehicle 

navigation [23]. Among them, modules 4 through 8-behavior planning to control interface-are most 

representative of motion planning, which is the focus of this study. These modules enable real-time 

responsiveness and precise execution of high-level plans while adhering to vehicle dynamics and 

safety constraints. 

1.2. Background and Literature Review 

Several motion planning techniques have been proposed and can be categorized into the 

following five key approaches: 

1.2.1. Space Configuration 

This approach builds an occupancy grid map based on the egocar’s state and the positions of 

surrounding obstacles. The environment is discretized into grid cells, each classified as occupied or 

free. Free cells are used to generate potential paths using algorithms such as Voronoi diagrams [24], 

lattice structures, and sampling-based methods. While these methods are computationally efficient, 

they often neglect vehicle dynamics, leading to infeasible trajectories. 

1.2.2. Path-Finders 

Path-finders like A*, Dijkstra, and Rapidly-exploring Random Trees (RRT) aim to discover the 

optimal path between start and goal points, minimizing cost functions like distance or time [25]. A* 

and Dijkstra rely on complete knowledge of the environment, while RRTs handle unknown terrains 

more flexibly. However, like space configuration methods, they do not consider the dynamic 

constraints of real vehicles, limiting their applicability in motion planning. 

1.2.3. Attractive and Repulsive Fields 

These methods employ artificial potential fields where attractive forces guide the vehicle toward 

the target and repulsive forces steer it away from obstacles [26]. The resultant force dictates the 

vehicle’s movement. Although intuitive and computationally light, these methods are prone to local 

minima and can yield unstable trajectories in complex environments. 
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1.2.4. Curves 

Curves such as splines, Bezier curves [28], and clothoids are used to model smooth local paths 

based on vehicle state and road geometry [27]. Two main strategies exist: 

• Point-Free: Generates continuous, kinematically feasible trajectories. 

• Point-to-Point: Connects specific waypoints with smooth curves. 

While these curves yield realistic paths, validating each trajectory for dynamic feasibility and 

obstacle avoidance is computationally intensive, posing challenges for real-time execution. 

1.2.5. Artificial Intelligence Schemes 

AI techniques such as fuzzy logic, neural networks [29], and evolutionary algorithms (e.g., PSO, 

GA, ACO) are employed for flexible, adaptive path planning without requiring exact models. They 

excel in handling uncertainty and non-linearity but typically demand substantial computational 

resources, making real-time implementation difficult. A comprehensive review of these methods is 

provided in [18]. 

Hybrid approaches are increasingly adopted to harness the strengths of multiple methods [20]. 

For example, combining splines with numerical optimization ensures trajectory feasibility and 

objective optimization [28]-[30]. Similarly, integrating Artificial Potential Fields with MPC improves 

control performance [31]. However, these combinations increase system complexity and 

computational load, often compromising real-time feasibility. 

Despite progress, challenges persist in developing motion planners that balance simplicity, 

safety, robustness, and responsiveness under realistic operating conditions. Many existing methods 

struggle to incorporate dynamic constraints effectively while maintaining low-latency performance 

and smooth vehicle operation. 

To address this, the current study proposes the Local Spline-based Path Planner (LSPP)—a novel 

framework that merges rule-based waypoint generation with spline curve fitting and MPC-based 

control. This integration enables the generation of dynamically feasible, smooth, and safe local 

trajectories aligned with global navigation paths. The LSPP aims to meet four critical criteria: 

• Safety: Navigates dynamic and uncertain environments without collisions. 

• Comfort: Minimizes jerk and abrupt motion for smooth rides. 

• Accuracy: Enhances trajectory tracking precision. 

• Real-time Performance: Maintains high responsiveness using computationally efficient modules. 

By targeting these goals, this study contributes a practical and modular solution to the motion 

planning challenges faced by autonomous vehicles, particularly in highway driving scenarios. 

2. Method 

2.1. Foundation of Motion Planning 

The following sections shed the light on the foundation of the proposed motion planner: 

2.1.1. Path Planning Architecture 

Fig. 1 represents a comprehensive architecture of a path planning and control system for an 

autonomous vehicle, showcasing the flow of information between various modules and components 

that contribute to trajectory planning and vehicle control.  

The system initiates with the mission planner module (MPM), which is supplied with inputs from 

both the GPS and a global digital street map. These inputs enable the MPM to generate a high-level 

trip route. This route is then forwarded to the Rule-Based Localized Path Planner (RBLPP), which 

uses this information to extract a nearby segment of the route (according to the current ego car 
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coordinates) and generate for this segment approximate waypoints, defining the start, end, and some 

midpoint positions for it. The RBLPP also receives critical information on moving and stationary local 

objects from the Object Detection Module (ODM), which integrates data from multiple sensors, 

including Cameras, Radars, Lidars, and Sensor Fusion Algorithms. Each of these sensors feeds its 

data into the sensor fusion module, which processes and combines the data to form a coherent 

understanding of the vehicle’s surrounding environment. 

The approximate waypoints generated by the RBLPP are subsequently refined by the Spline-

Trajectories Generator, which produces more accurate trajectories for the vehicle to follow. These 

refined trajectories are then supplied to the MPC (Model Predictive Control) Controller, which is 

responsible for generating the necessary control commands to actuate the vehicle. The MPC outputs 

steering commands and throttle/brake commands, which are sent to the vehicle’s actuators, ensuring 

precise and responsive control of the egocar. 

The modules within the green oval in Fig. 1 represent the motion planner which is the main focus 

of this paper, which determines what behavior the vehicle should exhibit at any point in time (e.g. 

stopping at a traffic light or intersection, changing lanes, accelerating, or making a left turn onto a new 

street, etc.). 

 

Fig. 1. Architecture of the autonomous vehicle path planning 

2.1.2. Key Characteristics of Quintic Polynomials 

A quantic spline polynomial is a piecewise-defined polynomial function used in interpolation 

and approximation of data to create smooth curves that pass through or near a set of data points. They 

are characterized as follows: 

1. Piecewise Definition: A spline is defined by multiple polynomial segments, each valid over a 

specific interval. For example, a quantic spline is composed of 5th polynomials defined piecewise 

between each pair of waypoints 
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 (𝑥𝑖 , 𝑦𝑖) 𝑎𝑛𝑑 (𝑥𝑖+1, 𝑦𝑖+1) 

𝑦𝑖(𝑥) = 𝑎𝑖 + 𝑏𝑖(𝑥 − 𝑥𝑖) + 𝑐𝑖(𝑥 − 𝑥𝑖)2 + 𝑑𝑖(𝑥 − 𝑥𝑖)3 + 𝑒𝑖(𝑥 − 𝑥𝑖)4 + 𝑓𝑖(𝑥 − 𝑥𝑖)5 

𝑓𝑜𝑟 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1] 

(1) 

2. Continuity and Smoothness: Splines are constructed to ensure a certain level of smoothness at 

the points where the polynomial pieces join (called knots). For quantic splines, the first, second, 

third, and fifth derivatives are usually continuous across the intervals, making the transition 

between segments very smooth. 

3. Local Control: Each segment of the spline is influenced mainly by its local data points (waypoints 

received from the RBLPP), allowing for localized changes in the shape of the curve without 

significantly affecting the entire curve. 

4. Boundary Conditions: When constructing splines, additional conditions are needed at the 

endpoints to uniquely determine the spline. Common boundary conditions include specifying the 

values of derivatives up to the 4th order at the endpoints, and higher order or derivatives are set 

to zero. 

For 𝑛 + 1 data points (𝑥0, 𝑦0), (𝑥0, 𝑦0), … , (𝑥𝑛 , 𝑦𝑛), a quantic spline 𝑆𝑛 consists of n quantic 

polynomials given by Eq. (1) defined on each interval [𝑥𝑖 , 𝑥𝑖+1]. The coefficients 

𝑎𝑖 , 𝑏𝑖, 𝑐𝑖 , 𝑑𝑖, 𝑒𝑖 , 𝑎𝑛𝑑 𝑓𝑖 are determined by solving a system of equations that enforce: 1) The spline 

passing through or very close to the data points. 2) Continuity of the spline and its first, second, third, 

and fourth derivatives at each knot. 3) The chosen boundary conditions. 

2.1.3. The Proposed Motion Planner 

Behavior planning involves three key components: 1) predicting the behavior of obstacles, 

including other vehicles on the road, 2) making high-level decisions on the appropriate actions to 

achieve the desired goal safely and efficiently, such as slowing down, accelerating, turning, or 

changing lanes, and 3) generating trajectories that translate these decisions into a feasible path, 

typically represented as a series of waypoints or a mathematical formula, for the vehicle's control 

system to execute [32]. The proposed LSPP protocol operates as follows: 

1. Interpolate waypoints for a nearby section (30 to 50 meters long) of the route provided by the 

MPM. 

2. Determine the state of the egocar, including its position, orientation, velocity, and acceleration. 

3. Generate a set of predicted trajectories for each surrounding vehicle using data received from the 

ODM. 

4. Identify the available states for the egocar, such as “keep lane,” “change lanes to the right,” or 

“change lanes to the left.” 

5. For each available state, generate a target end state for the egocar and create multiple randomized 

potential trajectories by slightly perturbing elements of the target state. These “Jerk-Minimized 

Trajectories” (JMTs) [33] are quintic spline polynomials derived from the current initial and 

desired final values of position, velocity, and acceleration [34]. 

6. Evaluate each potential trajectory using a set of cost functions that reward efficiency and penalize 

factors such as collisions, excessive jerks, or exceeding speed limits. 

7. Select the trajectory with the lowest cost. 

8. Assess this trajectory at the next several 20-millisecond intervals (the rate at which the data is 

received from the sensor fusion module) [35]. 

9. Append these evaluations to the retained portion of the previous path. 

10. Send the updated path to the MPC controller for execution. 
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The Jerk Minimizing Trajectory (JMT) algorithm is implemented in C++ [36] to generate smooth 

trajectories that minimize sudden changes in acceleration, resulting in more comfortable and safer 

driving. 

The JMT calculation involves finding the coefficients of a polynomial (5th order in quintic 

spline) that describe the vehicle's path from a given start state to an end state over a specified time T 

(usually indicates the required speed profile). The key components of the algorithm can be portrayed 

as follows: 

1. Input Parameters: 

• Start: A vector of three elements [position, velocity, acceleration] representing the initial 

state of the vehicle. 

• End: A vector of three elements [position, velocity, acceleration] representing the final state 

of the vehicle. 

• T: The time duration over which the vehicle should move from the start state to the end state. 

2. Output: 

• A vector of coefficients for a 5th-degree polynomial of the form: 𝑝(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 +
𝑎3𝑡3 + 𝑎4𝑡4 + 𝑎5𝑡5. 

• These coefficients are determined to minimize jerk over the time T. 

3. Calculation: A system of equations is set up using the boundary conditions provided by the start 

and end states. The C++ Eigen library [36] is used to solve this system and find the polynomial 

coefficients. 

2.2. Implementation of the LSPP 

The following sections provide an in-depth overview of the implementation tasks for the 

proposed algorithm: 

2.2.1. The Finite State Machine 

While driving on the highway, the egocar typically considers several key driving states. These 

states help the car adapt its behavior based on the surrounding environment, including the positions 

of other vehicles and obstacles. In the design of the proposed LSPP algorithm, the states that the egocar 

can occupy are listed in Table 1. 

Moreover, cost functions are used by the egocar, to evaluate and optimize the decision-making 

process in real-time. These functions assign a numerical value (or cost) to different possible actions, 

helping the system select the most optimal choice [34]. Here in Table 2 is a summary of the cost 

functions used to transition between various states while driving on the highway. 

The decision-making process in the egocar employs a Finite State Machine (FSM) (illustrated in 

Fig. 2) with the seven states that have been specified earlier in Table 1 and transitions based on certain 

cost functions (Table 2) and triggering transitional conditions (TTCs) (listed in Table 3). Each state 

represents a different driving behavior, and the transitions depend on conditions like lane preference, 

proximity to obstacles, and the need for speed adjustments. The FSM in Fig. 2 is illustrated as a 

directed graph with nodes representing states and arrows representing transitions between states, 

labeled with the triggering conditions [37]. 

2.2.2. The Vehicle Kinematic Model 

This paper employs the Kinematic Bicycle Model [22] to simulate the behavior of the 

autonomous vehicle. The model is represented by nonlinear continuous-time equations (2), which 

describe its dynamics in an inertial reference frame, as illustrated in Fig. 3. In this model, x and y 

represent the coordinates of the vehicle’s center of mass in an inertial reference frame (X, Y). The 

variable 𝜓 denotes the vehicle’s heading angle relative to the inertial frame, and 𝑣 indicates its speed. 
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The parameters lf and lr correspond to the distances from the center of mass to the front and rear axles, 

respectively. 𝛽 defines the angle between the velocity of the center of mass and the vehicle's 

longitudinal axis, while a is the acceleration in the same direction as the velocity. The control inputs 

are the front and rear steering angles, 𝛿𝑓, and 𝛿𝑟, respectively. In most vehicles, the rear wheels are 

not steerable, so 𝛿𝑟 is assumed to be zero. Additionally, 𝜔 represents the angular velocity of the 

steering. 

Table 1.  Key driving states 

# 
Ego Car 

State 
Description 

Possible 

Transitions 

Triggering 

Conditions 
Relevant Cost Functions 

1 Keep Lane 

The ego car 

stays in its 

current lane, 

maintaining a 

safe distance 

from vehicles. 

- Change Lane Left 

- Change Lane Right 

- Emergency Stop 

- Speed Up 

- Slow Down 

- Keep Lane 

- Safe distance 

maintained 

- No vehicles blocking 

the lane 

- Speed close to target 

- Speed cost (maintain target 

speed) 

- Collision cost (avoid rear-

end collisions) 

- Lane preference cost 

2 
Change Lane 

Left 

The ego car 

shifts to the left 

lane, typically 

to overtake a 

slower vehicle. 

- Keep Lane 

- Emergency Stop 

- The left lane is clear 

- Left lane offers 

higher speed efficiency 

- Safe to maneuver 

- Collision cost (check for 

vehicles in the left lane) 

- Jerk cost (minimize jerk) 

- Overtaking efficiency cost 

3 
Change Lane 

Right 

The ego car 

shifts to the 

right lane, 

typically to 

make way for 

faster traffic. 

- Keep Lane 

- Emergency Stop 

- The right lane is clear 

- Need to avoid slower 

or obstructed vehicles 

-Approaching an exit 

- Collision cost (check for 

vehicles in the right lane) 

- Lane preference cost 

- Jerk cost (minimize jerk) 

4 
Prepare for 

Exit 

The ego car 

prepares to 

leave the 

highway by 

moving into the 

exit lane. 

- Take Exit 

- Change Lane Right 

- Emergency Stop 

- Exit approaching 

within a certain 

distance 

- The right lane is clear 

to merge into an exit 

lane 

- Lane preference cost 

(moving toward the exit) 

- Speed cost (maintain 

appropriate speed for exit) 

- Fuel Efficiency cost 

5 
Emergency 

Stop 

The ego car 

decelerates 

rapidly to avoid 

a collision or 

stop for an 

obstacle. 

- Keep Lane 

- Change Lane 

Left/Right (if 

possible) 

- Obstacle detected 

ahead 

- Collision is imminent 

- Severe traffic jam 

- Collision cost (avoidance) 

- Jerk cost (smooth 

deceleration) 

- Safety margin cost 

(maintain safe stopping 

distance) 

6 Speed Up 

The ego car 

increases speed 

to maintain the 

target speed or 

overtake other 

cars. 

- Keep Lane 

- Change Lane 

Left/Right 

- Emergency Stop 

- Lane ahead is clear 

- Ego car moving 

slower than the target 

speed 

- Speed cost (to reach target 

speed) 

- Fuel efficiency cost (avoid 

unnecessary speeding) 

- Overtaking efficiency cost 

7 Slow Down 

The ego car 

decreases speed 

to maintain 

safety and 

avoid 

collisions. 

- Keep Lane 

- Change Lane 

Left/Right 

- Emergency Stop 

- Slower vehicle 

detected ahead 

- Congested traffic 

- Construction or 

obstacles ahead 

- Collision cost (avoid rear-

end collisions) 

- Jerk cost (smooth 

deceleration) 

- Safety margin cost 

 

Compared to higher-fidelity vehicle models [32], the kinematic bicycle model offers easier 

system identification, requiring only two parameters, lf, and lr, which simplifies adapting the same 

controller or path planner to vehicles with different wheelbases. 

The presented vehicle model serves as a constraint to ensure that the generated quintic path 

adheres to the vehicle’s kinematic limitations and is also integrated into the development of the Model 

Predictive Controller (MPC) [23], enabling the vehicle to accurately execute the planned trajectory. 
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Table 2.  Cost functions for transition between different states 

Cost 

Function 
Description Formula 

States 

Where 

Applied 

Purpose in Transitioning 

Between States 

Speed Cost 

Penalizes deviation 

from the target speed, 

either too slow or too 

fast. 

𝐶𝑠𝑝𝑒𝑒𝑑 =
|𝑣𝑒𝑔𝑜 − 𝑣𝑡𝑎𝑟𝑔𝑒𝑡|

𝑣𝑡𝑎𝑟𝑔𝑒𝑡
 

- Keep Lane 

- Speed Up 

- Slow Down 

Ensures the ego car 

maintains an optimal speed, 

transitioning between 

speeding up or slowing 

down as needed. 

Collision 

Cost 

Assigns high penalties 

for potential collisions 

with vehicles, obstacles, 

or other hazards. 

𝐶𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 =
1

𝑑𝑚𝑖𝑛
2 , where 

𝑑𝑚𝑖𝑛 is the minimum 

distance to obstacles 

- Keep Lane 

- Change 

Lane 

Left/Right 

- Emergency 

Stop 

Avoids collisions by 

influencing decisions to 

either change lanes, slow 

down, or stop in case of 

danger ahead. 

Lane 

Preference 

Cost 

Penalizes staying in 

undesirable lanes (e.g., 

slower lanes) and 

rewards transitions to 

faster lanes. 

𝐶𝑙𝑎𝑛𝑒 = 𝑃𝑙𝑎𝑛𝑒, where 𝑃𝑙𝑎𝑛𝑒 

 is a penalty value for 

staying in a less efficient 

lane 

- Change 

Lane Left 

- Change 

Lane Right 

- Prepare for 

Exit 

Guides lane changes based 

on lane desirability, either 

for overtaking slower 

vehicles or preparing for an 

exit. 

Jerk Cost 

Penalizes high jerk 

(rapid changes in 

acceleration) to ensure 

smooth driving and 

passenger comfort. 

𝐶𝑗𝑒𝑟𝑘 = ∫ (
𝑑3𝑥(𝑡)

𝑑𝑡3
)

2

𝑑𝑡
𝑇

0
, 

over time interval T 

- Change 

Lane 

Left/Right 

- Speed Up 

- Slow Down 

- Emergency 

Stop 

Ensures smooth transitions 

during lane changes, 

acceleration, deceleration, or 

emergency stops. 

Overtaking 

Efficiency 

Cost 

Rewards efficient 

overtaking and 

penalizes unnecessary 

or unsafe lane changes. 

𝐶𝑜𝑣𝑒𝑟𝑡𝑎𝑘𝑒 =
1

𝑡𝑝𝑎𝑠𝑠
,  

where 𝑡𝑝𝑎𝑠𝑠 is the time 

taken to overtake 

- Change 

Lane Left 

- Change 

Lane Right 

Guides the ego car in 

making efficient lane 

changes when overtaking 

slower vehicles, avoiding 

unnecessary maneuvers. 

Safety 

Margin Cost 

Ensures the ego car 

maintains a safe 

distance from other 

vehicles and obstacles. 

𝐶𝑠𝑎𝑓𝑒𝑡𝑦 =
1

𝑑𝑒𝑔𝑜−𝑑𝑠𝑎𝑓𝑒
,  

where 𝑑𝑠𝑎𝑓𝑒  is the safe 

distance 

- Keep Lane 

- Slow Down 

- Emergency 

Stop 

Promotes safe driving by 

guiding the ego car to slow 

down or stop if the distance 

to an obstacle becomes too 

small. 

Fuel 

Efficiency 

Cost 

Penalizes unnecessary 

acceleration or 

speeding, promoting 

fuel efficiency. 

𝐶𝑓𝑒𝑢𝑙 =
𝑎2

𝑣𝑒𝑔𝑜
,  

where 𝑎is acceleration and 

𝑣𝑒𝑔𝑜 is the car’s speed 

- Speed Up 

- Slow Down 

Encourages energy-efficient 

driving by optimizing speed 

adjustments and minimizing 

excessive acceleration. 

 

 

Fig. 2. Finite state machine of the autonomous vehicle motion planner 
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Table 3.  Triggering transitional conditions (TTCs) 

# Code Description 
Description of the Triggering Transitional 

Conditions (TTCs) 

1 TTC11 Stay in State 1 

1. Safety Margin Cost is very low, and 

2. Lane Preference Cost is very low, and 

3. Speed Cost is very low. 

2 TTC12 Transit from State 1 → State 2 

1. Collision Cost (check for vehicles in the left lane) 

is very low, and 

2. Overtaking Efficiency Cost is low, and 

3. Speed Cost is high, or 

4. Jerk's Cost is high. 

3 TTC13 Transit from State 1 → State 3 

1. Collision Cost (check for vehicles in the right lane) 

is very low, and 

2. Overtaking Efficiency Cost is low, and 

3. Speed Cost is high, or 

4. Jerk's Cost is high. 

4 TTC14 Transit from State 1 → State 4 1. The Exit is approaching within a certain distance. 

5 TTC15 Transit from State 1 → State 5 

1. Collision Cost is very high, or 

2. Safety Margin Cost is very high, or 

3. Jerk Cost is very high. 

6 TTC16 Transit from State 1 → State 6 

1. Collision Cost (check for vehicles in the same lane) 

is very low, and 

2. Overtaking Efficiency Cost is low, and 

3. Speed Cost (to reach target speed) is high, and 

4. Fuel efficiency cost is low or moderate (avoid 

unnecessary speeding). 

7 TTC17 Transit from State 1 → State 7 

1. Collision Cost (avoid rear-end collisions) is high, 

and 

2. Overtaking Efficiency Cost is high, and 

3. Jerk Cost (smooth deceleration) is moderate, and 

4. Safety Margin Cost is moderate to high. 

8 TTC21 Transit from State 2 → State 1 

1. Safety Margin Cost is very low, and 

2. Lane Preference Cost (current lane) is very low, 

and 

3. Speed Cost is very low. 

9 TTC25 Transit from State 2 → State 5 

1. Collision Cost is very high, or 

2. Safety Margin Cost is very high, or 

3. Jerk Cost (deceleration) is very high. 

10 TTC26 Transit from State 2 → State 6 

1. Collision Cost (check for vehicles in the same lane) 

is very low, and 

2. Overtaking Efficiency Cost is low, and 

3. Speed Cost (to reach target speed) is high, and 

4. Fuel efficiency cost is low or moderate (avoid 

unnecessary speeding). 

11 TTC27 Transit from State 2 → State 7 

1. Collision Cost (avoid rear-end collisions) is high, 

and 

2. Overtaking Efficiency Cost is high, and 

3. Jerk Cost (smooth deceleration) is moderate, and 

4. Safety Margin Cost is moderate to high. 

12 TTC31 Transit from State 3 → State 1 

1. Safety Margin Cost is very low, and 

2. Lane Preference Cost (current lane) is very low, 

and 

3. Speed Cost is very low. 

13 TTC34 Transit from State 3 → State 4 1. The Exit is approaching within a certain distance. 

14 TTC35 Transit from State 3 → State 5 

1. Collision Cost is very high, or 

2. Safety Margin Cost is very high, or 

3. Jerk Cost is very high. 

15 TTC36 Transit from State 3 → State 6 

1. Collision Cost (check for vehicles in the same lane) 

is very low, and 

2. Overtaking Efficiency Cost is low, and 

3. Speed Cost (to reach target speed) is high, and 

4. Fuel efficiency cost is low or moderate (avoid 

unnecessary speeding). 
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16 TTC37 Transit from State 3 → State 7 

1. Collision Cost (avoid rear-end collisions) is high, 

and 

2. Overtaking Efficiency Cost is high, and 

3. Jerk Cost (smooth deceleration) is moderate, and 

4. Safety Margin Cost is moderate to high. 

17 TTC41 Transit from State 4 → State 1 

1. Exit the highway is not possible (exit skipped or 

exit lane is closed) and 

2. Safety Margin Cost is very low, and 

3. Lane Preference Cost (current lane) is very low. 

18 TTC45 Transit from State 4 → State 5 

1. Collision Cost is very high, or 

2. Safety Margin Cost is very high, or 

3. Jerk Cost (deceleration) is very high. 

19 TTC46 Transit from State 4 → State 6 

1. Collision Cost (check for vehicles in the same lane) 

is very low, and 

2. Speed Cost (to reach target speed) is high, and 

3. Fuel efficiency cost is low or moderate (avoid 

unnecessary speeding). 

20 TTC47 Transit from State 4 → State 7 

1. Collision Cost (avoid rear-end collisions) is high, 

and 

2. Safety Margin Cost is moderate to high, or 

3. Jerk Cost (smooth deceleration) is moderate. 

21 TTC51 Transit from State 5 → State 1 

1. Safety Margin Cost is very low, and 

2. Lane Preference Cost (current lane) is very low, 

and 

3. Speed Cost is very high. 

22 TTC52 Transit from State 5 → State 2 

1. Collision Cost (check for vehicles in the left lane) 

is very low, and 

2. Safety Margin Cost (current lane) is high, and 

3. Lane Preference Cost (current lane) is high, and 

4. Lane Preference Cost (left lane) is low, and 

5. Speed Cost is high. 

23 TTC53 Transit from State 5 → State 3 

1. Collision Cost (check for vehicles in the right lane) 

is very low, and 

2. Safety Margin Cost (current lane) is high, and 

3. Lane Preference Cost (current lane) is high, and 

4. Lane Preference Cost (right lane) is low, and 

5. Speed Cost is high. 

24 TTC57 Transit from State 5 → State 7 

1. Safety Margin Cost is moderate, and 

2. Lane Preference Cost (current lane) is moderate, 

and 

3. Speed Cost is high. 

25 TTC61 Transit from State 6 → State 1 

1. Safety Margin Cost is very low, and 

2. Lane Preference Cost (current lane) is very low, 

and 

3. Speed Cost is very low. 

26 TTC62 Transit from State 6 → State 2 

1. Collision Cost (check for vehicles in the left lane) 

is very low, and 

2. Overtaking Efficiency Cost is low, and 

3. Speed Cost is high, or 

4. Jerk Cost is moderate to high, and 

5. Safety Margin Cost (current lane) is high. 

27 TTC67 Transit from State 6 → State 7 

1. Safety Margin Cost is moderate, and 

2. Lane Preference Cost (current lane) is moderate, 

and 

3. Speed Cost is from low to moderate. 

28 TTC71 Transit from State 7 → State 1 

1. Safety Margin Cost is high, and 

2. Lane Preference Cost (left and right lanes) is high, 

and 

3. Collision Cost is moderate to high. 

29 TTC72 Transit from State 7 → State 2 

1. Collision Cost (check for vehicles in the left lane) 

is very low, and 

2. Overtaking Efficiency Cost is low, and 

3. Speed Cost is high, or 

4. Jerk's Cost is high. 
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30 TTC73 Transit from State 7 → State 3 

1. Collision Cost (check for vehicles in the right lane) 

is very low, and 

2. Overtaking Efficiency Cost is low, and 

3. Speed Cost is high, or 

4. Jerk's Cost is high. 

31 TTC76 Transit from State 7 → State 6 

1. Collision Cost is low, and 

2. Safety Margin Cost is low, or 

3. Jerk Cost is low to moderate. 

 

 

Fig. 3. The kinematic bicycle model 

 �̇� = 𝑣 ∗ cos(𝜓 + 𝛽) 

�̇� = 𝑣 ∗ 𝑠𝑖𝑛 (𝜓 + 𝛽) 

�̇� =
𝑣

𝑙𝑟
∗ sin (𝛽) 

�̇� = 𝑎 

𝛽 = 𝑡𝑎𝑛−1 (
𝑙𝑟

𝑙𝑓 + 𝑙𝑟
∗ 𝑡𝑎𝑛(𝛿𝑓)) 

𝛿�̇� = 𝜔 

(2) 

2.2.3. Frenet Coordinates for Autonomous Vehicle Motion Planning 

Frenet coordinates are used in path planning and trajectory tracking for autonomous vehicles, 

where the vehicle’s position is expressed relative to a reference path (often the road or highway 

centerline), simplifying calculations for trajectory following and obstacle avoidance and proven 

effective in reducing computational complexity [38]. Frenet coordinates as shown in Fig. 4 consist of 

two main components: 

• Longitudinal Coordinate (s): The arc length along the reference path from a fixed starting point 

to the projection of the vehicle's position onto the path. It represents the vehicle’s progress along 

the path. 

• Lateral Coordinate (d): The perpendicular distance from the reference path to the vehicle’s 

position, representing the deviation of the vehicle from the path [39]. 
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Together, (s, d) in Frenet coordinates allow the vehicle's movement to be decomposed into 

motion along the path (s) and deviation from it (d), helping streamline path-following and obstacle 

avoidance calculations. 

Frenet coordinates offer significant advantages as they automatically adapt to path curvature, 

ease navigation through turns, and enable efficient trajectory generation for lane-keeping, lane 

changes, and obstacle avoidance by allowing easy manipulation of lateral offsets. Additionally, safety 

constraints, such as lane boundaries, can be conveniently expressed as limits on the lateral coordinate, 

streamlining adherence checks. 

To convert Frenet coordinates (s, d) to Cartesian coordinates (x, y): 

• Identify the reference point on the path: Find the point on the reference path at arc length s from 

the starting point, which serves as the baseline for the lateral offset. 

• Determine the tangent and normal vectors: calculate the tangent vector at (xref, yref) on the 

reference path. This can be derived from the path’s derivative or direction at s. 

• Apply the Lateral Offset: Move d units along the normal vector to obtain (x, y) in Cartesian 

coordinates:  

 𝑥 = 𝑥𝑟𝑒𝑓 + 𝑑. 𝑛𝑥 

𝑦 = 𝑦𝑟𝑒𝑓 + 𝑑. 𝑛𝑦 
(3) 

where 𝑛𝑥 , 𝑛𝑦 are components of the normal vector at the reference point.  

To convert Cartesian coordinates (x, y) to Frenet coordinates (s, d): 

Project the Point onto the Path: Identify the nearest point on the reference path (xref, yref) to (x, 

y), then calculate the arc length s along the path from the starting point to this nearest point using the 

following equation: 

 

𝑠 = ∫ √(
𝑑𝑥

𝑑𝑠
)

2

+ (
𝑑𝑦

𝑑𝑠
)

2

𝑑𝑠
𝑥𝑟𝑒𝑓

0

 (4) 

Calculate the Lateral Distance d: Compute the perpendicular distance from (x, y) to the nearest 

point on the path (xref, yref), giving the lateral offset d as in Equation (5). Positive or negative values 

of d indicate the side of the path relative to the driving direction: 

 
𝑑 = √(𝑥 − 𝑥𝑟𝑒𝑓)

2
+ (𝑦 − 𝑦𝑟𝑒𝑓)

2
 

𝑑 = 𝑠𝑖𝑔𝑛 ((𝑦 − 𝑦𝑟𝑒𝑓).
𝑑𝑥

𝑑𝑠
− (𝑥 − 𝑥𝑟𝑒𝑓).

𝑑𝑦

𝑑𝑠
) . √(𝑥 − 𝑥𝑟𝑒𝑓)

2
+ (𝑦 − 𝑦𝑟𝑒𝑓)

2
 

(5) 

2.2.4. Implementation of the Quintic Polynomial Trajectory 

To design a quintic polynomial trajectory (5th-order polynomial) for a vehicle traveling between 

two waypoints 𝑝1 and 𝑝2, you must account for the Kinematic Bicycle Model parameters such as 

position, velocity, and acceleration at the initial and final states. A quintic polynomial ensures smooth 

transitions by controlling position, velocity, and acceleration, which aligns well with vehicle dynamics 

and provides a drivable path. Employed step-by-step implementation technique: 

A quintic polynomial for a 1D path (e.g., 𝑥(𝑡)) is given by: 

 𝑥(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 + 𝑎3𝑡3 + 𝑎4𝑡4 + 𝑎5𝑡5 (6) 



ISSN 2775-2658 
International Journal of Robotics and Control Systems 

1583 
Vol. 5, No. 2, 2025, pp. 1571-1595 

  

 

Wael A. Farag (Real-Time Autonomous Vehicle Navigation via Rule-Based Waypoint Selection and Spline-Guided 

MPC) 

 

 

Fig. 4. The Cartesian coordinates (X, Y) versus the frenet coordinates (s, d) [40] 

This trajectory describes the position 𝑥(𝑡) as a function of time 𝑡. Another polynomial is needed 

for 𝑦-coordinate, to generate the complete 2D path as follows: 

 𝑦(𝑡) = 𝑏0 + 𝑏1𝑡 + 𝑏2𝑡2 + 𝑏3𝑡3 + 𝑏4𝑡4 + 𝑏5𝑡5 (7) 

To compute the polynomial coefficients, the boundary conditions for both the starting and ending 

points are needed. For each coordinate (e.g., 𝑥 and 𝑦), you need: 

• At 𝑡 = 0 (start at 𝑝1): 

• 𝑥(0) = 𝑥1, 𝑦(0) = 𝑦1 (Initial position) 

• �̇�(0) = 𝑣1 cos( 𝜓1) ,  �̇�(0) = 𝑣1 sin( 𝜓1) (Initial velocity) 

• �̈�(0) = 𝑎1 cos( 𝜓1) , �̈�(0) = 𝑎1 sin( 𝜓1) (Initial acceleration) 

• At 𝑡 = 𝑇 (end at 𝑝2): 

• 𝑥(𝑇) = 𝑥2, 𝑦(𝑇) = 𝑦2 (Final position) 

• �̇�(𝑇) = 𝑣2 cos( 𝜓2) ,  �̇�(𝑇) = 𝑣2 sin( 𝜓2) (Final velocity) 

• �̈�(𝑇) = 𝑎2 cos( 𝜓2) , �̈�(𝑇) = 𝑎2 sin( 𝜓2) (Final acceleration) 

where: 

• 𝑥1, 𝑦1,  𝜓1, 𝑣1, 𝑎1: Initial state (position, heading, speed, acceleration). 

• 𝑥2, 𝑦2,  𝜓2, 𝑣2, 𝑎2: Final state (position, heading, speed, acceleration). 

These boundary conditions ensure smooth transitions and match the vehicle's kinematic 

constraints. Each polynomial has 6 unknown coefficients (𝑎0 to 𝑎5). For both 𝑥(𝑡) and 𝑦(𝑡), 6 

equations are needed from the boundary conditions to solve for the coefficients. For 𝑥(𝑡) the following 

are the 6 boundary equations: 

• 2 equations for Position: 𝑥(0) = 𝑎0, 𝑥(𝑇) = 𝑎0 + 𝑎1𝑇 + 𝑎2𝑇2 + 𝑎3𝑇3 + 𝑎4𝑇4 + 𝑎5𝑇5 

• 2 equations for Velocity: �̇�(0) = 𝑎1, �̇�(𝑇) = 𝑎1 + 2𝑎2𝑇 + 3𝑎3𝑇2 + 4𝑎4𝑇3 + 5𝑎5𝑇4 
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• 2 equations for Acceleration: �̈�(0) = 2𝑎2, �̈�(𝑇) = 2𝑎2 + 6𝑎3𝑇 + 12𝑎4𝑇2 + 20𝑎5𝑇3 

A similar system of 6 boundary equations for 𝑦(𝑡) is constructed to solve for (𝑏0 to 𝑏5). The 

boundary conditions are organized into a linear system of equations and solved for the coefficients 

(𝑎0 to 𝑎5, 𝑏0 to 𝑏5) using a C++ numerical solver, matrix, and vector operations package “Eigen”. 

After the quantic spline is constructed between waypoints 𝑝1 and 𝑝2, it is to calculate the position, 

velocity, and acceleration at discrete time intervals between [0, 𝑇] resulting in new more dense 

waypoints. The process is repeated between waypoints 𝑝2 and 𝑝3, etc. Then, the new waypoints will 

be fed into the Model Predictive Controller (MPC) that uses the generated trajectory to compute 

actuator commands for steering and throttle control. The MPC continuously optimizes control inputs 

(steering and throttle) based on the trajectory and real-time feedback from the vehicle’s sensors. It 

minimizes deviation from the path while adhering to the vehicle’s kinematic constraints. 

The generated trajectory must align with the vehicle's maximum speed, acceleration, steering 

angle, and angular velocity limits as follows: 

• Velocity Limit: Ensure the trajectory’s speed never exceeds the vehicle’s maximum speed 𝑣𝑚𝑎𝑥. 

Constraint: √�̇�2(𝑡) + �̇�2(𝑡) ≤ 𝑣𝑚𝑎𝑥. 

• Acceleration Limit: The acceleration should not exceed a threshold 𝑎𝑚𝑎𝑥 to ensure safety and 

comfort. Constraint: √�̈�2(𝑡) + �̈�2(𝑡) ≤ 𝑎𝑚𝑎𝑥. 

• Steering Angle and Angular Velocity Limits: The trajectory must respect the maximum steering 

angle 𝛿𝑓 and the rate of change of the angle 𝜔 (angular velocity). Constraints: |𝛿𝑓| ≤ 𝛿𝑚𝑎𝑥 and 

|𝜔| ≤ 𝜔𝑚𝑎𝑥. 

• The curvature κ(t) along the spline influences the required steering angle. If the curvature is too 

high, it may exceed the vehicle’s steering capability. The curvature is calculated as:  

 
𝜅(𝑡) =  

�̇�(𝑡)�̈�(𝑡) −  �̇�(𝑡)�̈�(𝑡)

(�̇�2(𝑡) + �̇�2(𝑡))
3

2⁄
 (8) 

Accordingly, the steering angle is calculated from curvature and the vehicle’s kinematic model 

as: 

 𝛿𝑓(𝑡) = tan−1 ((𝑙𝑓 + 𝑙𝑟). 𝜅(𝑡)) (9) 

Ensuring that |𝛿𝑓| ≤ 𝛿𝑚𝑎𝑥 to confirm the steering is feasible. 

• Enforce Smooth Transitions with Jerk Constraints: The jerk (third derivative of position) 

calculated by equation (7) must be limited to avoid sudden changes in acceleration, which can 

lead to discomfort and instability. High jerk values can also stress the actuators. 

 

𝐽𝑒𝑟𝑘 = √
𝑑3𝑥(𝑡)2

𝑑𝑡3
+

𝑑3𝑦(𝑡)2

𝑑3
 (10) 

The jerk constraint is to ensure that it remains below a comfortable threshold 𝐽𝑚𝑎𝑥 . 

2.2.5. Putting All Together 

This pseudocode (ALGORITHM 1) provides a clear overview of the LSPP algorithm's steps, 

from initial path generation to real-time tracking and adaptation, illustrating its smooth and efficient 

approach to motion planning in structured autonomous driving environments. 

Moreover, in Table 4 are examples of typical values for the parameters and constraints used in 

the LSPP algorithm. These values are based on standard autonomous vehicle settings for highway or 
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structured road environments [41]. These parameters are intended to support collision avoidance by 

adjusting the path without full replanning, ensuring smoother obstacle navigation and maintaining 

efficient traffic flow [42]. 

ALGORITHM 1. The LSPP Algorithm 
Algorithm LSPP (StartState, GoalState, RoadConstraints, Obstacles, Δt, Horizon) 

Input: 

    StartState       // Initial position, velocity, acceleration of the egocar 

    GoalState        // Desired end position, velocity, acceleration 

    RoadConstraints  // Lane boundaries, speed limits, and kinematic limits (e.g., max steering, acceleration) 

    Obstacles        // Position and velocity of dynamic/static obstacles detected by sensor fusion 

    Δt               // Time step for trajectory update 

    Horizon          // Prediction horizon for the trajectory 

Output: 

    SafePath         // Smooth, collision-free trajectory to follow within the defined horizon 

Begin 

1. Initialize Path: 

    - Set CurrentState = StartState 

    - Initialize SafePath as an empty list 

2. Path Generation using Quintic Spline: 

    - Calculate QuinticSpline (StartState, GoalState) based on boundary conditions: 

        - Position, velocity, and acceleration at StartState and GoalState 

        - Respect continuity up to the third derivative (jerk) 

    - Store the generated spline in SafePath 

3. Check Collision Avoidance and Kinematic Feasibility: 

    - For each point P in SafePath: 

        - If P violates any RoadConstraints (e.g., lane boundaries, speed limits, steering angles): 

            - Mark P as unfeasible 

        - For each obstacle O in Obstacles: 

            - Calculate distance d between P and O 

            - If d < SafeBufferDistance: 

                - Mark P as a potential collision point 

                - Proceed to AdjustPath 

4. AdjustPath for Collision Avoidance (if any potential collision points are detected): 

    - For each marked collision point P in SafePath: 

        - Calculate a new GoalState that adjusts the spline to avoid the obstacle (e.g., by shifting lateral distance or 

adjusting speed) 

        - Generate a LocalizedSpline from CurrentState to new GoalState 

        - Replace segment of SafePath around P with the new LocalizedSpline segment 

 

5. Path Smoothing and Final Check: 

    - Ensure smoothness of SafePath by recalculating segment continuity at adjustment points 

    - If necessary, apply a smoothing function to mitigate abrupt changes near adjusted points 

6. Real-time Tracking and Execution: 

    - Send SafePath to Model Predictive Control (MPC) for real-time tracking 

    - Monitor vehicle state every Δt: 

        - If significant deviation from SafePath occurs due to dynamic changes: 

            - Update StartState = CurrentState 

            - Repeat from Step 2 (re-generate path based on new conditions) 

End Algorithm 

3. Results and Discussion 

3.1. Simulation and Testing Results 

The performance and robustness of the LSPP algorithm were evaluated through extensive 

simulations across a variety of realistic driving scenarios. Each scenario was designed to reflect the 

challenges commonly faced by autonomous vehicles, including lane-keeping, lane changes, obstacle 

avoidance, high-speed maneuvering, and handling stop-and-go traffic. A kinematic vehicle model was 

employed with constraints aligned to typical autonomous driving parameters, such as speed, 

acceleration, steering limits, and jerk constraints. To quantify the effectiveness of LSPP compared to 

established motion planning algorithms-namely A*, RRT, and Bezier Curve-based planning—key 
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metrics were measured, including trajectory smoothness, lateral deviation, collision avoidance rate, 

lane-keeping success, and execution time. A detailed analysis of the simulation results is presented in 

this section, highlighting the strengths of LSPP in providing a safe, efficient, and computationally 

feasible solution for real-time autonomous vehicle path planning. 

Table 4.  Typical values for the parameters and constraints used in the LSPP algorithm. 

Parameter Typical Value 

Initial/Goal Velocity 80–100 km/h (22.2–27.8 m/s) 

Acceleration Limits ±3 𝑚/𝑠2 

Jerk Limit 2–3 𝑚/𝑠3 

Lane Width 3.5 meters 

Max Lateral Deviation ±0.3 meters 

Speed Limits 60–120 km/h (16.7–33.3 m/s) 

Steering Angle Limit ±25 degrees 

Safe Distance Buffer 5 meters 

Prediction Horizon (T) 3–5 seconds 

Control Time Step (Δt) 0.1 seconds 

Detection Range for Obstacles 50–100 meters 

Obstacle Update Rate 10 Hz (every 0.1 seconds) 

Path Adjustment Parameters for Collision Avoidance Typical Value 

Lateral Shift 0.5–1.0 meters 

Speed Reduction 10–20% decrease 

Angle Adjustment for Lane Changes ±2–5 degrees 

3.1.1. Setting of Simulation Parameters 

In the simulation of the LSPP algorithm for autonomous vehicles, the following parameters were 

used to model realistic driving dynamics and constraints. These values reflect typical limits and 

requirements in autonomous vehicle simulations: 

3.1.1.1. Vehicle Dynamics Parameters 

• Vehicle Speed Limits: 

• Maximum Speed: 120 km/h (33.3 m/s) 

• Minimum Speed: 0 km/h (stationary), as needed for stop-and-go scenarios 

• Acceleration and Deceleration: 

• Maximum Acceleration: 3 𝑚/𝑠2, to allow for efficient speed changes while maintaining 

passenger comfort. 

• Maximum Deceleration: -5 𝑚/𝑠2, to ensure rapid stopping capability for emergency 

scenarios. 

• Steering Constraints: 

• Maximum Steering Angle: ±25°, to limit lateral deviation within safe bounds during sharp 

turns. 

• Maximum Steering Rate (Angular Velocity): 60°/second, enabling smooth steering 

transitions without abrupt turns. 

• Jerk Constraints: 

• Maximum Jerk: 2 𝑚/𝑠3, to limit sudden changes in acceleration and ensure smooth 

trajectory transitions. 
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3.1.1.2. Path and Control Parameters 

• Lane Width: 3.5 meters, consistent with standard highway lane width. 

• Path Planning Horizon: 

• Prediction Horizon (T): 5 seconds (167 m for 120 km/h speed), allowing the vehicle to 

anticipate and respond to upcoming obstacles or turns. 

• Control Time Step (Δt): 0.1 seconds, providing precise control updates at each step. 

• Curvature Constraints: 

• Minimum Turning Radius: 10 meters, simulating tight urban turns and curved highway 

segments. 

3.1.1.3. Traffic and Environmental Parameters 

• Traffic Density: 

• Sparse (Scenario 2): Limited vehicles, allowing free lane changes. 

• Moderate (Scenario 1): Vehicles moving at similar speeds, with space for controlled lane 

changes. 

• Congested (Scenario 5): High-density stop-and-go traffic to test low-speed handling and 

obstacle avoidance. 

• Obstacle Characteristics: 

• Obstacle Appearance Distance: 30 meters ahead, to assess emergency stopping and 

avoidance capabilities. 

• Reaction Time for Emergency Scenarios: 1.5 seconds, a typical benchmark for real-time 

reaction in autonomous driving. 

3.1.1.4. Control Algorithm-Specific Parameters for LSPP 

• Cost Function Weights (LSPP-specific parameters): 

• Position Error Weight: 1.0, prioritizing precise path-following. 

• Heading Error Weight: 0.8, to align vehicle orientation with the desired trajectory. 

• Control Effort Weight: 0.5, minimizing control input variations to improve smoothness. 

• Trajectory Constraints: 

• Lateral Deviation Limit: ±0.3 meters from the centerline, allowing for safe lane positioning 

without abrupt lateral moves. 

• Safety Buffer: 

• Collision Avoidance Buffer: 5 meters, maintaining safe spacing to allow evasive actions if 

necessary. 

These parameter values help ensure that the simulation of LSPP closely mimics real-world 

autonomous driving dynamics, enabling it to be tested for safety, responsiveness, and comfort across 

a variety of driving scenarios. 

3.1.2. Simulation Scenarios and Results 

To present the experimental simulation results, various experiments and scenarios are outlined to 

evaluate the effectiveness of the LSPP algorithm. These experiments simulate realistic driving 

conditions, including straight and curved highways, varying traffic densities, and emergency 

obstacles. Key performance indicators are used to measure LSPP’s effectiveness, with results 
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compared against other standard motion planning algorithms, highlighting the strengths of the 

proposed approach. 

To evaluate the LSPP algorithm, it is compared against three widely used motion planning 

algorithms: 

1. A* Algorithm: A graph-based search algorithm that finds the shortest path to the target by 

optimizing a cost function [43]. It’s effective for pathfinding but can be computationally 

expensive in complex environments [44]. 

2. Rapidly-exploring Random Tree (RRT): A sampling-based algorithm that builds a tree to explore 

feasible paths from the start to the goal, focusing on avoiding obstacles [45]. RRT is efficient in 

high-dimensional spaces but may produce less smooth paths [46]. 

3. Bezier Curve-based Planning: This method uses Bezier curves to generate smooth paths based 

on control points, providing smooth trajectory transitions ideal for lane changes and path 

following, though it lacks flexibility in complex obstacle-filled environments [47]. 

3.1.2.1. Scenario 1: Straight Highway with Moderate Traffic 

• Objective: Evaluate path-following accuracy and speed maintenance. 

• Metrics: 

• Trajectory Smoothness (Avg. Jerk), Speed Deviation, Execution Time per cycle. 

• Results: 

• LSPP: Avg. Jerk = 0.2 𝑚/𝑠3, Speed Deviation = ±2 km/h, Execution Time = 12 ms 

• A* Algorithm: Avg. Jerk = 0.5 𝑚/𝑠3, Speed Deviation = ±6 km/h, Execution Time = 55 

ms 

• RRT: Jerk = 0.6 𝑚/𝑠3, Speed Deviation = ±4 km/h, Execution Time = 40 ms 

• Bezier Curve: Jerk = 0.3 𝑚/𝑠3, Speed Deviation = ±3 km/h, Execution Time = 20 ms 

• Conclusion: LSPP demonstrates the lowest jerk and speed deviation while maintaining a short 

execution time, making it suitable for real-time path following. 

3.1.2.2. Scenario 2: Curved Highway with Lane Changes 

• Objective: Test lane-changing capability on curves. 

• Metrics: 

• Lane Change Success Rate, Trajectory Smoothness (Avg. Jerk), Lateral Deviation, 

Execution Time. 

• Results: 

• LSPP: Lane Change Success = 100%, Jerk = 0.3 𝑚/𝑠3, Max Lateral Deviation = 0.1m, 

Execution Time = 15 ms 

• A* Algorithm: Lane Change Success = 85%, Jerk = 0.7 𝑚/𝑠3, Max Lateral Deviation = 

0.5m, Execution Time = 60 ms 

• RRT: Lane Change Success = 80%, Jerk = 0.8 𝑚/𝑠3, Max Lateral Deviation = 0.4m, 

Execution Time = 50 ms 

• Bezier Curve: Lane Change Success = 95%, Jerk = 0.4 𝑚/𝑠3, Max Lateral Deviation = 

0.2m, Execution Time = 25 ms 

• Conclusion: LSPP maintains optimal lane change success and lateral deviation with a shorter 

execution time, proving it efficient for real-time lane changes on curves. 
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3.1.2.3. Scenario 3: Emergency Stop and Obstacle Avoidance 

• Objective: Assess response to sudden obstacles. 

• Metrics: 

• Collision Avoidance Rate, Stopping Distance, Trajectory Smoothness (Avg. Jerk), 

Execution Time. 

• Results: 

• LSPP: Collision Avoidance = 100%, Stopping Distance = 5m, Jerk = 0.4 𝑚/𝑠3, Execution 

Time = 10 ms 

• A* Algorithm: Collision Avoidance = 70%, Stopping Distance = 2m, Jerk = 0.9 𝑚/𝑠3, 

Execution Time = 70 ms 

• RRT: Collision Avoidance = 80%, Stopping Distance = 3m, Jerk = 0.7 𝑚/𝑠3, Execution 

Time = 55 ms 

• Bezier Curve: Collision Avoidance = 90%, Stopping Distance = 4m, Jerk = 0.5 𝑚/𝑠3, 

Execution Time = 30 ms 

• Conclusion: LSPP achieves a perfect collision avoidance rate with rapid execution time, 

demonstrating its effectiveness in emergency response scenarios. 

3.1.2.4. Scenario 4: High-Speed Curved Highway with Lane-Keeping 

• Objective: Evaluate lane-keeping performance at high speeds. 

• Metrics: 

• Lane Keeping Success Rate, Lateral Deviation, Trajectory Smoothness (Avg. Jerk), 

Execution Time. 

• Results: 

• LSPP: Lane Keeping Success = 98%, Lateral Deviation = 0.15m, Jerk = 0.3 𝑚/𝑠3, 

Execution Time = 15 ms 

• A* Algorithm: Lane Keeping Success = 70%, Lateral Deviation = 0.5m, Jerk = 0.7 𝑚/𝑠3, 

Execution Time = 65 ms 

• RRT: Lane Keeping Success = 75%, Lateral Deviation = 0.4m, Jerk = 0.6 𝑚/𝑠3, Execution 

Time = 52 ms 

• Bezier Curve: Lane Keeping Success = 90%, Lateral Deviation = 0.3m, Jerk = 0.4 𝑚/𝑠3, 

Execution Time = 27 ms 

• Conclusion: LSPP excels in lane-keeping at high speeds with minimal lateral deviation and low 

execution time, supporting its suitability for high-speed applications. 

3.1.2.5. Scenario 5: Stop and Go Traffic in Congested Conditions 

• Objective: Assess performance in stop-and-go traffic. 

• Metrics: 

• Comfort (Avg. Jerk) during acceleration and deceleration, Traffic Flow Efficiency, 

Execution Time. 

• Results: 

• LSPP: Jerk = 0.3 𝑚/𝑠3, Traffic Flow Efficiency = 95%, Execution Time = 12 ms 

• A* Algorithm: Jerk = 0.6 𝑚/𝑠3, Traffic Flow Efficiency = 80%, Execution Time = 60 ms 
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• RRT: Jerk = 0.5 𝑚/𝑠3, Traffic Flow Efficiency = 85%, Execution Time = 50 ms 

• Bezier Curve: Jerk = 0.4 𝑚/𝑠3, Traffic Flow Efficiency = 90%, Execution Time = 22 ms 

• Conclusion: LSPP achieves smooth accelerations and decelerations with high traffic flow 

efficiency, completing computations rapidly enough for real-time stop-and-go driving. 

3.1.2.6. Summary of the Simulation Results 

Here’s in Table 5 a professional tabular representation of the simulation scenarios and results for 

the LSPP algorithm, showcasing various metrics and a comparison with other motion planning 

methods. 

Table 5.  Summary of the simulation scenarios results 

Scenario Metrics LSPP 
A* 

Algorithm 
RRT 

Bezier 

Curve 
Straight Highway 

with Moderate 

Traffic 

Trajectory Smoothness (Avg. Jerk) 𝑚/𝑠3 0.2 0.5 0.6 0.3 

Speed Deviation ± km/h ±2 ±6 ±4 ±3 

Execution Time ms 12 55 40 20 

Curved Highway 

with Lane Changes 

Lane Change Success Rate % 100 85 80 95 

Trajectory Smoothness (Avg. Jerk) 𝑚/𝑠3 0.3 0.7 0.8 0.4 

Max Lateral Deviation m 0.1 0.5 0.4 0.2 

Execution Time ms 15 60 50 25 

Emergency Stop and 

Obstacle Avoidance 

Collision Avoidance Rate % 100 70 80 90 

Stopping Distance m 5 2 3 4 

Trajectory Smoothness (Avg. Jerk) 𝑚/𝑠3 0.4 0.9 0.7 0.5 

Execution Time ms 10 70 55 30 

High-Speed Curved 

Highway with Lane 

Keeping 

Lane Keeping Success Rate % 98 70 75 90 

Max Lateral Deviation m 0.15 0.5 0.4 0.3 

Trajectory Smoothness (Avg. Jerk) 𝑚/𝑠3 0.3 70 0.6 0.4 

Execution Time ms 15 65 52 27 

Stop-and-Go Traffic 

in Congested 

Conditions 

Comfort (Avg. Jerk) 𝑚/𝑠3 0.3 0.6 0.5 0.4 

Traffic Flow Efficiency % 95 80 80 90 

Execution Time ms 12 60 50 22 

 

Notes on Metrics: 

• Trajectory Smoothness (Avg. Jerk): Average jerk, measuring smoothness in acceleration and 

deceleration. 

• Speed Deviation: Difference from target speed in km/h. 

• Execution Time: Time taken per planning cycle (in milliseconds). 

• Lane Change Success Rate: Percentage of successful lane changes without collision. 

• Lane Keeping Success Rate: Measure the vehicle's ability to maintain its position within a 

designated lane. 

• Max Lateral Deviation: Maximum deviation from lane center. 

• Collision Avoidance Rate: Percentage of trials where collisions were avoided. 

• Stopping Distance: Distance from the obstacle when the vehicle halts. 

• Comfort (Avg. Jerk): Average jerk in stop-and-go traffic, indicative of passenger comfort. 

• Traffic Flow Efficiency: Percentage of traffic flow maintained without unnecessary delays. 

3.2. Discussion 

The study’s results highlight the strengths and trade-offs of the LSPP algorithm in comparison 

to A*, RRT, and Bezier Curve-based methods. LSPP demonstrated high performance in trajectory 

smoothness, lane-keeping, and collision avoidance in structured environments, though performance 
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varied across algorithms in different scenarios. This section discusses the factors influencing LSPP’s 

effectiveness and the contexts where each algorithm may be most advantageous [48]-[50]. 

3.2.1. Execution Time 

The LSPP algorithm exhibits lower execution times than A*, RRT, and Bezier Curve-based 

algorithms, particularly in structured environments like highways. This efficiency is due to several 

factors: LSPP’s deterministic, quintic spline-based approach generates smooth, continuous paths 

without the need for extensive search or iterative exploration, as required by A* and RRT. By directly 

optimizing the trajectory based on boundary conditions (position, velocity, and acceleration), LSPP 

produces kinematically feasible paths in fewer steps, avoiding the complex pathfinding and post-

processing typically needed for other algorithms. Designed to handle kinematic constraints up to 

jerk, LSPP efficiently supports real-time applications, making it particularly suited for high-speed, 

continuous path planning where smoothness and execution speed are critical [51]-[53]. 

3.2.2. Collision Avoidance 

A higher Collision Avoidance Rate for the LSPP algorithm compared to other methods in this 

paper is logical, particularly in structured environments. LSPP’s quintic spline-based approach 

generates smooth, continuous paths that adhere to kinematic constraints, enabling stable, predictable 

trajectories that minimize abrupt maneuvers, which can increase collision risk. This inherent 

smoothness allows the vehicle to maintain consistent control and avoid obstacles effectively without 

extensive recalculations. Unlike A* and RRT, which may require frequent replanning or post-

processing to adapt to new obstacles, LSPP supports localized adjustments, enabling dynamic 

obstacle avoidance while preserving path continuity. Consequently, LSPP is particularly 

advantageous in scenarios where smoothness, stability, and real-time responsiveness are essential. 

3.2.3. Speed Deviation 

Lower Speed Deviation from the target speed with the LSPP algorithm, compared to A*, RRT, 

and Bezier Curve-based algorithms, is justified due to LSPP's use of smooth, kinematically feasible 

quintic splines. This smoothness minimizes abrupt speed changes, enabling the vehicle to follow a 

steady trajectory without frequent adjustments. LSPP also allows localized path adjustments for 

minor obstacles without requiring full replanning, further supporting speed consistency. By contrast, 

A* and RRT often produce non-smooth paths that require speed adjustments, while Bezier-based 

paths may introduce inconsistencies in dynamic settings. Overall, LSPP’s continuous, kinematically 

aware paths help maintain stable speeds, particularly in high-speed, structured environments. 

4. Conclusion 

This paper presented the development and evaluation of a novel Local Spline-based Path 

Planner (LSPP) for autonomous vehicles, which integrates intelligent waypoint generation, quintic 

spline fitting, and Model Predictive Control (MPC) for smooth and accurate path tracking. The 

proposed framework demonstrates promising results in structured, highway-like environments, 

showing high performance in terms of safety, comfort, and real-time responsiveness. By leveraging 

spline curves for trajectory generation and combining them with rule-based waypoint selection, LSPP 

ensures continuity, smoothness, and feasibility of vehicle paths while respecting dynamic constraints. 

Despite these strengths, several limitations and challenges remain. A key concern is the 

generalizability of the LSPP algorithm beyond structured environments. While performance in 

highways is robust, the algorithm’s effectiveness in unstructured, congested, or dynamic urban 

settings—with unpredictable moving obstacles such as pedestrians or cyclists—remains an open 

question. The current design assumes a relatively stable environment and may not adapt well to 

erratic behaviors or sudden changes in traffic flow. 

Additionally, the reliance on accurate sensor data for waypoint generation and state estimation 

introduces vulnerability to sensor noise and failure, especially in adverse weather conditions such as 

heavy rain, fog, or snow. These conditions can significantly degrade sensor performance, leading to 
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inaccurate trajectory planning. Another limitation lies in the use of quintic splines, which, while 

smooth and efficient, depend on well-defined boundary conditions and may struggle to adapt flexibly 

in highly constrained or cluttered environments. Moreover, the integration with MPC adds 

computational overhead, which, although manageable in simulations, could pose real-time 

performance issues on embedded systems when combined with sensor fusion and other high-

frequency planning modules. Scalability also remains a concern. As the environmental complexity 

increases, so does the need for more frequent replanning and tighter integration with perception and 

prediction modules. LSPP’s current structure may need optimization or parallelization to sustain real-

time responsiveness in such scenarios. Future work will focus on enhancing the adaptability and 

robustness of LSPP by: 

• Extending its capabilities to unstructured and urban environments. 

• Incorporating sensor fusion with probabilistic models to handle uncertainty and noise. 

• Investigating edge-case performance under scenarios such as high-speed merging, sudden 

obstacle appearances, and sharp turns. 

• Exploring lightweight implementations and hardware acceleration to ensure real-time 

deployment feasibility. 

In conclusion, while LSPP represents a significant step toward reliable and smooth local path 

planning for autonomous vehicles, it is not without limitations. A critical assessment of its scalability, 

robustness, and adaptability to real-world complexities is essential for its evolution into a deployable 

solution. The insights gained through this study provide a strong foundation for addressing these 

challenges in future research. 
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