
IJRCS
International Journal of Robotics and Control Systems

Vol. 5, No. 2, 2025, pp. 1571-1595

ISSN 2775-2658

http://pubs2.ascee.org/index.php/ijrcs

 http://dx.doi.org/10.31763/ijrcs.v5i2.1879 ijrcs@ascee.org

Real-Time Autonomous Vehicle Navigation via Rule-Based

Waypoint Selection and Spline-Guided MPC

Wael A. Farag a,1,*, Mohamed Fayed b,2

a Electrical Power Engineering Dept., Cairo University, Giza 12613, Egypt
b College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
1 wael.farag@cu.edu.eg; 2 mohamed.fayed@aum.edu.kw

* Corresponding Author

1. Introduction

With the rapid advancement of intelligent transportation systems [1] and automobile technology

[2], fully automated vehicles have garnered significant attention from researchers due to their broad

potential applications [3]. These vehicles rely on multidisciplinary frameworks, with perception [4],

decision-making [5], and control [6] serving as the three core pillars of their software architecture.

Among these, path-planning and path-tracking are central to ensuring reliable autonomous operation

[7]. Effective path planning is vital for safety, comfort [8], and vehicle controllability in extreme and

high-speed conditions [9].

In the context of autonomous driving, both path and motion planning are critical. Path planning

determines a collision-free route from the current location to a destination while considering road

geometry, traffic rules, and obstacles. Motion planning, in contrast, focuses on real-time trajectory

generation that ensures kinematic feasibility, smooth movement, and safe execution of the path. While

the former handles strategic routing, the latter manages the tactical control necessary for safe and

comfortable vehicle operation under dynamic conditions. This paper concentrates on motion planning,

especially for highway scenarios, where high-speed navigation, lane-keeping, and rapid

responsiveness to traffic changes are crucial. The process integrates data on the ego vehicle’s state

ARTICLE INFO ABSTRACT

Article history

Received April 18, 2025

Revised June 20, 2025

Accepted June 24, 2025

 This paper presents a robust and efficient Localized Spline-based Path-

Planning (LSPP) algorithm aimed at improving autonomous highway

navigation. LSPP uniquely combines localized quintic splines with a

speed-profile optimizer to generate smooth, dynamically feasible

trajectories that prioritize obstacle avoidance, passenger comfort, and strict

adherence to road constraints such as lane boundaries. By leveraging real-

time data from the vehicle’s sensor fusion module, LSPP accurately

interprets the positions of nearby vehicles and obstacles, producing safe

paths that are passed to the Model Predictive Control (MPC) module for

precise execution. Simulations show LSPP reduces lateral jerk by 30% and

computation time by 25% compared to Bézier-based methods, confirming

enhanced comfort and efficiency. Extensive testing across diverse highway

scenarios further demonstrates LSPP’s superior performance in trajectory

smoothness, lane-keeping, and responsiveness over traditional approaches,

validating it as a compelling solution for safe, comfortable, and efficient

autonomous highway driving.

Keywords

MPC Control;

Quintic Spline Trajectory

Optimization;

Self-Driving Car;

Autonomous Driving;

Highway Navigation;

Real-Time Obstacle

Avoidance;

Path Planning

This is an open-access article under the CC–BY-SA license.

http://pubs2.ascee.org/index.php/ijrcs
http://dx.doi.org/10.31763/ijrcs.v5i2.1879
mailto:ijrcs@ascee.org
mailto:wael.farag@cu.edu.eg
mailto:mohamed.fayed@aum.edu.kw
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

1572
International Journal of Robotics and Control Systems

ISSN 2775-2658
Vol. 5, No. 2, 2025, pp. 1571-1595

Wael A. Farag (Real-Time Autonomous Vehicle Navigation via Rule-Based Waypoint Selection and Spline-Guided

MPC)

(e.g., speed, orientation), environmental context (e.g., obstacles and traffic), and road conditions to

generate a collision-free, smooth, and optimized trajectory [10].

1.1. Components of the Path Planning

The motion planning process in autonomous vehicles builds upon multiple interconnected

modules, from environmental mapping to control execution. Key components include:

1. Perception and environment mapping: acquisition of sensor data (LiDAR, radar, GPS, cameras)

[11]. Object and pedestrian detection/tracking [12]-[14]. Construction of an up-to-date

environment map.

2. Localization: estimation of vehicle position using GPS, IMU, and map data [15], [16].

3. Route Planning: High-level navigation with global path planning and waypoint generation [17].

4. Behavior planning: evaluation of driving scenarios (merges, lane changes) and behavior

selection [5], [18].

5. Path generation: feasibility checks and generation of smooth paths using spline or polynomial

techniques [19], [20].

6. Trajectory planning: detailed trajectory generation with optimization and collision avoidance

strategies [21].

7. Speed profile generation: optimal velocity planning with comfort and safety considerations [21],

[22].

8. Control interface: translation of trajectory into control commands with feedback monitoring

[18], [19].

Together, these components operate in a feedback loop to ensure adaptive and efficient vehicle

navigation [23]. Among them, modules 4 through 8-behavior planning to control interface-are most

representative of motion planning, which is the focus of this study. These modules enable real-time

responsiveness and precise execution of high-level plans while adhering to vehicle dynamics and

safety constraints.

1.2. Background and Literature Review

Several motion planning techniques have been proposed and can be categorized into the

following five key approaches:

1.2.1. Space Configuration

This approach builds an occupancy grid map based on the egocar’s state and the positions of

surrounding obstacles. The environment is discretized into grid cells, each classified as occupied or

free. Free cells are used to generate potential paths using algorithms such as Voronoi diagrams [24],

lattice structures, and sampling-based methods. While these methods are computationally efficient,

they often neglect vehicle dynamics, leading to infeasible trajectories.

1.2.2. Path-Finders

Path-finders like A*, Dijkstra, and Rapidly-exploring Random Trees (RRT) aim to discover the

optimal path between start and goal points, minimizing cost functions like distance or time [25]. A*

and Dijkstra rely on complete knowledge of the environment, while RRTs handle unknown terrains

more flexibly. However, like space configuration methods, they do not consider the dynamic

constraints of real vehicles, limiting their applicability in motion planning.

1.2.3. Attractive and Repulsive Fields

These methods employ artificial potential fields where attractive forces guide the vehicle toward

the target and repulsive forces steer it away from obstacles [26]. The resultant force dictates the

vehicle’s movement. Although intuitive and computationally light, these methods are prone to local

minima and can yield unstable trajectories in complex environments.

ISSN 2775-2658
International Journal of Robotics and Control Systems

1573
Vol. 5, No. 2, 2025, pp. 1571-1595

Wael A. Farag (Real-Time Autonomous Vehicle Navigation via Rule-Based Waypoint Selection and Spline-Guided

MPC)

1.2.4. Curves

Curves such as splines, Bezier curves [28], and clothoids are used to model smooth local paths

based on vehicle state and road geometry [27]. Two main strategies exist:

• Point-Free: Generates continuous, kinematically feasible trajectories.

• Point-to-Point: Connects specific waypoints with smooth curves.

While these curves yield realistic paths, validating each trajectory for dynamic feasibility and

obstacle avoidance is computationally intensive, posing challenges for real-time execution.

1.2.5. Artificial Intelligence Schemes

AI techniques such as fuzzy logic, neural networks [29], and evolutionary algorithms (e.g., PSO,

GA, ACO) are employed for flexible, adaptive path planning without requiring exact models. They

excel in handling uncertainty and non-linearity but typically demand substantial computational

resources, making real-time implementation difficult. A comprehensive review of these methods is

provided in [18].

Hybrid approaches are increasingly adopted to harness the strengths of multiple methods [20].

For example, combining splines with numerical optimization ensures trajectory feasibility and

objective optimization [28]-[30]. Similarly, integrating Artificial Potential Fields with MPC improves

control performance [31]. However, these combinations increase system complexity and

computational load, often compromising real-time feasibility.

Despite progress, challenges persist in developing motion planners that balance simplicity,

safety, robustness, and responsiveness under realistic operating conditions. Many existing methods

struggle to incorporate dynamic constraints effectively while maintaining low-latency performance

and smooth vehicle operation.

To address this, the current study proposes the Local Spline-based Path Planner (LSPP)—a novel

framework that merges rule-based waypoint generation with spline curve fitting and MPC-based

control. This integration enables the generation of dynamically feasible, smooth, and safe local

trajectories aligned with global navigation paths. The LSPP aims to meet four critical criteria:

• Safety: Navigates dynamic and uncertain environments without collisions.

• Comfort: Minimizes jerk and abrupt motion for smooth rides.

• Accuracy: Enhances trajectory tracking precision.

• Real-time Performance: Maintains high responsiveness using computationally efficient modules.

By targeting these goals, this study contributes a practical and modular solution to the motion

planning challenges faced by autonomous vehicles, particularly in highway driving scenarios.

2. Method

2.1. Foundation of Motion Planning

The following sections shed the light on the foundation of the proposed motion planner:

2.1.1. Path Planning Architecture

Fig. 1 represents a comprehensive architecture of a path planning and control system for an

autonomous vehicle, showcasing the flow of information between various modules and components

that contribute to trajectory planning and vehicle control.

The system initiates with the mission planner module (MPM), which is supplied with inputs from

both the GPS and a global digital street map. These inputs enable the MPM to generate a high-level

trip route. This route is then forwarded to the Rule-Based Localized Path Planner (RBLPP), which

uses this information to extract a nearby segment of the route (according to the current ego car

1574
International Journal of Robotics and Control Systems

ISSN 2775-2658
Vol. 5, No. 2, 2025, pp. 1571-1595

Wael A. Farag (Real-Time Autonomous Vehicle Navigation via Rule-Based Waypoint Selection and Spline-Guided

MPC)

coordinates) and generate for this segment approximate waypoints, defining the start, end, and some

midpoint positions for it. The RBLPP also receives critical information on moving and stationary local

objects from the Object Detection Module (ODM), which integrates data from multiple sensors,

including Cameras, Radars, Lidars, and Sensor Fusion Algorithms. Each of these sensors feeds its

data into the sensor fusion module, which processes and combines the data to form a coherent

understanding of the vehicle’s surrounding environment.

The approximate waypoints generated by the RBLPP are subsequently refined by the Spline-

Trajectories Generator, which produces more accurate trajectories for the vehicle to follow. These

refined trajectories are then supplied to the MPC (Model Predictive Control) Controller, which is

responsible for generating the necessary control commands to actuate the vehicle. The MPC outputs

steering commands and throttle/brake commands, which are sent to the vehicle’s actuators, ensuring

precise and responsive control of the egocar.

The modules within the green oval in Fig. 1 represent the motion planner which is the main focus

of this paper, which determines what behavior the vehicle should exhibit at any point in time (e.g.

stopping at a traffic light or intersection, changing lanes, accelerating, or making a left turn onto a new

street, etc.).

Fig. 1. Architecture of the autonomous vehicle path planning

2.1.2. Key Characteristics of Quintic Polynomials

A quantic spline polynomial is a piecewise-defined polynomial function used in interpolation

and approximation of data to create smooth curves that pass through or near a set of data points. They

are characterized as follows:

1. Piecewise Definition: A spline is defined by multiple polynomial segments, each valid over a

specific interval. For example, a quantic spline is composed of 5th polynomials defined piecewise

between each pair of waypoints

ISSN 2775-2658
International Journal of Robotics and Control Systems

1575
Vol. 5, No. 2, 2025, pp. 1571-1595

Wael A. Farag (Real-Time Autonomous Vehicle Navigation via Rule-Based Waypoint Selection and Spline-Guided

MPC)

 (𝑥𝑖 , 𝑦𝑖) 𝑎𝑛𝑑 (𝑥𝑖+1, 𝑦𝑖+1)

𝑦𝑖(𝑥) = 𝑎𝑖 + 𝑏𝑖(𝑥 − 𝑥𝑖) + 𝑐𝑖(𝑥 − 𝑥𝑖)2 + 𝑑𝑖(𝑥 − 𝑥𝑖)3 + 𝑒𝑖(𝑥 − 𝑥𝑖)4 + 𝑓𝑖(𝑥 − 𝑥𝑖)5

𝑓𝑜𝑟 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1]

(1)

2. Continuity and Smoothness: Splines are constructed to ensure a certain level of smoothness at

the points where the polynomial pieces join (called knots). For quantic splines, the first, second,

third, and fifth derivatives are usually continuous across the intervals, making the transition

between segments very smooth.

3. Local Control: Each segment of the spline is influenced mainly by its local data points (waypoints

received from the RBLPP), allowing for localized changes in the shape of the curve without

significantly affecting the entire curve.

4. Boundary Conditions: When constructing splines, additional conditions are needed at the

endpoints to uniquely determine the spline. Common boundary conditions include specifying the

values of derivatives up to the 4th order at the endpoints, and higher order or derivatives are set

to zero.

For 𝑛 + 1 data points (𝑥0, 𝑦0), (𝑥0, 𝑦0), … , (𝑥𝑛 , 𝑦𝑛), a quantic spline 𝑆𝑛 consists of n quantic

polynomials given by Eq. (1) defined on each interval [𝑥𝑖 , 𝑥𝑖+1]. The coefficients

𝑎𝑖 , 𝑏𝑖, 𝑐𝑖 , 𝑑𝑖, 𝑒𝑖 , 𝑎𝑛𝑑 𝑓𝑖 are determined by solving a system of equations that enforce: 1) The spline

passing through or very close to the data points. 2) Continuity of the spline and its first, second, third,

and fourth derivatives at each knot. 3) The chosen boundary conditions.

2.1.3. The Proposed Motion Planner

Behavior planning involves three key components: 1) predicting the behavior of obstacles,

including other vehicles on the road, 2) making high-level decisions on the appropriate actions to

achieve the desired goal safely and efficiently, such as slowing down, accelerating, turning, or

changing lanes, and 3) generating trajectories that translate these decisions into a feasible path,

typically represented as a series of waypoints or a mathematical formula, for the vehicle's control

system to execute [32]. The proposed LSPP protocol operates as follows:

1. Interpolate waypoints for a nearby section (30 to 50 meters long) of the route provided by the

MPM.

2. Determine the state of the egocar, including its position, orientation, velocity, and acceleration.

3. Generate a set of predicted trajectories for each surrounding vehicle using data received from the

ODM.

4. Identify the available states for the egocar, such as “keep lane,” “change lanes to the right,” or

“change lanes to the left.”

5. For each available state, generate a target end state for the egocar and create multiple randomized

potential trajectories by slightly perturbing elements of the target state. These “Jerk-Minimized

Trajectories” (JMTs) [33] are quintic spline polynomials derived from the current initial and

desired final values of position, velocity, and acceleration [34].

6. Evaluate each potential trajectory using a set of cost functions that reward efficiency and penalize

factors such as collisions, excessive jerks, or exceeding speed limits.

7. Select the trajectory with the lowest cost.

8. Assess this trajectory at the next several 20-millisecond intervals (the rate at which the data is

received from the sensor fusion module) [35].

9. Append these evaluations to the retained portion of the previous path.

10. Send the updated path to the MPC controller for execution.

1576
International Journal of Robotics and Control Systems

ISSN 2775-2658
Vol. 5, No. 2, 2025, pp. 1571-1595

Wael A. Farag (Real-Time Autonomous Vehicle Navigation via Rule-Based Waypoint Selection and Spline-Guided

MPC)

The Jerk Minimizing Trajectory (JMT) algorithm is implemented in C++ [36] to generate smooth

trajectories that minimize sudden changes in acceleration, resulting in more comfortable and safer

driving.

The JMT calculation involves finding the coefficients of a polynomial (5th order in quintic

spline) that describe the vehicle's path from a given start state to an end state over a specified time T

(usually indicates the required speed profile). The key components of the algorithm can be portrayed

as follows:

1. Input Parameters:

• Start: A vector of three elements [position, velocity, acceleration] representing the initial

state of the vehicle.

• End: A vector of three elements [position, velocity, acceleration] representing the final state

of the vehicle.

• T: The time duration over which the vehicle should move from the start state to the end state.

2. Output:

• A vector of coefficients for a 5th-degree polynomial of the form: 𝑝(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 +
𝑎3𝑡3 + 𝑎4𝑡4 + 𝑎5𝑡5.

• These coefficients are determined to minimize jerk over the time T.

3. Calculation: A system of equations is set up using the boundary conditions provided by the start

and end states. The C++ Eigen library [36] is used to solve this system and find the polynomial

coefficients.

2.2. Implementation of the LSPP

The following sections provide an in-depth overview of the implementation tasks for the

proposed algorithm:

2.2.1. The Finite State Machine

While driving on the highway, the egocar typically considers several key driving states. These

states help the car adapt its behavior based on the surrounding environment, including the positions

of other vehicles and obstacles. In the design of the proposed LSPP algorithm, the states that the egocar

can occupy are listed in Table 1.

Moreover, cost functions are used by the egocar, to evaluate and optimize the decision-making

process in real-time. These functions assign a numerical value (or cost) to different possible actions,

helping the system select the most optimal choice [34]. Here in Table 2 is a summary of the cost

functions used to transition between various states while driving on the highway.

The decision-making process in the egocar employs a Finite State Machine (FSM) (illustrated in

Fig. 2) with the seven states that have been specified earlier in Table 1 and transitions based on certain

cost functions (Table 2) and triggering transitional conditions (TTCs) (listed in Table 3). Each state

represents a different driving behavior, and the transitions depend on conditions like lane preference,

proximity to obstacles, and the need for speed adjustments. The FSM in Fig. 2 is illustrated as a

directed graph with nodes representing states and arrows representing transitions between states,

labeled with the triggering conditions [37].

2.2.2. The Vehicle Kinematic Model

This paper employs the Kinematic Bicycle Model [22] to simulate the behavior of the

autonomous vehicle. The model is represented by nonlinear continuous-time equations (2), which

describe its dynamics in an inertial reference frame, as illustrated in Fig. 3. In this model, x and y

represent the coordinates of the vehicle’s center of mass in an inertial reference frame (X, Y). The

variable 𝜓 denotes the vehicle’s heading angle relative to the inertial frame, and 𝑣 indicates its speed.

ISSN 2775-2658
International Journal of Robotics and Control Systems

1577
Vol. 5, No. 2, 2025, pp. 1571-1595

Wael A. Farag (Real-Time Autonomous Vehicle Navigation via Rule-Based Waypoint Selection and Spline-Guided

MPC)

The parameters lf and lr correspond to the distances from the center of mass to the front and rear axles,

respectively. 𝛽 defines the angle between the velocity of the center of mass and the vehicle's

longitudinal axis, while a is the acceleration in the same direction as the velocity. The control inputs

are the front and rear steering angles, 𝛿𝑓, and 𝛿𝑟, respectively. In most vehicles, the rear wheels are

not steerable, so 𝛿𝑟 is assumed to be zero. Additionally, 𝜔 represents the angular velocity of the

steering.

Table 1. Key driving states

Ego Car

State
Description

Possible

Transitions

Triggering

Conditions
Relevant Cost Functions

1 Keep Lane

The ego car

stays in its

current lane,

maintaining a

safe distance

from vehicles.

- Change Lane Left

- Change Lane Right

- Emergency Stop

- Speed Up

- Slow Down

- Keep Lane

- Safe distance

maintained

- No vehicles blocking

the lane

- Speed close to target

- Speed cost (maintain target

speed)

- Collision cost (avoid rear-

end collisions)

- Lane preference cost

2
Change Lane

Left

The ego car

shifts to the left

lane, typically

to overtake a

slower vehicle.

- Keep Lane

- Emergency Stop

- The left lane is clear

- Left lane offers

higher speed efficiency

- Safe to maneuver

- Collision cost (check for

vehicles in the left lane)

- Jerk cost (minimize jerk)

- Overtaking efficiency cost

3
Change Lane

Right

The ego car

shifts to the

right lane,

typically to

make way for

faster traffic.

- Keep Lane

- Emergency Stop

- The right lane is clear

- Need to avoid slower

or obstructed vehicles

-Approaching an exit

- Collision cost (check for

vehicles in the right lane)

- Lane preference cost

- Jerk cost (minimize jerk)

4
Prepare for

Exit

The ego car

prepares to

leave the

highway by

moving into the

exit lane.

- Take Exit

- Change Lane Right

- Emergency Stop

- Exit approaching

within a certain

distance

- The right lane is clear

to merge into an exit

lane

- Lane preference cost

(moving toward the exit)

- Speed cost (maintain

appropriate speed for exit)

- Fuel Efficiency cost

5
Emergency

Stop

The ego car

decelerates

rapidly to avoid

a collision or

stop for an

obstacle.

- Keep Lane

- Change Lane

Left/Right (if

possible)

- Obstacle detected

ahead

- Collision is imminent

- Severe traffic jam

- Collision cost (avoidance)

- Jerk cost (smooth

deceleration)

- Safety margin cost

(maintain safe stopping

distance)

6 Speed Up

The ego car

increases speed

to maintain the

target speed or

overtake other

cars.

- Keep Lane

- Change Lane

Left/Right

- Emergency Stop

- Lane ahead is clear

- Ego car moving

slower than the target

speed

- Speed cost (to reach target

speed)

- Fuel efficiency cost (avoid

unnecessary speeding)

- Overtaking efficiency cost

7 Slow Down

The ego car

decreases speed

to maintain

safety and

avoid

collisions.

- Keep Lane

- Change Lane

Left/Right

- Emergency Stop

- Slower vehicle

detected ahead

- Congested traffic

- Construction or

obstacles ahead

- Collision cost (avoid rear-

end collisions)

- Jerk cost (smooth

deceleration)

- Safety margin cost

Compared to higher-fidelity vehicle models [32], the kinematic bicycle model offers easier

system identification, requiring only two parameters, lf, and lr, which simplifies adapting the same

controller or path planner to vehicles with different wheelbases.

The presented vehicle model serves as a constraint to ensure that the generated quintic path

adheres to the vehicle’s kinematic limitations and is also integrated into the development of the Model

Predictive Controller (MPC) [23], enabling the vehicle to accurately execute the planned trajectory.

1578
International Journal of Robotics and Control Systems

ISSN 2775-2658
Vol. 5, No. 2, 2025, pp. 1571-1595

Wael A. Farag (Real-Time Autonomous Vehicle Navigation via Rule-Based Waypoint Selection and Spline-Guided

MPC)

Table 2. Cost functions for transition between different states

Cost

Function
Description Formula

States

Where

Applied

Purpose in Transitioning

Between States

Speed Cost

Penalizes deviation

from the target speed,

either too slow or too

fast.

𝐶𝑠𝑝𝑒𝑒𝑑 =
|𝑣𝑒𝑔𝑜 − 𝑣𝑡𝑎𝑟𝑔𝑒𝑡|

𝑣𝑡𝑎𝑟𝑔𝑒𝑡

- Keep Lane

- Speed Up

- Slow Down

Ensures the ego car

maintains an optimal speed,

transitioning between

speeding up or slowing

down as needed.

Collision

Cost

Assigns high penalties

for potential collisions

with vehicles, obstacles,

or other hazards.

𝐶𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 =
1

𝑑𝑚𝑖𝑛
2 , where

𝑑𝑚𝑖𝑛 is the minimum

distance to obstacles

- Keep Lane

- Change

Lane

Left/Right

- Emergency

Stop

Avoids collisions by

influencing decisions to

either change lanes, slow

down, or stop in case of

danger ahead.

Lane

Preference

Cost

Penalizes staying in

undesirable lanes (e.g.,

slower lanes) and

rewards transitions to

faster lanes.

𝐶𝑙𝑎𝑛𝑒 = 𝑃𝑙𝑎𝑛𝑒, where 𝑃𝑙𝑎𝑛𝑒

 is a penalty value for

staying in a less efficient

lane

- Change

Lane Left

- Change

Lane Right

- Prepare for

Exit

Guides lane changes based

on lane desirability, either

for overtaking slower

vehicles or preparing for an

exit.

Jerk Cost

Penalizes high jerk

(rapid changes in

acceleration) to ensure

smooth driving and

passenger comfort.

𝐶𝑗𝑒𝑟𝑘 = ∫ (
𝑑3𝑥(𝑡)

𝑑𝑡3
)

2

𝑑𝑡
𝑇

0
,

over time interval T

- Change

Lane

Left/Right

- Speed Up

- Slow Down

- Emergency

Stop

Ensures smooth transitions

during lane changes,

acceleration, deceleration, or

emergency stops.

Overtaking

Efficiency

Cost

Rewards efficient

overtaking and

penalizes unnecessary

or unsafe lane changes.

𝐶𝑜𝑣𝑒𝑟𝑡𝑎𝑘𝑒 =
1

𝑡𝑝𝑎𝑠𝑠
,

where 𝑡𝑝𝑎𝑠𝑠 is the time

taken to overtake

- Change

Lane Left

- Change

Lane Right

Guides the ego car in

making efficient lane

changes when overtaking

slower vehicles, avoiding

unnecessary maneuvers.

Safety

Margin Cost

Ensures the ego car

maintains a safe

distance from other

vehicles and obstacles.

𝐶𝑠𝑎𝑓𝑒𝑡𝑦 =
1

𝑑𝑒𝑔𝑜−𝑑𝑠𝑎𝑓𝑒
,

where 𝑑𝑠𝑎𝑓𝑒 is the safe

distance

- Keep Lane

- Slow Down

- Emergency

Stop

Promotes safe driving by

guiding the ego car to slow

down or stop if the distance

to an obstacle becomes too

small.

Fuel

Efficiency

Cost

Penalizes unnecessary

acceleration or

speeding, promoting

fuel efficiency.

𝐶𝑓𝑒𝑢𝑙 =
𝑎2

𝑣𝑒𝑔𝑜
,

where 𝑎is acceleration and

𝑣𝑒𝑔𝑜 is the car’s speed

- Speed Up

- Slow Down

Encourages energy-efficient

driving by optimizing speed

adjustments and minimizing

excessive acceleration.

Fig. 2. Finite state machine of the autonomous vehicle motion planner

ISSN 2775-2658
International Journal of Robotics and Control Systems

1579
Vol. 5, No. 2, 2025, pp. 1571-1595

Wael A. Farag (Real-Time Autonomous Vehicle Navigation via Rule-Based Waypoint Selection and Spline-Guided

MPC)

Table 3. Triggering transitional conditions (TTCs)

Code Description
Description of the Triggering Transitional

Conditions (TTCs)

1 TTC11 Stay in State 1

1. Safety Margin Cost is very low, and

2. Lane Preference Cost is very low, and

3. Speed Cost is very low.

2 TTC12 Transit from State 1 → State 2

1. Collision Cost (check for vehicles in the left lane)

is very low, and

2. Overtaking Efficiency Cost is low, and

3. Speed Cost is high, or

4. Jerk's Cost is high.

3 TTC13 Transit from State 1 → State 3

1. Collision Cost (check for vehicles in the right lane)

is very low, and

2. Overtaking Efficiency Cost is low, and

3. Speed Cost is high, or

4. Jerk's Cost is high.

4 TTC14 Transit from State 1 → State 4 1. The Exit is approaching within a certain distance.

5 TTC15 Transit from State 1 → State 5

1. Collision Cost is very high, or

2. Safety Margin Cost is very high, or

3. Jerk Cost is very high.

6 TTC16 Transit from State 1 → State 6

1. Collision Cost (check for vehicles in the same lane)

is very low, and

2. Overtaking Efficiency Cost is low, and

3. Speed Cost (to reach target speed) is high, and

4. Fuel efficiency cost is low or moderate (avoid

unnecessary speeding).

7 TTC17 Transit from State 1 → State 7

1. Collision Cost (avoid rear-end collisions) is high,

and

2. Overtaking Efficiency Cost is high, and

3. Jerk Cost (smooth deceleration) is moderate, and

4. Safety Margin Cost is moderate to high.

8 TTC21 Transit from State 2 → State 1

1. Safety Margin Cost is very low, and

2. Lane Preference Cost (current lane) is very low,

and

3. Speed Cost is very low.

9 TTC25 Transit from State 2 → State 5

1. Collision Cost is very high, or

2. Safety Margin Cost is very high, or

3. Jerk Cost (deceleration) is very high.

10 TTC26 Transit from State 2 → State 6

1. Collision Cost (check for vehicles in the same lane)

is very low, and

2. Overtaking Efficiency Cost is low, and

3. Speed Cost (to reach target speed) is high, and

4. Fuel efficiency cost is low or moderate (avoid

unnecessary speeding).

11 TTC27 Transit from State 2 → State 7

1. Collision Cost (avoid rear-end collisions) is high,

and

2. Overtaking Efficiency Cost is high, and

3. Jerk Cost (smooth deceleration) is moderate, and

4. Safety Margin Cost is moderate to high.

12 TTC31 Transit from State 3 → State 1

1. Safety Margin Cost is very low, and

2. Lane Preference Cost (current lane) is very low,

and

3. Speed Cost is very low.

13 TTC34 Transit from State 3 → State 4 1. The Exit is approaching within a certain distance.

14 TTC35 Transit from State 3 → State 5

1. Collision Cost is very high, or

2. Safety Margin Cost is very high, or

3. Jerk Cost is very high.

15 TTC36 Transit from State 3 → State 6

1. Collision Cost (check for vehicles in the same lane)

is very low, and

2. Overtaking Efficiency Cost is low, and

3. Speed Cost (to reach target speed) is high, and

4. Fuel efficiency cost is low or moderate (avoid

unnecessary speeding).

1580
International Journal of Robotics and Control Systems

ISSN 2775-2658
Vol. 5, No. 2, 2025, pp. 1571-1595

Wael A. Farag (Real-Time Autonomous Vehicle Navigation via Rule-Based Waypoint Selection and Spline-Guided

MPC)

16 TTC37 Transit from State 3 → State 7

1. Collision Cost (avoid rear-end collisions) is high,

and

2. Overtaking Efficiency Cost is high, and

3. Jerk Cost (smooth deceleration) is moderate, and

4. Safety Margin Cost is moderate to high.

17 TTC41 Transit from State 4 → State 1

1. Exit the highway is not possible (exit skipped or

exit lane is closed) and

2. Safety Margin Cost is very low, and

3. Lane Preference Cost (current lane) is very low.

18 TTC45 Transit from State 4 → State 5

1. Collision Cost is very high, or

2. Safety Margin Cost is very high, or

3. Jerk Cost (deceleration) is very high.

19 TTC46 Transit from State 4 → State 6

1. Collision Cost (check for vehicles in the same lane)

is very low, and

2. Speed Cost (to reach target speed) is high, and

3. Fuel efficiency cost is low or moderate (avoid

unnecessary speeding).

20 TTC47 Transit from State 4 → State 7

1. Collision Cost (avoid rear-end collisions) is high,

and

2. Safety Margin Cost is moderate to high, or

3. Jerk Cost (smooth deceleration) is moderate.

21 TTC51 Transit from State 5 → State 1

1. Safety Margin Cost is very low, and

2. Lane Preference Cost (current lane) is very low,

and

3. Speed Cost is very high.

22 TTC52 Transit from State 5 → State 2

1. Collision Cost (check for vehicles in the left lane)

is very low, and

2. Safety Margin Cost (current lane) is high, and

3. Lane Preference Cost (current lane) is high, and

4. Lane Preference Cost (left lane) is low, and

5. Speed Cost is high.

23 TTC53 Transit from State 5 → State 3

1. Collision Cost (check for vehicles in the right lane)

is very low, and

2. Safety Margin Cost (current lane) is high, and

3. Lane Preference Cost (current lane) is high, and

4. Lane Preference Cost (right lane) is low, and

5. Speed Cost is high.

24 TTC57 Transit from State 5 → State 7

1. Safety Margin Cost is moderate, and

2. Lane Preference Cost (current lane) is moderate,

and

3. Speed Cost is high.

25 TTC61 Transit from State 6 → State 1

1. Safety Margin Cost is very low, and

2. Lane Preference Cost (current lane) is very low,

and

3. Speed Cost is very low.

26 TTC62 Transit from State 6 → State 2

1. Collision Cost (check for vehicles in the left lane)

is very low, and

2. Overtaking Efficiency Cost is low, and

3. Speed Cost is high, or

4. Jerk Cost is moderate to high, and

5. Safety Margin Cost (current lane) is high.

27 TTC67 Transit from State 6 → State 7

1. Safety Margin Cost is moderate, and

2. Lane Preference Cost (current lane) is moderate,

and

3. Speed Cost is from low to moderate.

28 TTC71 Transit from State 7 → State 1

1. Safety Margin Cost is high, and

2. Lane Preference Cost (left and right lanes) is high,

and

3. Collision Cost is moderate to high.

29 TTC72 Transit from State 7 → State 2

1. Collision Cost (check for vehicles in the left lane)

is very low, and

2. Overtaking Efficiency Cost is low, and

3. Speed Cost is high, or

4. Jerk's Cost is high.

ISSN 2775-2658
International Journal of Robotics and Control Systems

1581
Vol. 5, No. 2, 2025, pp. 1571-1595

Wael A. Farag (Real-Time Autonomous Vehicle Navigation via Rule-Based Waypoint Selection and Spline-Guided

MPC)

30 TTC73 Transit from State 7 → State 3

1. Collision Cost (check for vehicles in the right lane)

is very low, and

2. Overtaking Efficiency Cost is low, and

3. Speed Cost is high, or

4. Jerk's Cost is high.

31 TTC76 Transit from State 7 → State 6

1. Collision Cost is low, and

2. Safety Margin Cost is low, or

3. Jerk Cost is low to moderate.

Fig. 3. The kinematic bicycle model

 �̇� = 𝑣 ∗ cos(𝜓 + 𝛽)

�̇� = 𝑣 ∗ 𝑠𝑖𝑛 (𝜓 + 𝛽)

�̇� =
𝑣

𝑙𝑟
∗ sin (𝛽)

�̇� = 𝑎

𝛽 = 𝑡𝑎𝑛−1 (
𝑙𝑟

𝑙𝑓 + 𝑙𝑟
∗ 𝑡𝑎𝑛(𝛿𝑓))

𝛿�̇� = 𝜔

(2)

2.2.3. Frenet Coordinates for Autonomous Vehicle Motion Planning

Frenet coordinates are used in path planning and trajectory tracking for autonomous vehicles,

where the vehicle’s position is expressed relative to a reference path (often the road or highway

centerline), simplifying calculations for trajectory following and obstacle avoidance and proven

effective in reducing computational complexity [38]. Frenet coordinates as shown in Fig. 4 consist of

two main components:

• Longitudinal Coordinate (s): The arc length along the reference path from a fixed starting point

to the projection of the vehicle's position onto the path. It represents the vehicle’s progress along

the path.

• Lateral Coordinate (d): The perpendicular distance from the reference path to the vehicle’s

position, representing the deviation of the vehicle from the path [39].

1582
International Journal of Robotics and Control Systems

ISSN 2775-2658
Vol. 5, No. 2, 2025, pp. 1571-1595

Wael A. Farag (Real-Time Autonomous Vehicle Navigation via Rule-Based Waypoint Selection and Spline-Guided

MPC)

Together, (s, d) in Frenet coordinates allow the vehicle's movement to be decomposed into

motion along the path (s) and deviation from it (d), helping streamline path-following and obstacle

avoidance calculations.

Frenet coordinates offer significant advantages as they automatically adapt to path curvature,

ease navigation through turns, and enable efficient trajectory generation for lane-keeping, lane

changes, and obstacle avoidance by allowing easy manipulation of lateral offsets. Additionally, safety

constraints, such as lane boundaries, can be conveniently expressed as limits on the lateral coordinate,

streamlining adherence checks.

To convert Frenet coordinates (s, d) to Cartesian coordinates (x, y):

• Identify the reference point on the path: Find the point on the reference path at arc length s from

the starting point, which serves as the baseline for the lateral offset.

• Determine the tangent and normal vectors: calculate the tangent vector at (xref, yref) on the

reference path. This can be derived from the path’s derivative or direction at s.

• Apply the Lateral Offset: Move d units along the normal vector to obtain (x, y) in Cartesian

coordinates:

 𝑥 = 𝑥𝑟𝑒𝑓 + 𝑑. 𝑛𝑥

𝑦 = 𝑦𝑟𝑒𝑓 + 𝑑. 𝑛𝑦
(3)

where 𝑛𝑥 , 𝑛𝑦 are components of the normal vector at the reference point.

To convert Cartesian coordinates (x, y) to Frenet coordinates (s, d):

Project the Point onto the Path: Identify the nearest point on the reference path (xref, yref) to (x,

y), then calculate the arc length s along the path from the starting point to this nearest point using the

following equation:

𝑠 = ∫ √(
𝑑𝑥

𝑑𝑠
)

2

+ (
𝑑𝑦

𝑑𝑠
)

2

𝑑𝑠
𝑥𝑟𝑒𝑓

0

 (4)

Calculate the Lateral Distance d: Compute the perpendicular distance from (x, y) to the nearest

point on the path (xref, yref), giving the lateral offset d as in Equation (5). Positive or negative values

of d indicate the side of the path relative to the driving direction:

𝑑 = √(𝑥 − 𝑥𝑟𝑒𝑓)

2
+ (𝑦 − 𝑦𝑟𝑒𝑓)

2

𝑑 = 𝑠𝑖𝑔𝑛 ((𝑦 − 𝑦𝑟𝑒𝑓).
𝑑𝑥

𝑑𝑠
− (𝑥 − 𝑥𝑟𝑒𝑓).

𝑑𝑦

𝑑𝑠
) . √(𝑥 − 𝑥𝑟𝑒𝑓)

2
+ (𝑦 − 𝑦𝑟𝑒𝑓)

2

(5)

2.2.4. Implementation of the Quintic Polynomial Trajectory

To design a quintic polynomial trajectory (5th-order polynomial) for a vehicle traveling between

two waypoints 𝑝1 and 𝑝2, you must account for the Kinematic Bicycle Model parameters such as

position, velocity, and acceleration at the initial and final states. A quintic polynomial ensures smooth

transitions by controlling position, velocity, and acceleration, which aligns well with vehicle dynamics

and provides a drivable path. Employed step-by-step implementation technique:

A quintic polynomial for a 1D path (e.g., 𝑥(𝑡)) is given by:

 𝑥(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 + 𝑎3𝑡3 + 𝑎4𝑡4 + 𝑎5𝑡5 (6)

ISSN 2775-2658
International Journal of Robotics and Control Systems

1583
Vol. 5, No. 2, 2025, pp. 1571-1595

Wael A. Farag (Real-Time Autonomous Vehicle Navigation via Rule-Based Waypoint Selection and Spline-Guided

MPC)

Fig. 4. The Cartesian coordinates (X, Y) versus the frenet coordinates (s, d) [40]

This trajectory describes the position 𝑥(𝑡) as a function of time 𝑡. Another polynomial is needed

for 𝑦-coordinate, to generate the complete 2D path as follows:

 𝑦(𝑡) = 𝑏0 + 𝑏1𝑡 + 𝑏2𝑡2 + 𝑏3𝑡3 + 𝑏4𝑡4 + 𝑏5𝑡5 (7)

To compute the polynomial coefficients, the boundary conditions for both the starting and ending

points are needed. For each coordinate (e.g., 𝑥 and 𝑦), you need:

• At 𝑡 = 0 (start at 𝑝1):

• 𝑥(0) = 𝑥1, 𝑦(0) = 𝑦1 (Initial position)

• �̇�(0) = 𝑣1 cos(𝜓1) , �̇�(0) = 𝑣1 sin(𝜓1) (Initial velocity)

• �̈�(0) = 𝑎1 cos(𝜓1) , �̈�(0) = 𝑎1 sin(𝜓1) (Initial acceleration)

• At 𝑡 = 𝑇 (end at 𝑝2):

• 𝑥(𝑇) = 𝑥2, 𝑦(𝑇) = 𝑦2 (Final position)

• �̇�(𝑇) = 𝑣2 cos(𝜓2) , �̇�(𝑇) = 𝑣2 sin(𝜓2) (Final velocity)

• �̈�(𝑇) = 𝑎2 cos(𝜓2) , �̈�(𝑇) = 𝑎2 sin(𝜓2) (Final acceleration)

where:

• 𝑥1, 𝑦1, 𝜓1, 𝑣1, 𝑎1: Initial state (position, heading, speed, acceleration).

• 𝑥2, 𝑦2, 𝜓2, 𝑣2, 𝑎2: Final state (position, heading, speed, acceleration).

These boundary conditions ensure smooth transitions and match the vehicle's kinematic

constraints. Each polynomial has 6 unknown coefficients (𝑎0 to 𝑎5). For both 𝑥(𝑡) and 𝑦(𝑡), 6

equations are needed from the boundary conditions to solve for the coefficients. For 𝑥(𝑡) the following

are the 6 boundary equations:

• 2 equations for Position: 𝑥(0) = 𝑎0, 𝑥(𝑇) = 𝑎0 + 𝑎1𝑇 + 𝑎2𝑇2 + 𝑎3𝑇3 + 𝑎4𝑇4 + 𝑎5𝑇5

• 2 equations for Velocity: �̇�(0) = 𝑎1, �̇�(𝑇) = 𝑎1 + 2𝑎2𝑇 + 3𝑎3𝑇2 + 4𝑎4𝑇3 + 5𝑎5𝑇4

1584
International Journal of Robotics and Control Systems

ISSN 2775-2658
Vol. 5, No. 2, 2025, pp. 1571-1595

Wael A. Farag (Real-Time Autonomous Vehicle Navigation via Rule-Based Waypoint Selection and Spline-Guided

MPC)

• 2 equations for Acceleration: �̈�(0) = 2𝑎2, �̈�(𝑇) = 2𝑎2 + 6𝑎3𝑇 + 12𝑎4𝑇2 + 20𝑎5𝑇3

A similar system of 6 boundary equations for 𝑦(𝑡) is constructed to solve for (𝑏0 to 𝑏5). The

boundary conditions are organized into a linear system of equations and solved for the coefficients

(𝑎0 to 𝑎5, 𝑏0 to 𝑏5) using a C++ numerical solver, matrix, and vector operations package “Eigen”.

After the quantic spline is constructed between waypoints 𝑝1 and 𝑝2, it is to calculate the position,

velocity, and acceleration at discrete time intervals between [0, 𝑇] resulting in new more dense

waypoints. The process is repeated between waypoints 𝑝2 and 𝑝3, etc. Then, the new waypoints will

be fed into the Model Predictive Controller (MPC) that uses the generated trajectory to compute

actuator commands for steering and throttle control. The MPC continuously optimizes control inputs

(steering and throttle) based on the trajectory and real-time feedback from the vehicle’s sensors. It

minimizes deviation from the path while adhering to the vehicle’s kinematic constraints.

The generated trajectory must align with the vehicle's maximum speed, acceleration, steering

angle, and angular velocity limits as follows:

• Velocity Limit: Ensure the trajectory’s speed never exceeds the vehicle’s maximum speed 𝑣𝑚𝑎𝑥.

Constraint: √�̇�2(𝑡) + �̇�2(𝑡) ≤ 𝑣𝑚𝑎𝑥.

• Acceleration Limit: The acceleration should not exceed a threshold 𝑎𝑚𝑎𝑥 to ensure safety and

comfort. Constraint: √�̈�2(𝑡) + �̈�2(𝑡) ≤ 𝑎𝑚𝑎𝑥.

• Steering Angle and Angular Velocity Limits: The trajectory must respect the maximum steering

angle 𝛿𝑓 and the rate of change of the angle 𝜔 (angular velocity). Constraints: |𝛿𝑓| ≤ 𝛿𝑚𝑎𝑥 and

|𝜔| ≤ 𝜔𝑚𝑎𝑥.

• The curvature κ(t) along the spline influences the required steering angle. If the curvature is too

high, it may exceed the vehicle’s steering capability. The curvature is calculated as:

𝜅(𝑡) =

�̇�(𝑡)�̈�(𝑡) − �̇�(𝑡)�̈�(𝑡)

(�̇�2(𝑡) + �̇�2(𝑡))
3

2⁄
 (8)

Accordingly, the steering angle is calculated from curvature and the vehicle’s kinematic model

as:

 𝛿𝑓(𝑡) = tan−1 ((𝑙𝑓 + 𝑙𝑟). 𝜅(𝑡)) (9)

Ensuring that |𝛿𝑓| ≤ 𝛿𝑚𝑎𝑥 to confirm the steering is feasible.

• Enforce Smooth Transitions with Jerk Constraints: The jerk (third derivative of position)

calculated by equation (7) must be limited to avoid sudden changes in acceleration, which can

lead to discomfort and instability. High jerk values can also stress the actuators.

𝐽𝑒𝑟𝑘 = √
𝑑3𝑥(𝑡)2

𝑑𝑡3
+

𝑑3𝑦(𝑡)2

𝑑3
 (10)

The jerk constraint is to ensure that it remains below a comfortable threshold 𝐽𝑚𝑎𝑥 .

2.2.5. Putting All Together

This pseudocode (ALGORITHM 1) provides a clear overview of the LSPP algorithm's steps,

from initial path generation to real-time tracking and adaptation, illustrating its smooth and efficient

approach to motion planning in structured autonomous driving environments.

Moreover, in Table 4 are examples of typical values for the parameters and constraints used in

the LSPP algorithm. These values are based on standard autonomous vehicle settings for highway or

ISSN 2775-2658
International Journal of Robotics and Control Systems

1585
Vol. 5, No. 2, 2025, pp. 1571-1595

Wael A. Farag (Real-Time Autonomous Vehicle Navigation via Rule-Based Waypoint Selection and Spline-Guided

MPC)

structured road environments [41]. These parameters are intended to support collision avoidance by

adjusting the path without full replanning, ensuring smoother obstacle navigation and maintaining

efficient traffic flow [42].

ALGORITHM 1. The LSPP Algorithm
Algorithm LSPP (StartState, GoalState, RoadConstraints, Obstacles, Δt, Horizon)

Input:

 StartState // Initial position, velocity, acceleration of the egocar

 GoalState // Desired end position, velocity, acceleration

 RoadConstraints // Lane boundaries, speed limits, and kinematic limits (e.g., max steering, acceleration)

 Obstacles // Position and velocity of dynamic/static obstacles detected by sensor fusion

 Δt // Time step for trajectory update

 Horizon // Prediction horizon for the trajectory

Output:

 SafePath // Smooth, collision-free trajectory to follow within the defined horizon

Begin

1. Initialize Path:

 - Set CurrentState = StartState

 - Initialize SafePath as an empty list

2. Path Generation using Quintic Spline:

 - Calculate QuinticSpline (StartState, GoalState) based on boundary conditions:

 - Position, velocity, and acceleration at StartState and GoalState

 - Respect continuity up to the third derivative (jerk)

 - Store the generated spline in SafePath

3. Check Collision Avoidance and Kinematic Feasibility:

 - For each point P in SafePath:

 - If P violates any RoadConstraints (e.g., lane boundaries, speed limits, steering angles):

 - Mark P as unfeasible

 - For each obstacle O in Obstacles:

 - Calculate distance d between P and O

 - If d < SafeBufferDistance:

 - Mark P as a potential collision point

 - Proceed to AdjustPath

4. AdjustPath for Collision Avoidance (if any potential collision points are detected):

 - For each marked collision point P in SafePath:

 - Calculate a new GoalState that adjusts the spline to avoid the obstacle (e.g., by shifting lateral distance or

adjusting speed)

 - Generate a LocalizedSpline from CurrentState to new GoalState

 - Replace segment of SafePath around P with the new LocalizedSpline segment

5. Path Smoothing and Final Check:

 - Ensure smoothness of SafePath by recalculating segment continuity at adjustment points

 - If necessary, apply a smoothing function to mitigate abrupt changes near adjusted points

6. Real-time Tracking and Execution:

 - Send SafePath to Model Predictive Control (MPC) for real-time tracking

 - Monitor vehicle state every Δt:

 - If significant deviation from SafePath occurs due to dynamic changes:

 - Update StartState = CurrentState

 - Repeat from Step 2 (re-generate path based on new conditions)

End Algorithm

3. Results and Discussion

3.1. Simulation and Testing Results

The performance and robustness of the LSPP algorithm were evaluated through extensive

simulations across a variety of realistic driving scenarios. Each scenario was designed to reflect the

challenges commonly faced by autonomous vehicles, including lane-keeping, lane changes, obstacle

avoidance, high-speed maneuvering, and handling stop-and-go traffic. A kinematic vehicle model was

employed with constraints aligned to typical autonomous driving parameters, such as speed,

acceleration, steering limits, and jerk constraints. To quantify the effectiveness of LSPP compared to

established motion planning algorithms-namely A*, RRT, and Bezier Curve-based planning—key

1586
International Journal of Robotics and Control Systems

ISSN 2775-2658
Vol. 5, No. 2, 2025, pp. 1571-1595

Wael A. Farag (Real-Time Autonomous Vehicle Navigation via Rule-Based Waypoint Selection and Spline-Guided

MPC)

metrics were measured, including trajectory smoothness, lateral deviation, collision avoidance rate,

lane-keeping success, and execution time. A detailed analysis of the simulation results is presented in

this section, highlighting the strengths of LSPP in providing a safe, efficient, and computationally

feasible solution for real-time autonomous vehicle path planning.

Table 4. Typical values for the parameters and constraints used in the LSPP algorithm.

Parameter Typical Value

Initial/Goal Velocity 80–100 km/h (22.2–27.8 m/s)

Acceleration Limits ±3 𝑚/𝑠2

Jerk Limit 2–3 𝑚/𝑠3

Lane Width 3.5 meters

Max Lateral Deviation ±0.3 meters

Speed Limits 60–120 km/h (16.7–33.3 m/s)

Steering Angle Limit ±25 degrees

Safe Distance Buffer 5 meters

Prediction Horizon (T) 3–5 seconds

Control Time Step (Δt) 0.1 seconds

Detection Range for Obstacles 50–100 meters

Obstacle Update Rate 10 Hz (every 0.1 seconds)

Path Adjustment Parameters for Collision Avoidance Typical Value

Lateral Shift 0.5–1.0 meters

Speed Reduction 10–20% decrease

Angle Adjustment for Lane Changes ±2–5 degrees

3.1.1. Setting of Simulation Parameters

In the simulation of the LSPP algorithm for autonomous vehicles, the following parameters were

used to model realistic driving dynamics and constraints. These values reflect typical limits and

requirements in autonomous vehicle simulations:

3.1.1.1. Vehicle Dynamics Parameters

• Vehicle Speed Limits:

• Maximum Speed: 120 km/h (33.3 m/s)

• Minimum Speed: 0 km/h (stationary), as needed for stop-and-go scenarios

• Acceleration and Deceleration:

• Maximum Acceleration: 3 𝑚/𝑠2, to allow for efficient speed changes while maintaining

passenger comfort.

• Maximum Deceleration: -5 𝑚/𝑠2, to ensure rapid stopping capability for emergency

scenarios.

• Steering Constraints:

• Maximum Steering Angle: ±25°, to limit lateral deviation within safe bounds during sharp

turns.

• Maximum Steering Rate (Angular Velocity): 60°/second, enabling smooth steering

transitions without abrupt turns.

• Jerk Constraints:

• Maximum Jerk: 2 𝑚/𝑠3, to limit sudden changes in acceleration and ensure smooth

trajectory transitions.

ISSN 2775-2658
International Journal of Robotics and Control Systems

1587
Vol. 5, No. 2, 2025, pp. 1571-1595

Wael A. Farag (Real-Time Autonomous Vehicle Navigation via Rule-Based Waypoint Selection and Spline-Guided

MPC)

3.1.1.2. Path and Control Parameters

• Lane Width: 3.5 meters, consistent with standard highway lane width.

• Path Planning Horizon:

• Prediction Horizon (T): 5 seconds (167 m for 120 km/h speed), allowing the vehicle to

anticipate and respond to upcoming obstacles or turns.

• Control Time Step (Δt): 0.1 seconds, providing precise control updates at each step.

• Curvature Constraints:

• Minimum Turning Radius: 10 meters, simulating tight urban turns and curved highway

segments.

3.1.1.3. Traffic and Environmental Parameters

• Traffic Density:

• Sparse (Scenario 2): Limited vehicles, allowing free lane changes.

• Moderate (Scenario 1): Vehicles moving at similar speeds, with space for controlled lane

changes.

• Congested (Scenario 5): High-density stop-and-go traffic to test low-speed handling and

obstacle avoidance.

• Obstacle Characteristics:

• Obstacle Appearance Distance: 30 meters ahead, to assess emergency stopping and

avoidance capabilities.

• Reaction Time for Emergency Scenarios: 1.5 seconds, a typical benchmark for real-time

reaction in autonomous driving.

3.1.1.4. Control Algorithm-Specific Parameters for LSPP

• Cost Function Weights (LSPP-specific parameters):

• Position Error Weight: 1.0, prioritizing precise path-following.

• Heading Error Weight: 0.8, to align vehicle orientation with the desired trajectory.

• Control Effort Weight: 0.5, minimizing control input variations to improve smoothness.

• Trajectory Constraints:

• Lateral Deviation Limit: ±0.3 meters from the centerline, allowing for safe lane positioning

without abrupt lateral moves.

• Safety Buffer:

• Collision Avoidance Buffer: 5 meters, maintaining safe spacing to allow evasive actions if

necessary.

These parameter values help ensure that the simulation of LSPP closely mimics real-world

autonomous driving dynamics, enabling it to be tested for safety, responsiveness, and comfort across

a variety of driving scenarios.

3.1.2. Simulation Scenarios and Results

To present the experimental simulation results, various experiments and scenarios are outlined to

evaluate the effectiveness of the LSPP algorithm. These experiments simulate realistic driving

conditions, including straight and curved highways, varying traffic densities, and emergency

obstacles. Key performance indicators are used to measure LSPP’s effectiveness, with results

1588
International Journal of Robotics and Control Systems

ISSN 2775-2658
Vol. 5, No. 2, 2025, pp. 1571-1595

Wael A. Farag (Real-Time Autonomous Vehicle Navigation via Rule-Based Waypoint Selection and Spline-Guided

MPC)

compared against other standard motion planning algorithms, highlighting the strengths of the

proposed approach.

To evaluate the LSPP algorithm, it is compared against three widely used motion planning

algorithms:

1. A* Algorithm: A graph-based search algorithm that finds the shortest path to the target by

optimizing a cost function [43]. It’s effective for pathfinding but can be computationally

expensive in complex environments [44].

2. Rapidly-exploring Random Tree (RRT): A sampling-based algorithm that builds a tree to explore

feasible paths from the start to the goal, focusing on avoiding obstacles [45]. RRT is efficient in

high-dimensional spaces but may produce less smooth paths [46].

3. Bezier Curve-based Planning: This method uses Bezier curves to generate smooth paths based

on control points, providing smooth trajectory transitions ideal for lane changes and path

following, though it lacks flexibility in complex obstacle-filled environments [47].

3.1.2.1. Scenario 1: Straight Highway with Moderate Traffic

• Objective: Evaluate path-following accuracy and speed maintenance.

• Metrics:

• Trajectory Smoothness (Avg. Jerk), Speed Deviation, Execution Time per cycle.

• Results:

• LSPP: Avg. Jerk = 0.2 𝑚/𝑠3, Speed Deviation = ±2 km/h, Execution Time = 12 ms

• A* Algorithm: Avg. Jerk = 0.5 𝑚/𝑠3, Speed Deviation = ±6 km/h, Execution Time = 55

ms

• RRT: Jerk = 0.6 𝑚/𝑠3, Speed Deviation = ±4 km/h, Execution Time = 40 ms

• Bezier Curve: Jerk = 0.3 𝑚/𝑠3, Speed Deviation = ±3 km/h, Execution Time = 20 ms

• Conclusion: LSPP demonstrates the lowest jerk and speed deviation while maintaining a short

execution time, making it suitable for real-time path following.

3.1.2.2. Scenario 2: Curved Highway with Lane Changes

• Objective: Test lane-changing capability on curves.

• Metrics:

• Lane Change Success Rate, Trajectory Smoothness (Avg. Jerk), Lateral Deviation,

Execution Time.

• Results:

• LSPP: Lane Change Success = 100%, Jerk = 0.3 𝑚/𝑠3, Max Lateral Deviation = 0.1m,

Execution Time = 15 ms

• A* Algorithm: Lane Change Success = 85%, Jerk = 0.7 𝑚/𝑠3, Max Lateral Deviation =

0.5m, Execution Time = 60 ms

• RRT: Lane Change Success = 80%, Jerk = 0.8 𝑚/𝑠3, Max Lateral Deviation = 0.4m,

Execution Time = 50 ms

• Bezier Curve: Lane Change Success = 95%, Jerk = 0.4 𝑚/𝑠3, Max Lateral Deviation =

0.2m, Execution Time = 25 ms

• Conclusion: LSPP maintains optimal lane change success and lateral deviation with a shorter

execution time, proving it efficient for real-time lane changes on curves.

ISSN 2775-2658
International Journal of Robotics and Control Systems

1589
Vol. 5, No. 2, 2025, pp. 1571-1595

Wael A. Farag (Real-Time Autonomous Vehicle Navigation via Rule-Based Waypoint Selection and Spline-Guided

MPC)

3.1.2.3. Scenario 3: Emergency Stop and Obstacle Avoidance

• Objective: Assess response to sudden obstacles.

• Metrics:

• Collision Avoidance Rate, Stopping Distance, Trajectory Smoothness (Avg. Jerk),

Execution Time.

• Results:

• LSPP: Collision Avoidance = 100%, Stopping Distance = 5m, Jerk = 0.4 𝑚/𝑠3, Execution

Time = 10 ms

• A* Algorithm: Collision Avoidance = 70%, Stopping Distance = 2m, Jerk = 0.9 𝑚/𝑠3,

Execution Time = 70 ms

• RRT: Collision Avoidance = 80%, Stopping Distance = 3m, Jerk = 0.7 𝑚/𝑠3, Execution

Time = 55 ms

• Bezier Curve: Collision Avoidance = 90%, Stopping Distance = 4m, Jerk = 0.5 𝑚/𝑠3,

Execution Time = 30 ms

• Conclusion: LSPP achieves a perfect collision avoidance rate with rapid execution time,

demonstrating its effectiveness in emergency response scenarios.

3.1.2.4. Scenario 4: High-Speed Curved Highway with Lane-Keeping

• Objective: Evaluate lane-keeping performance at high speeds.

• Metrics:

• Lane Keeping Success Rate, Lateral Deviation, Trajectory Smoothness (Avg. Jerk),

Execution Time.

• Results:

• LSPP: Lane Keeping Success = 98%, Lateral Deviation = 0.15m, Jerk = 0.3 𝑚/𝑠3,

Execution Time = 15 ms

• A* Algorithm: Lane Keeping Success = 70%, Lateral Deviation = 0.5m, Jerk = 0.7 𝑚/𝑠3,

Execution Time = 65 ms

• RRT: Lane Keeping Success = 75%, Lateral Deviation = 0.4m, Jerk = 0.6 𝑚/𝑠3, Execution

Time = 52 ms

• Bezier Curve: Lane Keeping Success = 90%, Lateral Deviation = 0.3m, Jerk = 0.4 𝑚/𝑠3,

Execution Time = 27 ms

• Conclusion: LSPP excels in lane-keeping at high speeds with minimal lateral deviation and low

execution time, supporting its suitability for high-speed applications.

3.1.2.5. Scenario 5: Stop and Go Traffic in Congested Conditions

• Objective: Assess performance in stop-and-go traffic.

• Metrics:

• Comfort (Avg. Jerk) during acceleration and deceleration, Traffic Flow Efficiency,

Execution Time.

• Results:

• LSPP: Jerk = 0.3 𝑚/𝑠3, Traffic Flow Efficiency = 95%, Execution Time = 12 ms

• A* Algorithm: Jerk = 0.6 𝑚/𝑠3, Traffic Flow Efficiency = 80%, Execution Time = 60 ms

1590
International Journal of Robotics and Control Systems

ISSN 2775-2658
Vol. 5, No. 2, 2025, pp. 1571-1595

Wael A. Farag (Real-Time Autonomous Vehicle Navigation via Rule-Based Waypoint Selection and Spline-Guided

MPC)

• RRT: Jerk = 0.5 𝑚/𝑠3, Traffic Flow Efficiency = 85%, Execution Time = 50 ms

• Bezier Curve: Jerk = 0.4 𝑚/𝑠3, Traffic Flow Efficiency = 90%, Execution Time = 22 ms

• Conclusion: LSPP achieves smooth accelerations and decelerations with high traffic flow

efficiency, completing computations rapidly enough for real-time stop-and-go driving.

3.1.2.6. Summary of the Simulation Results

Here’s in Table 5 a professional tabular representation of the simulation scenarios and results for

the LSPP algorithm, showcasing various metrics and a comparison with other motion planning

methods.

Table 5. Summary of the simulation scenarios results

Scenario Metrics LSPP
A*

Algorithm
RRT

Bezier

Curve
Straight Highway

with Moderate

Traffic

Trajectory Smoothness (Avg. Jerk) 𝑚/𝑠3 0.2 0.5 0.6 0.3

Speed Deviation ± km/h ±2 ±6 ±4 ±3

Execution Time ms 12 55 40 20

Curved Highway

with Lane Changes

Lane Change Success Rate % 100 85 80 95

Trajectory Smoothness (Avg. Jerk) 𝑚/𝑠3 0.3 0.7 0.8 0.4

Max Lateral Deviation m 0.1 0.5 0.4 0.2

Execution Time ms 15 60 50 25

Emergency Stop and

Obstacle Avoidance

Collision Avoidance Rate % 100 70 80 90

Stopping Distance m 5 2 3 4

Trajectory Smoothness (Avg. Jerk) 𝑚/𝑠3 0.4 0.9 0.7 0.5

Execution Time ms 10 70 55 30

High-Speed Curved

Highway with Lane

Keeping

Lane Keeping Success Rate % 98 70 75 90

Max Lateral Deviation m 0.15 0.5 0.4 0.3

Trajectory Smoothness (Avg. Jerk) 𝑚/𝑠3 0.3 70 0.6 0.4

Execution Time ms 15 65 52 27

Stop-and-Go Traffic

in Congested

Conditions

Comfort (Avg. Jerk) 𝑚/𝑠3 0.3 0.6 0.5 0.4

Traffic Flow Efficiency % 95 80 80 90

Execution Time ms 12 60 50 22

Notes on Metrics:

• Trajectory Smoothness (Avg. Jerk): Average jerk, measuring smoothness in acceleration and

deceleration.

• Speed Deviation: Difference from target speed in km/h.

• Execution Time: Time taken per planning cycle (in milliseconds).

• Lane Change Success Rate: Percentage of successful lane changes without collision.

• Lane Keeping Success Rate: Measure the vehicle's ability to maintain its position within a

designated lane.

• Max Lateral Deviation: Maximum deviation from lane center.

• Collision Avoidance Rate: Percentage of trials where collisions were avoided.

• Stopping Distance: Distance from the obstacle when the vehicle halts.

• Comfort (Avg. Jerk): Average jerk in stop-and-go traffic, indicative of passenger comfort.

• Traffic Flow Efficiency: Percentage of traffic flow maintained without unnecessary delays.

3.2. Discussion

The study’s results highlight the strengths and trade-offs of the LSPP algorithm in comparison

to A*, RRT, and Bezier Curve-based methods. LSPP demonstrated high performance in trajectory

smoothness, lane-keeping, and collision avoidance in structured environments, though performance

ISSN 2775-2658
International Journal of Robotics and Control Systems

1591
Vol. 5, No. 2, 2025, pp. 1571-1595

Wael A. Farag (Real-Time Autonomous Vehicle Navigation via Rule-Based Waypoint Selection and Spline-Guided

MPC)

varied across algorithms in different scenarios. This section discusses the factors influencing LSPP’s

effectiveness and the contexts where each algorithm may be most advantageous [48]-[50].

3.2.1. Execution Time

The LSPP algorithm exhibits lower execution times than A*, RRT, and Bezier Curve-based

algorithms, particularly in structured environments like highways. This efficiency is due to several

factors: LSPP’s deterministic, quintic spline-based approach generates smooth, continuous paths

without the need for extensive search or iterative exploration, as required by A* and RRT. By directly

optimizing the trajectory based on boundary conditions (position, velocity, and acceleration), LSPP

produces kinematically feasible paths in fewer steps, avoiding the complex pathfinding and post-

processing typically needed for other algorithms. Designed to handle kinematic constraints up to

jerk, LSPP efficiently supports real-time applications, making it particularly suited for high-speed,

continuous path planning where smoothness and execution speed are critical [51]-[53].

3.2.2. Collision Avoidance

A higher Collision Avoidance Rate for the LSPP algorithm compared to other methods in this

paper is logical, particularly in structured environments. LSPP’s quintic spline-based approach

generates smooth, continuous paths that adhere to kinematic constraints, enabling stable, predictable

trajectories that minimize abrupt maneuvers, which can increase collision risk. This inherent

smoothness allows the vehicle to maintain consistent control and avoid obstacles effectively without

extensive recalculations. Unlike A* and RRT, which may require frequent replanning or post-

processing to adapt to new obstacles, LSPP supports localized adjustments, enabling dynamic

obstacle avoidance while preserving path continuity. Consequently, LSPP is particularly

advantageous in scenarios where smoothness, stability, and real-time responsiveness are essential.

3.2.3. Speed Deviation

Lower Speed Deviation from the target speed with the LSPP algorithm, compared to A*, RRT,

and Bezier Curve-based algorithms, is justified due to LSPP's use of smooth, kinematically feasible

quintic splines. This smoothness minimizes abrupt speed changes, enabling the vehicle to follow a

steady trajectory without frequent adjustments. LSPP also allows localized path adjustments for

minor obstacles without requiring full replanning, further supporting speed consistency. By contrast,

A* and RRT often produce non-smooth paths that require speed adjustments, while Bezier-based

paths may introduce inconsistencies in dynamic settings. Overall, LSPP’s continuous, kinematically

aware paths help maintain stable speeds, particularly in high-speed, structured environments.

4. Conclusion

This paper presented the development and evaluation of a novel Local Spline-based Path

Planner (LSPP) for autonomous vehicles, which integrates intelligent waypoint generation, quintic

spline fitting, and Model Predictive Control (MPC) for smooth and accurate path tracking. The

proposed framework demonstrates promising results in structured, highway-like environments,

showing high performance in terms of safety, comfort, and real-time responsiveness. By leveraging

spline curves for trajectory generation and combining them with rule-based waypoint selection, LSPP

ensures continuity, smoothness, and feasibility of vehicle paths while respecting dynamic constraints.

Despite these strengths, several limitations and challenges remain. A key concern is the

generalizability of the LSPP algorithm beyond structured environments. While performance in

highways is robust, the algorithm’s effectiveness in unstructured, congested, or dynamic urban

settings—with unpredictable moving obstacles such as pedestrians or cyclists—remains an open

question. The current design assumes a relatively stable environment and may not adapt well to

erratic behaviors or sudden changes in traffic flow.

Additionally, the reliance on accurate sensor data for waypoint generation and state estimation

introduces vulnerability to sensor noise and failure, especially in adverse weather conditions such as

heavy rain, fog, or snow. These conditions can significantly degrade sensor performance, leading to

1592
International Journal of Robotics and Control Systems

ISSN 2775-2658
Vol. 5, No. 2, 2025, pp. 1571-1595

Wael A. Farag (Real-Time Autonomous Vehicle Navigation via Rule-Based Waypoint Selection and Spline-Guided

MPC)

inaccurate trajectory planning. Another limitation lies in the use of quintic splines, which, while

smooth and efficient, depend on well-defined boundary conditions and may struggle to adapt flexibly

in highly constrained or cluttered environments. Moreover, the integration with MPC adds

computational overhead, which, although manageable in simulations, could pose real-time

performance issues on embedded systems when combined with sensor fusion and other high-

frequency planning modules. Scalability also remains a concern. As the environmental complexity

increases, so does the need for more frequent replanning and tighter integration with perception and

prediction modules. LSPP’s current structure may need optimization or parallelization to sustain real-

time responsiveness in such scenarios. Future work will focus on enhancing the adaptability and

robustness of LSPP by:

• Extending its capabilities to unstructured and urban environments.

• Incorporating sensor fusion with probabilistic models to handle uncertainty and noise.

• Investigating edge-case performance under scenarios such as high-speed merging, sudden

obstacle appearances, and sharp turns.

• Exploring lightweight implementations and hardware acceleration to ensure real-time

deployment feasibility.

In conclusion, while LSPP represents a significant step toward reliable and smooth local path

planning for autonomous vehicles, it is not without limitations. A critical assessment of its scalability,

robustness, and adaptability to real-world complexities is essential for its evolution into a deployable

solution. The insights gained through this study provide a strong foundation for addressing these

challenges in future research.

Supplementary Materials: Availability of data and material: available upon request.

Author Contribution: WAF: Writing – original draft, Methodology, Formal analysis, Data curation,

Conceptualization. MOF: Writing review & editing.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

List of abbreviations

APF : Artificial Potential Field

FSM : Finite State Machine

JMT : Jerk Minimizing Trajectory

ODM : Object Detection Module

LSPP : Localized Spline-based Path-Planning

MPC : Model Predictive Control

MPM : Mission Planner Module

RBLPP : Rule-Based Localized Path Planner

RRT : Rapidly-exploring Random Tree

TTCs : Triggering Transitional Conditions

References

[1] W. Farag, “Safe-driving cloning by deep learning for autonomous cars,” International Journal of

Advanced Mechatronic Systems, vol. 7, no. 6, pp. 390-397, 2019,

https://doi.org/10.1504/IJAMECHS.2017.099318.

[2] W. Farag and Z. Saleh, “Road Lane-Lines Detection in Real-Time for Advanced Driving Assistance

Systems,” 2018 International Conference on Innovation and Intelligence for Informatics, Computing, and

Technologies (3ICT), pp. 1-8, 2018, https://doi.org/10.1109/3ICT.2018.8855797.

[3] W. Farag, “Traffic signs classification by deep learning for advanced driving assistance systems,”

Intelligent Decision Technologies, vol. 13, no. 3, pp. 215-231, 2019, https://doi.org/10.3233/IDT-180064.

https://doi.org/10.1504/IJAMECHS.2017.099318
https://doi.org/10.1109/3ICT.2018.8855797
https://doi.org/10.3233/IDT-180064

ISSN 2775-2658
International Journal of Robotics and Control Systems

1593
Vol. 5, No. 2, 2025, pp. 1571-1595

Wael A. Farag (Real-Time Autonomous Vehicle Navigation via Rule-Based Waypoint Selection and Spline-Guided

MPC)

[4] W. Farag and Z. Saleh, “An advanced vehicle detection and tracking scheme for self-driving cars,” 2nd

Smart Cities Symposium (SCS 2019), pp. 1-6, 2019, https://doi.org/10.1049/cp.2019.0222.

[5] W. Farag, “Recognition of traffic signs by convolutional neural nets for self-driving vehicles,”

International Journal of Knowledge-Based and Intelligent Engineering Systems, vol. 22, no. 3, pp. 205-

214, 2018, https://doi.org/10.3233/KES-180385.

[6] W. Farag and Z. Saleh, “Behavior Cloning for Autonomous Driving using Convolutional Neural

Networks,” 2018 International Conference on Innovation and Intelligence for Informatics, Computing,

and Technologies (3ICT), pp. 1-7, 2018, https://doi.org/10.1109/3ICT.2018.8855753.

[7] W. Farag and Z. Saleh, “Tuning of PID Track Followers for Autonomous Driving,” 2018 International

Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), pp. 1-

7, 2018, https://doi.org/10.1109/3ICT.2018.8855773.

[8] K. B. Patel, H. C. Lin, A. D. Berger, W. Farag, A. A. Khan, “U.S. Patent No. 6,196,327,” U.S. Patent and

Trademark Office, 2001, https://patents.google.com/patent/US6196327B1/en.

[9] K. Shao, J. Zheng, and K. Huang, “Robust active steering control for vehicle rollover prevention,”

International Journal of Modelling, Identification and Control, vol. 32, no. 1, pp. 70-84, 2019,

https://doi.org/10.1504/IJMIC.2019.101956.

[10] P. Bautista-Camino, A. I. Barranco-Gutiérrez, I. Cervantes, M. Rodríguez-Licea, J. Prado-Olivarez, F. J.

Pérez-Pinal, “Local Path Planning for Autonomous Vehicles Based on the Natural Behavior of the

Biological Action-Perception Motion,” Energies, vol. 15, no. 5, p. 1769, 2022,

https://doi.org/10.3390/en15051769.

[11] L. Claussmann, M. Revilloud, D. Gruyer and S. Glaser, “A Review of Motion Planning for Highway

Autonomous Driving,” IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 5, pp. 1826-

1848, 2020, https://doi.org/10.1109/TITS.2019.2913998.

[12] W. A. Farag, “Kalman-filter-based sensor fusion applied to road-objects detection and tracking for

autonomous vehicles,” Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems

and Control Engineering, vol. 235, no. 7, pp. 1125-1138, 2021,

https://doi.org/10.1177/0959651820975523.

[13] W. A. Farag, “A lightweight vehicle detection and tracking technique for advanced driving assistance

systems,” Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology, vol. 39,

no. 3, pp. 1-13, 2020, https://doi.org/10.3233/JIFS-190634.

[14] W. Farag, “Multiple road-objects detection and tracking for autonomous driving,” Journal of Engineering

Research, vol. 10, no. 1A, pp. 237-262, 2021, https://doi.org/10.36909/jer.10993.

[15] W. A. Farag, “Real-time detection of road lane-lines for autonomous driving,” Recent Advances in

Computer Science and Communications, vol. 13, no. 2, pp. 265-274, 2020,

http://dx.doi.org/10.2174/2213275912666190126095547.

[16] J. S. Tjiharjadi, S. Razali, and H. A. Sulaiman, “A systematic literature review of multi-agent pathfinding

for maze research,” Journal of Advances in Information Technology, vol. 13, no. 4, pp. 358-367, 2022,

https://doi.org/10.12720/jait.13.4.358-367.

[17] W. Farag, “Real-time autonomous vehicle localization based on particle and unscented Kalman filters,”

Journal of Control, Automation and Electrical Systems, vol. 32, no. 2, pp. 309-325, 2021,

https://doi.org/10.1007/s40313-020-00666-w.

[18] M. Reda, A. Onsy, A. Y. Haikal, and A. Ghanbari, “Path planning algorithms in the autonomous driving

system: A comprehensive review,” Robotics and Autonomous Systems, vol. 174, p. 104630, 2024,

https://doi.org/10.1016/j.robot.2024.104630.

[19] W. Farag, “Complex track maneuvering using real-time MPC control for autonomous driving,”

International Journal of Computing and Digital Systems, vol. 9, no. 5, pp. 1-15, 2020,

https://doi.org/10.12785/ijcds/090511.

[20] J. R. Sánchez-Ibáñez, C. J. Pérez-del-Pulgar, A. García-Cerezo, “Path Planning for Autonomous Mobile

Robots: A Review,” Sensors, vol. 21, no. 23, p. 7898, 2021, https://doi.org/10.3390/s21237898.

https://doi.org/10.1049/cp.2019.0222
https://doi.org/10.3233/KES-180385
https://doi.org/10.1109/3ICT.2018.8855753
https://doi.org/10.1109/3ICT.2018.8855773
https://patents.google.com/patent/US6196327B1/en
https://doi.org/10.1504/IJMIC.2019.101956
https://doi.org/10.3390/en15051769
https://doi.org/10.1109/TITS.2019.2913998
https://doi.org/10.1177/0959651820975523
https://doi.org/10.3233/JIFS-190634
https://doi.org/10.36909/jer.10993
http://dx.doi.org/10.2174/2213275912666190126095547
https://doi.org/10.12720/jait.13.4.358-367
https://doi.org/10.1007/s40313-020-00666-w
https://doi.org/10.1016/j.robot.2024.104630
https://doi.org/10.12785/ijcds/090511
https://doi.org/10.3390/s21237898

1594
International Journal of Robotics and Control Systems

ISSN 2775-2658
Vol. 5, No. 2, 2025, pp. 1571-1595

Wael A. Farag (Real-Time Autonomous Vehicle Navigation via Rule-Based Waypoint Selection and Spline-Guided

MPC)

[21] W. Xu, Q. Wang and J. M. Dolan, “Autonomous Vehicle Motion Planning via Recurrent Spline

Optimization,” 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 7730-7736,

2021, https://doi.org/10.1109/ICRA48506.2021.9560867.

[22] W. Farag, “Complex-track following in real-time using model-based predictive control,” International

Journal of Intelligent Transportation Systems Research, vol. 19, no. 1, pp. 112-127, 2021,

https://doi.org/10.1007/s13177-020-00226-1.

[23] W. Farag, “Real-time NMPC path tracker for autonomous vehicles,” Asian Journal of Control, vol. 23,

no. 4, pp. 1952-1965, 2021, https://doi.org/10.1002/asjc.2335.

[24] J. Wen, X. Zhang, Q. Bi, H. Liu, J. Yuan and Y. Fang, “G²VD Planner: Efficient Motion Planning With

Grid-Based Generalized Voronoi Diagrams,” IEEE Transactions on Automation Science and

Engineering, vol. 22, pp. 3743-3755, 2025, https://doi.org/10.1109/TASE.2024.3398996.

[25] C. S. Tan, R. Mohd-Mokhtar and M. R. Arshad, “A Comprehensive Review of Coverage Path Planning

in Robotics Using Classical and Heuristic Algorithms,” IEEE Access, vol. 9, pp. 119310-119342, 2021,

https://doi.org/10.1109/ACCESS.2021.3108177

[26] P. Qin, F. Liu, Z. Guo, Z. Li, Y. Shang, “Hierarchical collision-free trajectory planning for autonomous

vehicles based on improved artificial potential field method,” Transactions of the Institute of

Measurement and Control, vol. 46, no. 4, pp. 799-812, 2024,

https://doi.org/10.1177/01423312231186684.

[27] M. R. Siddiqi, S. Milani, R. N. Jazar and H. Marzbani, “Ergonomic Path Planning for Autonomous

Vehicles-An Investigation on the Effect of Transition Curves on Motion Sickness,” IEEE Transactions

on Intelligent Transportation Systems, vol. 23, no. 7, pp. 7258-7269, 2022,

https://doi.org/10.1109/TITS.2021.3067858.

[28] X. Qian, I. Navarro, A. de La Fortelle and F. Moutarde, “Motion planning for urban autonomous driving

using Bézier curves and MPC,” 2016 IEEE 19th International Conference on Intelligent Transportation

Systems (ITSC), pp. 826-833, 2016, https://doi.org/10.1109/ITSC.2016.7795651.

[29] W. A. Farag, V. H. Quintana and G. Lambert-Torres, “Genetic algorithms and back-propagation: a

comparative study,” Conference Proceedings. IEEE Canadian Conference on Electrical and Computer

Engineering (Cat. No.98TH8341), vol. 1, pp. 93-96, 1998, https://doi.org/10.1109/CCECE.1998.682559.

[30] A. Rucco, P. B. Sujit, A. P. Aguiar, J. B. de Sousa and F. L. Pereira, “Optimal Rendezvous Trajectory for

Unmanned Aerial-Ground Vehicles,” IEEE Transactions on Aerospace and Electronic Systems, vol. 54,

no. 2, pp. 834-847, 2018, https://doi.org/10.1109/TAES.2017.2767958.

[31] P. Lin, E. Javanmardi and M. Tsukada, “Clothoid Curve-Based Emergency-Stopping Path Planning With

Adaptive Potential Field for Autonomous Vehicles,” IEEE Transactions on Vehicular Technology, vol.

73, no. 7, pp. 9747-9762, 2024, https://doi.org/10.1109/TVT.2024.3380745.

[32] J. Kong, M. Pfeiffer, G. Schildbach and F. Borrelli, “Kinematic and dynamic vehicle models for

autonomous driving control design,” 2015 IEEE Intelligent Vehicles Symposium (IV), pp. 1094-1099,

2015, https://doi.org/10.1109/IVS.2015.7225830.

[33] A. N. Sharkawy, “Minimum jerk trajectory generation for straight and curved movements: Mathematical

analysis,” arXiv, 2021, https://doi.org/10.48550/arXiv.2102.07459.

[34] J. Dalle, D. Hastuti, and M. R. A. Prasetya, “The use of an application running on the ant colony algorithm

in determining the nearest path between two points,” Journal of Advances in Information Technology,

vol. 12, no. 3, pp. 206-213, 2021, https://doi.org/10.12720/jait.12.3.206-213.

[35] W. Farag and M. Nadeem, “Enhanced real-time road-vehicles’ detection and tracking for driving

assistance,” International Journal of Knowledge-Based and Intelligent Engineering Systems, vol. 28, no.

2, pp. 335-357, 2024, https://doi.org/10.3233/KES-230062.

[36] N. Petrellis et al., “Software acceleration of the deformable shape tracking application: How to eliminate

the Eigen library overhead,” ESSE '21: Proceedings of the 2021 European Symposium on Software

Engineering, pp. 51-57, 2021, https://doi.org/10.1145/3501774.3501782.

https://doi.org/10.1109/ICRA48506.2021.9560867
https://doi.org/10.1007/s13177-020-00226-1
https://doi.org/10.1002/asjc.2335
https://doi.org/10.1109/TASE.2024.3398996
https://doi.org/10.1109/ACCESS.2021.3108177
https://doi.org/10.1177/01423312231186684
https://doi.org/10.1109/TITS.2021.3067858
https://doi.org/10.1109/ITSC.2016.7795651
https://doi.org/10.1109/CCECE.1998.682559
https://doi.org/10.1109/TAES.2017.2767958
https://doi.org/10.1109/TVT.2024.3380745
https://doi.org/10.1109/IVS.2015.7225830
https://doi.org/10.48550/arXiv.2102.07459
https://doi.org/10.12720/jait.12.3.206-213
https://doi.org/10.3233/KES-230062
https://doi.org/10.1145/3501774.3501782

ISSN 2775-2658
International Journal of Robotics and Control Systems

1595
Vol. 5, No. 2, 2025, pp. 1571-1595

Wael A. Farag (Real-Time Autonomous Vehicle Navigation via Rule-Based Waypoint Selection and Spline-Guided

MPC)

[37] X. Wang, X. Qi, P. Wang, J. Yang, “Decision making framework for autonomous vehicles driving

behavior in complex scenarios via hierarchical state machine,” Autonomous Intelligent Systems, vol. 1,

no. 10, 2021, https://doi.org/10.1007/s43684-021-00015-x.

[38] M. Werling, J. Ziegler, S. Kammel and S. Thrun, “Optimal trajectory generation for dynamic street

scenarios in a Frenét Frame,” 2010 IEEE International Conference on Robotics and Automation, pp. 987-

993, 2010, https://doi.org/10.1109/ROBOT.2010.5509799.

[39] J. Ziegler et al., “Making Bertha Drive—An Autonomous Journey on a Historic Route,” IEEE Intelligent

Transportation Systems Magazine, vol. 6, no. 2, pp. 8-20, 2014,

https://doi.org/10.1109/MITS.2014.2306552.

[40] D. Kim, G. Kim, H. Kim and K. Huh, “A Hierarchical Motion Planning Framework for Autonomous

Driving in Structured Highway Environments,” IEEE Access, vol. 10, pp. 20102-20117, 2022,

https://doi.org/10.1109/ACCESS.2022.3152187.

[41] B. Paden, M. Čáp, S. Z. Yong, D. Yershov and E. Frazzoli, “A Survey of Motion Planning and Control

Techniques for Self-Driving Urban Vehicles,” IEEE Transactions on Intelligent Vehicles, vol. 1, no. 1,

pp. 33-55, 2016, https://doi.org/10.1109/TIV.2016.2578706.

[42] D. González, J. Pérez, V. Milanés and F. Nashashibi, “A Review of Motion Planning Techniques for

Automated Vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 4, pp. 1135-

1145, 2016, https://doi.org/10.1109/TITS.2015.2498841.

[43] H. Wang, S. Lou, J. Jing, Y. Wang, W. Liu, and T. Liu, “The EBS-A* algorithm: An improved A*

algorithm for path planning,” PLOS ONE, vol. 17, no. 2, p. e0263841, 2022,

https://doi.org/10.1371/journal.pone.0263841.

[44] T. Chang and G. Tian, “Hybrid A-Star path planning method based on hierarchical clustering and

trichotomy,” Applied Sciences, vol. 14, no. 13, p. 5582, 2024, https://doi.org/10.3390/app14135582.

[45] H. Wang, X. Zhou, J. Li, Z. Yang, and L. Cao, “Improved RRT* algorithm for disinfecting robot path

planning,” Sensors, vol. 24, no. 5, p. 1520, 2024, https://doi.org/10.3390/s24051520.

[46] F. Yang, X. Fang, F. Gao, X. Zhou, H. Li, H. Jin, and Y. Song, “Obstacle avoidance path planning for

UAV based on improved RRT algorithm,” Discrete Dynamics in Nature and Society, vol. 2022, no. 1, p.

4544499, 2022, https://doi.org/10.1155/2022/4544499.

[47] L. Zheng, P. Zeng, W. Yang, Y. Li, and Z. Zhan, “Bézier curve‐based trajectory planning for autonomous

vehicles with collision avoidance,” IET Intelligent Transport Systems, vol. 14, no. 13, pp. 1882-1891,

2020, https://doi.org/10.1049/iet-its.2020.0355.

[48] W. Farag, “Synthesis of intelligent hybrid systems for modeling and control,” University of Waterloo,

1998, https://dspacemainprd01.lib.uwaterloo.ca/server/api/core/bitstreams/c464b29f-93c9-4241-95d9-

f263522e1fba/content.

[49] W. A. Farag, V. H. Quintana and G. Lambert-Torres, “Neuro-fuzzy modeling of complex systems using

genetic algorithms,” Proceedings of International Conference on Neural Networks (ICNN'97), vol. 1, pp.

444-449, 1997, https://doi.org/10.1109/ICNN.1997.611709.

[50] W. Farag, “Road-objects tracking for autonomous driving using lidar and radar fusion,” Journal of

Electrical Engineering, vol. 71, no. 3, pp. 138-149, 2020, https://doi.org/10.2478/jee-2020-0021.

[51] W. A. Farag, M. Fayed, “Advancing vehicle detection for autonomous driving: integrating computer

vision and machine learning techniques for real-world deployment,” Journal of Control and Decision,

2025, https://doi.org/10.1080/23307706.2025.2469893.

[52] W. A. Farag, M. Helal, “Real-time localization with probabilistic maps and unscented kalman filtering: a

dynamic sensor fusion approach,” Journal of Control and Decision, 2024,

https://doi.org/10.1080/23307706.2024.2417218.

[53] E. Yurtsever, J. Lambert, A. Carballo and K. Takeda, “A Survey of Autonomous Driving: Common

Practices and Emerging Technologies,” IEEE Access, vol. 8, pp. 58443-58469, 2020,

https://doi.org/10.1109/ACCESS.2020.2983149.

https://doi.org/10.1007/s43684-021-00015-x
https://doi.org/10.1109/ROBOT.2010.5509799
https://doi.org/10.1109/MITS.2014.2306552
https://doi.org/10.1109/ACCESS.2022.3152187
https://doi.org/10.1109/TIV.2016.2578706
https://doi.org/10.1109/TITS.2015.2498841
https://doi.org/10.1371/journal.pone.0263841
https://doi.org/10.3390/app14135582
https://doi.org/10.3390/s24051520
https://doi.org/10.1155/2022/4544499
https://doi.org/10.1049/iet-its.2020.0355
https://dspacemainprd01.lib.uwaterloo.ca/server/api/core/bitstreams/c464b29f-93c9-4241-95d9-f263522e1fba/content
https://dspacemainprd01.lib.uwaterloo.ca/server/api/core/bitstreams/c464b29f-93c9-4241-95d9-f263522e1fba/content
https://doi.org/10.1109/ICNN.1997.611709
https://doi.org/10.2478/jee-2020-0021
https://doi.org/10.1080/23307706.2025.2469893
https://doi.org/10.1080/23307706.2024.2417218
https://doi.org/10.1109/ACCESS.2020.2983149

