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ABSTRACT

In this paper, we stady a mathematical model based on a system of
fractional-order differential equations to describe the dynamics of the
Lengyel–Epstein chemical reaction, which is well known for exhibiting os-
cillatory behavior. The use of fractional derivatives allows in chemical pro-
cesses compared to classical integer-order models. We specifically focus on
analyzing the stability of the system’s positive equilibrium point by apply-
ing fractional calculus techniques. The stability conditions are derived and
discussed in the context of the fractional-order parameters. To validate the
theoretical findings, we perform numerical simulations using the Forward
Euler method adapted for fractional-order systems. These simulations il-
lustrate the impact of the fractional order on the system’s dynamic behavior
and confirm the analytical results regarding equilibrium stability.

This is an open access article under the CC-BY-SA license.

1. Introduction

Recent advancements in numerical methods for fractional differential equations have yielded a
variety of effective techniques and models. Farraj et al. [1] and Anakira et al. [2] developed optimized
and algorithmic approaches for solving conformable and Volterra integro-differential equations, re-
spectively. Berir [3] applied a novel method to study stochastic effects in fractional systems, while
Batiha et al. proposed numerical schemes such as the trapezoidal method for fractional initial value
problems [4] and computational methods for neutron diffusion in nuclear reactors [5]. Other studies
have introduced Laplace–Caputo-based RKDM techniques for nonlinear problems [6], finite differ-
ence methods for time–space fractional models [7], and multi-group neutron diffusion systems [8].
Additionally, the stochastic behavior of population dynamics has been modeled using fractional for-
mulas [9]. Bouchenak et al. [10], [11] generalized nonlinear fractional models, including Bernoulli
and Cauchy–Euler equations under modified conformable frameworks. Finally, Lamamri et al. [12]
explored the application of Caputo and conformable derivatives in analyzing nonlinear beam deflec-
tion problems, further highlighting the versatility of fractional calculus in mathematical modeling,
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see [13], [14] to get more details.

Oscillating chemical reactions such as the Belousov–Zhabotinsky and Briggs–Rauscher reac-
tions are exceptional due to their nonlinear dynamic behavior, making them classical examples of
non-equilibrium thermodynamic systems. These reactions have been the subject of extensive math-
ematical modeling aimed at understanding their underlying mechanisms. However, the resulting
models are often complex and analytically challenging due to the multitude of interacting species
and nonlinear rate laws involved [15]–[17]. In contrast, the Lengyel–Epstein reaction, which in-
volves iodine (I−), malonic acid (MA), and chlorine dioxide (CLO−

2 ), provides a more simplified
yet still powerful framework for studying oscillatory chemical behavior. Derived from the chlorite–
iodide–malonic acid (CIMA) reaction, this model captures essential features of pattern formation and
temporal oscillations, and has been widely used as a prototype for reaction–diffusion systems [18].
The CIMA reaction can be described by three chemical reaction schemes as follows

I2 +MA → IMA+H+ + I−

I− + CLO2 → 1
2I2 + CLO−

2

4I− + 4H+ + CLO−
2 → 2I2 + Cl− + 2H2O.

(1)

By applying empirical rate laws and omitting constant coefficients, the reaction kinetics of
the chlorite–iodide–malonic acid (CIMA) system can be simplified into the conventional Lengyel–
Epstein model. This reduced model involves two dependent variables, U and V , which represent the
time evolution of the concentrations of I− and CLO−

2 , respectively. The Lengyel–Epstein model has
been the subject of extensive mathematical investigation due to its ability to capture essential fea-
tures of nonlinear chemical dynamics, including oscillations and pattern formation. Several studies
have established sufficient conditions for both local and global asymptotic stability of its equilibrium
points [19]–[25]. Furthermore, diffusion-driven instability, commonly referred to as Turing insta-
bility, has been rigorously analyzed in works such as [26]–[28], which provide criteria under which
spatial patterning emerges. The model’s capacity to exhibit Hopf bifurcations—indicating transitions
to temporal oscillations—has also been discussed in detail in [29]–[34]. In addition, a wide range of
modified versions of the original system have been explored in the literature [35]–[39], with the goal
of relaxing classical assumptions or extending the model’s applicability to more complex chemical
and biological phenomena. the proposed rate equations are given by

dU
dt = M −NU − 4P

(
UV

α+U2

)
dV
dt = PU − P

(
UV

α+U2

)
,

(2)

Where M,N,P > 0. After all these operations, the Lengyel–Epstein model is as the following [40]:{
du
dt = l − u− 4uv

1+u2

dv
dt = mu

(
1− v

1+u2

)
.

(3)

Model (3) describes an integer-order system that incorporates a first-order derivative with re-
spect to the time variable, t. This derivative captures the immediate rate of change in the reactions.
However, biochemical processes are inherently complex and often influenced not only by their cur-
rent state but also by their past dynamics. To better capture these memory-dependent behaviors,
fractional-order differential equations provide a more appropriate analytical framework [41]–[44].

This paper is systematized into four sections. The introduction is the first section in which we
intricate some work of the Lengyel–Epstein model in kinetic studies. In Section 2, we will elaborate
notations related to the concept of FDEs. In Section 3, chemical reaction model of Lengyel–Epstein
incorporating fractional-order dynamics. Numerical imitations are offered to validate the main out-
comes and conclusion is drawn in Section 4.
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2. Fractional Calculus

Let us review some fundamental definitions [45], [46] related to the Caputo differential operator
in fractional calculus.

Definition 2.1 [47] Suppose that α > 0, t > a, α, a, t ∈ R. The Caputo fractional derivative is given
by

C
a D

α
t f(t) =

1

Γ (n− α)

∫ α

a

fn (ξ)

(t− ξ)α−1−ndξ, (4)

n− 1 < α < n ∈ N D =
d

dt
,

Where Γ representing the gamma function.

Theorem 2.2 Note that the constant (s∗, u∗) is an equilibrium point for the Caputo fractional non-
autonomous dynamic system { C

t0D
α
t s(t) = F1(s, u), in R+

C
t0D

β
t u(t) = F2(s, u), in R+,

(5)

if and only if
F1(s

∗, u∗) = F2(s
∗, u∗) = 0 (6)

Lemma 2.3 [48] The asymptotic stability of the point (s∗, u∗) established is subject to

|arg (λ1)| >
απ

2
and |arg (λ2)| >

βπ

2
, (7)

Where α, β ∈ (0, 1] and arg (.) is the argument of a complex number, λi (i = 1, 2) are the eigenvalues
of the Jacobian matrix J(s∗, u∗).

2.1. Local Stability from an ODE Perspective

Consider the following simple linear two-component ODE system (see [49]):

Qt = AQ, (8)

Where

A =

(
a11 a12
a21 a22

)
and Q1 =

(
x
y

)
(9)

It is well known that the asymptotic behavior is heavily dependent on the eigenvalues of A
denoted by λ1 and λ2 and A being nonsingular and that is (x, y) = (0, 0). The qualitative properties
of the solutions to system (8) is the asymptotic behavior of the solutions as t� +∞. A summary of
this dependency is given in Table 1. The first stability case, which is the asymptotically stable node,
can be guaranteed if:

tr(A) = a11 + a22 < 0 and det(A) = a11a22 − a12a21 > 0

Khelifa Bouaziz (Stability Analysis of a Fractional-Order Lengyel–Epstein Chemical Reaction Model)
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Table 1. The asymptotic behavior of solutions to system (8)

Eigenvalues Type of equilibrium
λi ∈ R, λi < 0, i = 1, 2 Asymptotically stable node
λi ∈ R, λi > 0, i = 1, 2 Unstable node
λi ∈ R, λi < 0, i = 1, 2 Unstable saddle

λ = α± iβ, α < 0 Asymptotically stable node
λ = α± iβ, α > 0 Unstable focus

λ = ±iβ Stable center

Theorem 2.4 (Routh-Hurwitz Criteria) Given the characteristic polynomial

G (λ) = λn + a1λ
n−1 + a2λ

n−2 + ...+ an−1λ+ an,

Where the coefficients ai are real constants, i = 1, ..., n, the n− Hurwitz matrices by the coefficients
ai of the upper polynomial are

H1 = (a1) , H2 =

(
a1 1
a3 a2

)
, H3 =

 a1 1 0
a3 a2 a1
a5 a4 a3

 ,

Hn =



a1 1 0 0 . 0
a3 a2 a1 1 . 0
a5 a4 a3 a1 . 0
. . . . . .
. . . . . .
0 0 0 0 . an

 ,

Where aj = 0 if j > n. The roots of polynomial G (λ) are negative or have negative real parts, iff
the determinants of all Hurwitz matrices are positive: detHj > 0, j = 1, 2, ..., n. the Routh-Hurwitz
Criteria simplify to

n = 2 : a1 > 0 and a2 > 0.

n = 3 : a1 > 0, a3 > 0 and a1a2 > a3.

n = 4 : a1 > 0, a3 > 0, a4 > 0 and a1a2a3 > a23 + a21a4.

n = 5 : ai > 0, i = 1, 2, 3, 4, 5 > 0, a1a2a3 > a23 + a21a4 and

(a1a4 − a5)
(
a1a2a3 − a23 − a21a4

)
> a5 (a1a2 − a3)

2 + a1a
2
5.

Theorem 2.5 [50] The equilibrium point of the fractional differential equation’s system is asymp-
totically stable if all the eigenvalues obtained from the polynomial

det (diag (λωα1 , λωα2 , ..., λωαn)− J(E)) = 0 satisfy |arg (λ)| > γπ

2
, (10)

Where J(E) is Jacobian matrix evaluated at equilibrium point E.

3. Fractional-Order Dynamics in the Lengyel–Epstein Reaction Model

The model proposed in this study is the multi-order fractional order system of differential equa-
tions model of the Lengyel-Epstein model proposed in [51] without diffusion. As follows{

dαs
dtα = Λ− s− 4su

1+es = F1(s, u) in R+ × Ω.
dβu
dtβ

= ms
(
1− u

1+es

)
= F2(s, u) in R+ × Ω.

(11)

Khelifa Bouaziz (Stability Analysis of a Fractional-Order Lengyel–Epstein Chemical Reaction Model)
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Where Ω is a bounded domain in R2 with smooth boundary ∂Ω and Λ and m are strictly positive
constants, α, β ∈ (0, 1] is the fractional order with Caputo fractional derivative over (0,∞). We
assume the nonnegative initial conditions shown in Fig. 1

0 ≤ s(0, x) = s0(x), 0 ≤ u(0, x) = u0(x) in Ω,

Fig. 1. Stability region of fractional order system (11).

and impose homogeneous Neumann boundary conditions

∂s

∂υ
=

∂u

∂υ
= 0 on R+ × Ω,

Where ν is the unit outer normal to ∂Ω.

Theorem 3.1 The region V is a positively invariant for the system (11)

V =
{
(s, u) ∈ R2

+/ s ≥ 0, u ≥ 0
}
,

with initial conditions s(0) > 0 and u(0) > 0.

Proposition 3.2 System (11) has a unique equilibrium (s∗, u∗) = (κ, 1 + eκ) with κ = Λ
5 .

Proof 1 To find the equilibrium point of (11), we put

dαs

dtα
=

dβu

dtβ
= 0.

So we have {
Λ− s− 4su

1+es = 0

ms
(
1− u

1+es

)
= 0.

(12)

From the second equation of (12), we have either s = 0 or 1− u
1+es = 0. If s = 0, then the first

equation of (12) gives Λ = 0, which is false because Λ > 0.

So s ̸= 0, we have u = 1+ es. Then the equilibrium point is (s∗, u∗) = (κ, 1 + eκ) with κ = Λ
5 .

This completes the proof.
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Proposition 3.3 For the fractional-order system (11),

• Subject to ∆λ =
(
4κeκ−mκ−5(1+eκ)

1+eκ

)2
− 20mκ

1+eκ ≥ 0.

The equilibrium point (s∗, u∗) is asymptotically stable if trJ (E) < 0 and unstable if trJ (E) > 0,
where

J (E) =

(
−5(1+eκ)−4κeκ

1+eκ − 4κ
1+eκ

mκeκ

1+eκ − mκ
1+eκ

)
.

• If ∆λ < 0, then (s∗, u∗) is asymptotically stable if trJ (E) < 0.

Proof 2 The functions of the system (11) can be determined as below:{
F1 (s, u) = Λ− s− 4su

1+es

F2 (s, u) = ms
(
1− u

1+es

)
.

(13)

The Jacobian of (13) is

J (s, u) =

(
F1s F1u

F2s F2u

)

=

 −1− 4u(1+es−ses)

(1+es)2
− 4s

1+es

m− mu(1+es−ses)

(1+es)2
− ms

1+es

 . (14)

Then the Jacobian matrix (14) at E = (s∗, u∗), we have

J (E) =

(
−5(1+eκ)−4κeκ

1+eκ − 4κ
1+eκ

mκeκ

1+eκ − mκ
1+eκ

)
. (15)

Its determinant and trace are given by

det J (E) =
5mκ

1 + eκ

and

trJ(E) =
4κeκ −mκ− 5 (1 + eκ)

1 + eκ
,

respectively. The characteristic equation of the Jacobian matrix J (E) is

λ2 − trJ(E)λ+ det J (E) = 0,

The discriminant is
∆λ = (trJ(E))2 − 4 detJ (E) .

We study the different cases separately. Referring to [52]

• First if ∆λ > 0, then the eigenvalues λ1 and λ2 are

Real where λ1 =
1
2

[
trJ(E) +

√
∆λ

]
and λ2 =

1
2

[
trJ(E)−

√
∆λ

]
.

Note that det J (E) > 0. Hence the negativity of the eigenvalues rests on the sign of the trace.

(i) If trJ(E) < 0, then trJ(E)−
√
∆λ < 0, leading to

λ2 =
1

2

[
trJ(E)−

√
∆λ

]
< 0

Khelifa Bouaziz (Stability Analysis of a Fractional-Order Lengyel–Epstein Chemical Reaction Model)
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1. and therefore, arg (λ2) = π. Since both eigenvalues are real, trJ(E) < 0 and det J (E) > 0,
it is clear that arg (λ1) = π > απ

2 and arg (λ2) = π > βπ
2 with α, β ∈ ]0, 1]. It follows that

E (s∗, u∗) is asymptotically stable.

(ii) If trJ(E) > 0, then trJ(E)−
√
∆λ > 0, leading to

λ2 =
1

2

[
trJ(E)−

√
∆λ

]
> 0.

Note that λ1 > 0, then arg (λ1) = arg (λ2) = 0. So E (s∗, u∗) is asymptotically stable.

(iii) If trJ(E) = 0, then ∆λ > 0, leading to −4 det J (E) < 0 which is a contradiction. Hence this
case does not show up.

• The seconde case of the discriminant ∆λ = 0. Since det J (E) > 0, then it is impossible that
trJ(E) = 0. The eigenvalues reduce to

λ1,2 =
1

2
trJ(E).

The sign of the eigenvalues is identical to that of the trace. Consequently E (s∗, u∗) is asymptotically
stable for all α, β ∈ ]0, 1] , if trJ(E) < 0 and unstable if trJ(E) > 0.

• Finally if the discriminant ∆λ < 0, thenλ1,2 =
1
2

[
trJ(E)± i

√
−∆λ

]
.

We have three cases:

• If trJ(E) < 0, then the system is asymptotically stable at the equilibrium point.

• If trJ(E) = 0, then
∣∣arg (12 [±i

√
−∆λ

])∣∣ = π
2 , Hence for α < 1, β < 1, is asymptotically stable

at the equilibrium point. In the special case, if α = β = 1 then the system is unstable at the
equilibrium point.

• If trJ(E) > 0, then the system is unstable at the equilibrium point. The proof is complete.

Now we are going to use the eigenfunction expansion method. From (15) we have From the equation

det
[
diag

(
λpα, λpβ

)
− J (E)

]
= 0.

Then

λp(α+β) + λpα

(
mκ

1 + eκ

)
+ λpβ

(
5(1 + eκ)− 4κeκ

1 + eκ

)
+

5mκ

1 + eκ
= 0,

With κ = Λ/5. Thus, we have

λp(α+β) + λpα

(
mΛ

5
(
1 + eΛ/5

))+ λpβ

(
25(1 + eΛ/5)− 4ΛeΛ/5

5
(
1 + eΛ/5

) )

+
mΛ

1 + eΛ/5
= 0. (16)

For a special case α = 1
p , β = 1

p , the stability conditions of equilibrium point for system (11) are that

the satisfy |arg (λ)| > γ π
2 , so (16) gives

λ2 + λ

(
25(1 + eΛ/5)− 4ΛeΛ/5 +mΛ

5
(
1 + eΛ/5

) )
+

mΛ

1 + eΛ/5
= 0. (17)

So tr(J) = 25(1+eΛ/5)−4ΛeΛ/5+mΛ

5(1+eΛ/5)
, and det (J) = mΛ

1+eΛ/5 .
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4. Numerical Simulation

Over here we have used the Forward Euler method to see the behavior of the system (11) by
varying the parameters and order of the system, so the system (11) takes the following format:

sℵ+1 = s(0) +
hα

Γ (α+ 1)

ℵ∑
ℑ=0

(ℵ − ℑ+ 1)α

−(ℵ − ℑ)α
[
Λ− sqℵ+1 − 4

sqℵ+1u
q
ℵ+1

1 + exps
p
ℵ+1

]
,

uℵ+1 = u(0) +
hβ

Γ (β + 1)

ℵ∑
ℑ=0

(ℵ − ℑ+ 1)β

−(ℵ − ℑ)β
[
msqℵ+1

(
1−

uqℵ+1

1 + exps
p
ℵ+1

)]

Case 1 Let us take α = 1
2 , β = 1

2 (p = 2) ,Λ = 10,m = 15 and (s0, u0) = (1, 1) . In this case we
have from (16)

λ2 +
35− 3e2

e2 + 1
λ+

150

1 + e2
= 0.

The eigenvalues from characteristic equation are:
λ1 = −0.764 86− 4. 158 8i, λ2 = −0.764 86 + 4. 158 8i.

Since both real parts of the eigenvalues are negative. Also if we use the Routh–Hurwitz stability
condition (n = 2), it is satisfied, because a1 = 35−3e2

e2+1
> 0 and a2 = 150

1+e2
> 0. Thus E =(

2, 1 + e2
)

is local asymptotically stable as shown in Fig. 2.
Case 2 Let us take α = 1, β = 1 (p = 1) ,Λ = 25,m = 1/5 and (s0, u0) = (1, 1) . In this case we
have from (16)

λ2 − 15e5 − 6

e5 + 1
λ+

5

e5 + 1
= 0.

The eigenvalues from characteristic equation are:
λ1 = 14. 857, λ2 = 2. 252 4 × 10−3. Also if we use the Routh–Hurwitz stability condition (n = 2),
it is not satisfied, because a1 = −15e5−6

e5+1
< 0 and a2 = 5

e5+1
> 0. Since both the eigenvalues are

positive.
Thus E =

(
5, 1 + e5

)
is unstable as shown in Fig. 3.

Case 3 Let us take α = 1/6, β = 1/4 (p = 12) , Λ = 2, m = 22 and (s0, u0) = (1, 1) . In this case
we have from (16)

λ5 + (4. 042 1)λ3 + (3. 531 5)λ2 + 17. 658 = 0.

The eigenvalues from characteristic equation are:
λ1 = −7. 539 1 × 10−2 − 2. 051 6i, λ2 = −7. 539 1 × 10−2 + 2. 051 6i, λ3 = 0.872 10 + 1. 367i,
λ4 = 0.872 10− 1. 367i, λ5 = −1. 593 4. Then |arg (λ1, λ2, λ3, λ4, λ4)| > γ π

2 = π
24 ,

Khelifa Bouaziz (Stability Analysis of a Fractional-Order Lengyel–Epstein Chemical Reaction Model)
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Fig. 2. Simulation of system for α = 1
2 , β = 1

2 ,Λ = 10,m = 15

Fig. 3. Simulation of system for α = 1, β = 1,Λ = 25,m = 1/5

When

|arg (λ1)| =

∣∣∣∣tan−1

(
−2. 051 6

−7. 539 1× 10−2

)∣∣∣∣ = 1.534 >
π

24
,

|arg (λ2)| =

∣∣∣∣tan−1

(
2. 051 6

−7. 539 1× 10−2

)∣∣∣∣ = 1.534 >
π

24
,

|arg (λ3)| =

∣∣∣∣tan−1

(
1.367

0.8721

)∣∣∣∣ = 1.0029 >
π

24
,

|arg (λ4)| =

∣∣∣∣tan−1

(
−1.367

0.8721

)∣∣∣∣ = 1.0029 >
π

24
,

|arg (λ5)| =

∣∣∣∣tan−1

(
0

−1. 593 4

)∣∣∣∣ = π >
π

24
.

Thus, E = (0.4, 1 + e0.4) is asymptotically stable as shown in Fig. 4.

5. Conclusion

In this work, we studied a nonlinear mathematical model for the dynamics of the fractional-
order Lengyel-Epstein chemical reaction, a well-known example of oscillatory chemical behavior.
By incorporating fractional derivatives, Through numerical simulations using Forward Euler method,
we observed that the solutions consistently converge to the system’s equilibrium point.
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Fig. 4. Simulation of system for α = 1/6, β = 1/4,Λ = 2,m = 22

However, the trajectories vary markedly with different values of the fractional order α and β,
highlighting the significant influence of fractional dynamics on the transient behavior of the system.
These results underscore the value of fractional order modeling in capturing the fine dynamics of
oscillating chemical reactions and pave the way for further exploration into the stability and control
of these systems.
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[32] S. Bılazeroğlu, H. Merdan, and L. Guerrini, “Hopf bifurcations of a Lengyel–Epstein model involving two
discrete time delays,” Discrete & Continuous Dynamical Systems – Series S, vol. 15, no. 3, pp. 855–873,
2022, https://doi.org/10.3934/dcdss.2021150.

[33] L. Wang and H. Zhao, “Hopf bifurcation and Turing instability of 2–D Lengyel–Epstein system with
reaction–diffusion terms,” Applied Mathematics and Computation, vol. 219, no. 17, pp. 9229–9244, 2013,
https://doi.org/10.1016/j.amc.2013.03.071.

[34] F. A. dos S. Silva, R. L. Viana, and S. R. Lopes, “Pattern formation and Turing instability in an activa-
tor–inhibitor system with power–law coupling,” Physica A: Statistical Mechanics and its Applications,
vol. 419, pp. 487–497, 2015, https://doi.org/10.1016/j.physa.2014.09.059.

[35] J. Jang, W.-M. Ni, and M. Tang, “Global bifurcation and structure of Turing patterns in the 1D
Lengyel–Epstein model,” Journal of Dynamics and Differential Equations, vol. 16, no. 2, pp. 297–320,
2004, https://doi.org/10.1007/s10884-004-2782-x.

[36] P. van den Driessche and J. Watmough, “Reproduction numbers and sub-threshold endemic equilibria for
compartmental models of disease transmission,” Mathematical Biosciences, vol. 180, pp. 29–48, 2002,
https://doi.org/10.1016/S0025-5564(02)00108-6.

[37] Z. U. A. Zafar, “Fractional order Lengyel–Epstein chemical reaction model,” Computational and Applied
Mathematics, vol. 38, no. 131, 2019, https://doi.org/10.1007/s40314-019-0887-4.

[38] H. L. Li, L. Zhang, C. Hu, Y. L. Jiang, and Z. Teng, “Dynamical analysis of a fractional-order preda-
tor–prey model incorporating a prey refuge,” Journal of Applied Mathematics and Computing, vol. 54,
no. 1–2, pp. 435–449, 2017, https://doi.org/10.1007/s12190-016-1017-8.

[39] M. R. Ammi, M. Tahiri, M. Tilioua, A. Zeb, I. Khan, and M. Andualem, “Global analysis of a time
fractional order spatio-temporal SIR model,” Scientific Reports, vol. 12, no. 5751, 2022, https://doi.org/
10.1038/s41598-022-08992-6.

[40] C. Chicone, Mathematical Modeling and Chemical Kinetics, A module on chemical kinetics for the
University of Missouri Mathematics in Life Science Program, vol. 8, 2010, https://www.researchgate.
net/profile/Carmen-Chicone/publication/265666972 Mathematical Modeling and Chemical Kinetics/
links/54d2538e0cf2b0c614693410/Mathematical-Modeling-and-Chemical-Kinetics.pdf.

[41] M. M. El-Borai, “Some probability densities and fundamental solutions of fractional evolution equations,”
Chaos, Solitons & Fractals, vol. 14, no. 3, pp. 433–440, 2002, https://doi.org/10.1016/S0960-0779(01)
00208-9.

[42] J. P. Tripathi, J. S. Tyagi, and S. Abbas, “Dynamical analysis of a predator-prey interaction model with
time delay and prey refuge,” Nonautonomous Dynamical Systems, vol. 5, no. 1, pp. 138–151, 2018,
https://doi.org/10.1515/msds-2018-0011.

Khelifa Bouaziz (Stability Analysis of a Fractional-Order Lengyel–Epstein Chemical Reaction Model)

https://doi.org/10.1016/j.nonrwa.2016.11.007
https://doi.org/10.1016/j.camwa.2019.04.015
https://doi.org/10.1016/j.camwa.2024.06.028
https://doi.org/10.1016/j.camwa.2024.06.028
https://doi.org/10.1007/s10910-022-01418-8
https://doi.org/10.1007/s10910-022-01418-8
https://doi.org/10.1038/s41598-023-47207-4
https://doi.org/10.1038/s41598-023-47207-4
https://doi.org/10.1016/j.chaos.2023.114016
https://doi.org/10.1016/j.chaos.2023.114016
https://doi.org/10.3934/dcdss.2021150
https://doi.org/10.1016/j.amc.2013.03.071
https://doi.org/10.1016/j.physa.2014.09.059
https://doi.org/10.1007/s10884-004-2782-x
https://doi.org/10.1016/S0025-5564(02)00108-6
https://doi.org/10.1007/s40314-019-0887-4
https://doi.org/10.1007/s12190-016-1017-8
https://doi.org/10.1038/s41598-022-08992-6
https://doi.org/10.1038/s41598-022-08992-6
https://www.researchgate.net/profile/Carmen-Chicone/publication/265666972_Mathematical_Modeling_and_Chemical_Kinetics/links/54d2538e0cf2b0c614693410/Mathematical-Modeling-and-Chemical-Kinetics.pdf
https://www.researchgate.net/profile/Carmen-Chicone/publication/265666972_Mathematical_Modeling_and_Chemical_Kinetics/links/54d2538e0cf2b0c614693410/Mathematical-Modeling-and-Chemical-Kinetics.pdf
https://www.researchgate.net/profile/Carmen-Chicone/publication/265666972_Mathematical_Modeling_and_Chemical_Kinetics/links/54d2538e0cf2b0c614693410/Mathematical-Modeling-and-Chemical-Kinetics.pdf
https://doi.org/10.1016/S0960-0779(01)00208-9
https://doi.org/10.1016/S0960-0779(01)00208-9
https://doi.org/10.1515/msds-2018-0011


ISSN 2775-2658 International Journal of Robotics and Control Systems
Vol. 5, No. 2, 2025, pp. 1539-1551

1551

[43] R. G. Casten and C. J. Holland, “Stability properties of solutions to systems of reaction-diffusion equa-
tions,” SIAM Journal on Applied Mathematics, vol. 33, no. 2, pp. 353–364, 1977, https://doi.org/10.1137/
0133023.

[44] K. Diethelm and N. Ford, “The Analysis of Fractional Differential Equations,” Journal of Mathematical
Analysis and Applications, 2002, https://doi.org/10.1006/jmaa.2000.7194.

[45] M. Caputo, “Linear models of dissipation whose Q is almost frequency independent: II,” Geophysical
Journal of the Royal Astronomical Society, vol. 13, no. 5, pp. 529–539, 1967, https://doi.org/10.1111/j.
1365-246X.1967.tb02303.x.

[46] B. Jin, Fractional Differential Equations, Spring Cham, 2021, https://doi.org/10.1007/
978-3-030-76043-4.

[47] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equa-
tions, Elsevier, vol. 204, 2006, https://books.google.co.id/books?id=uxANOU0H8IUC&hl=id&source=
gbs navlinks s.

[48] D. Matignon, “Stability results for fractional differential equations with applications to
control processing,” in Proceedings of the IMACS–IEEE Symposium on Signals, Sys-
tems and Control (IMACS–SMC), vol. 2, pp. 963–968, 1996, https://www.researchgate.
net/profile/Denis-Matignon/publication/2581881 Stability Results For Fractional Differential
Equations With Applications To Control Processing/links/00b7d52dd1c17e4b1a000000/
Stability-Results-For-Fractional-Differential-Equations-With-Applications-To-Control-Processing.pdf.

[49] S. Ahmad and A. Ambrosetti, A Textbook on Ordinary Differential Equations, SpringerBriefs in
Mathematics, vol. 88, 2015, https://link.springer.com/content/pdf/10.1007/978-3-319-02129-4 14?pdf=
chapter%20toc.

[50] Z. M. Odibat, “Analytic study on linear systems of fractional differential equations,” Computers & Math-
ematics with Applications, vol. 59, no. 3, pp. 1171–1183, 2010, https://doi.org/10.1016/j.camwa.2009.06.
035.

[51] Z. U. A. Zafar, Z. Shah, N. Ali, P. Kumam, and E. O. Alzahrani, “Numerical study and stability of the
Lengyel–Epstein chemical model with diffusion,” Advances in Difference Equations, vol. 2020, no. 427,
2020, https://doi.org/10.1186/s13662-020-02877-6.

[52] S. Abdelmalek and S. Bendoukha, “The Lengyel–Epstein reaction diffusion system,” in Applied Math-
ematical Analysis: Theory, Methods, and Applications, vol. 177, pp. 311–351, 2020, https://doi.org/10.
1007/978-3-319-99918-0 10.

Khelifa Bouaziz (Stability Analysis of a Fractional-Order Lengyel–Epstein Chemical Reaction Model)

https://doi.org/10.1137/0133023
https://doi.org/10.1137/0133023
https://doi.org/10.1006/jmaa.2000.7194
https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
https://doi.org/10.1007/978-3-030-76043-4
https://doi.org/10.1007/978-3-030-76043-4
https://books.google.co.id/books?id=uxANOU0H8IUC&hl=id&source=gbs_navlinks_s
https://books.google.co.id/books?id=uxANOU0H8IUC&hl=id&source=gbs_navlinks_s
https://www.researchgate.net/profile/Denis-Matignon/publication/2581881_Stability_Results_For_Fractional_Differential_Equations_With_Applications_To_Control_Processing/links/00b7d52dd1c17e4b1a000000/Stability-Results-For-Fractional-Differential-Equations-With-Applications-To-Control-Processing.pdf
https://www.researchgate.net/profile/Denis-Matignon/publication/2581881_Stability_Results_For_Fractional_Differential_Equations_With_Applications_To_Control_Processing/links/00b7d52dd1c17e4b1a000000/Stability-Results-For-Fractional-Differential-Equations-With-Applications-To-Control-Processing.pdf
https://www.researchgate.net/profile/Denis-Matignon/publication/2581881_Stability_Results_For_Fractional_Differential_Equations_With_Applications_To_Control_Processing/links/00b7d52dd1c17e4b1a000000/Stability-Results-For-Fractional-Differential-Equations-With-Applications-To-Control-Processing.pdf
https://www.researchgate.net/profile/Denis-Matignon/publication/2581881_Stability_Results_For_Fractional_Differential_Equations_With_Applications_To_Control_Processing/links/00b7d52dd1c17e4b1a000000/Stability-Results-For-Fractional-Differential-Equations-With-Applications-To-Control-Processing.pdf
https://link.springer.com/content/pdf/10.1007/978-3-319-02129-4_14?pdf=chapter%20toc
https://link.springer.com/content/pdf/10.1007/978-3-319-02129-4_14?pdf=chapter%20toc
https://doi.org/10.1016/j.camwa.2009.06.035
https://doi.org/10.1016/j.camwa.2009.06.035
https://doi.org/10.1186/s13662-020-02877-6
https://doi.org/10.1007/978-3-319-99918-0_10
https://doi.org/10.1007/978-3-319-99918-0_10

	Introduction
	Fractional Calculus
	Local Stability from an ODE Perspective

	Fractional-Order Dynamics in the Lengyel–Epstein Reaction Model
	Numerical Simulation
	Conclusion

