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1. Introduction 

The modern world is witnessing a surge in health challenges, including mental health conditions, 

irregular eating habits, and fitness-related concerns. Factors such as poor nutritional choices, 

insufficient exercise routines, and limited access to personalized care often worsen overall well-

being. A balanced diet and tailored exercise regimen are therefore crucial for enhancing energy 

levels, mental clarity, and general health. Advancements in technology have given rise to numerous 

applications and web platforms that monitor individual health metrics and deliver customized 

recommendations, ranging from daily caloric targets to macronutrient-balanced meal plans. 
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 Adopting a healthy lifestyle necessitates a well-balanced nutritional plan 

and personalized exercise routines aligned with an individual's health 

status. The healthcare system often lacks personalized care, leading to 

weak prevention and generic diets. This study presents an IoT-based 

framework for easy health monitoring without frequent doctor visits. The 

system integrates sensors to measure vital indicators like pulse rate, body 

temperature, SpO₂, and BMI, with minimal assistance from healthcare 

personnel. Utilizing data gathered from individuals aged 16–25, ML 

algorithms like Logistic Regression, Random Forest, and KNN analyze the 

parameters to deliver personalized dietary and fitness recommendations. 

The dataset includes BMI, body temperature, pulse rate, and SpO2 

measurements gathered via an integrated IoT unit. Before analysis, the data 

was refined and optimized through ML algorithms. This comprehensive 

approach moves beyond traditional diagnostic methods by incorporating 

personalized recommendations, including dietary plans and exercise 

routines, tailored based on the evaluated data. Among the evaluated 

algorithms, Random Forest demonstrated the highest accuracy (99%) in a 

60:40 training-to-testing ratio. To improve accessibility, a user-friendly 

web platform is designed, facilitating seamless interaction and 

engagement. The framework unifies real-time monitoring, cardiovascular 

risk detection, and adaptive guidance, bridging fragmented digital health 

solutions for early intervention and better health outcomes. 
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However, many of these systems lack real-time adaptability, support only a narrow set of vital 

parameters, and often fail to address data security and equitable access across diverse populations 

[1]. A review paper [2] focusing on AI-driven smart healthcare systems using IoT devices covers 

real-time patient monitoring, intelligent diagnostic support, and future trends like explainable AI and 

federated learning for healthcare. In paper [3] develops a framework for heart disease prediction 

using IoT and machine learning, whereas [4] discusses a wearable system for cardiac monitoring. 

Recent advancements in healthcare technologies have increasingly utilized mobile applications and 

IoT frameworks to improve personal health monitoring. Tools like the Diet DQ Tracker, a 

smartphone-based application for enhancing dietary assessments and helping users manage nutrition, 

have been developed [5]. Similarly, an IoT-based application aimed at controlling obesity through 

personalized digital interventions has been proposed [6]. Wearable activity trackers and their impact 

on health habits were analyzed in an important study [7], while a systematic review emphasized the 

role of IoT-based wearable technologies in enabling continuous and remote fitness assessment [8]. 

Beyond physical health, wearable technologies have shown significant promise in mental health 

applications. A survey highlighted trends and challenges in using wearable sensors for detecting 

psychological stressors [9], followed by the development of systems capable of capturing behavioral 

and physiological signals linked to mental well-being [10]. A scoping review examined the 

integration of smart wearable devices into mental health interventions [11], and assistive wearable 

technologies aimed at supporting vulnerable populations were also discussed [12]. In addition, 

researchers have explored the convergence of wearable technology and future computing networks 

to enhance communication, processing, and privacy [13], alongside reviews on how IoT and machine 

learning are shaping smart healthcare systems in urban settings [14] and driving more efficient, 

intelligent IoT-based healthcare applications for next-generation patient care [15]. 

While traditional healthcare remains burdened by overcrowded facilities and uneven geographic 

coverage, IoT-enabled real-time monitoring offers a path to more efficient, cost-effective, and 

personalized services. Wearable devices have become central to this shift, continuously tracking 

biosignals—heart rate, SpO₂, body temperature, and activity patterns. When combined with AI and 

ML, these data streams yield actionable insights, enabling predictive alerts (e.g., impending 

cardiopulmonary events) and individualized mental-wellness feedback [16], achieved individualized 

health assessment via CatBoost and RF, demonstrating 88% accuracy. Li et al. surveyed IoT sensors, 

highlighting data-security and interoperability gaps, despite extensive work on sensor design and 

cloud integration, current frameworks rarely integrate user feedback loops to refine 

recommendations, nor do they fully tackle privacy, security, and the digital-divide challenges 

inherent in IoT deployments [17]. Moreover, the literature falls short in presenting a unified 

architecture that seamlessly bridges real-time monitoring, adaptive dietary/fitness guidance, and a 

transparent ethical framework [18]. 

Wearable devices have become a cornerstone in revolutionizing health monitoring by tracking 

biosignals and physical activities. While wearables effectively gather substantial data, the integration 

of AI and ML significantly enhances their utility by providing actionable insights. Personalized 

dietary and healthcare guidance can be delivered by AI/ML-driven systems through real-time 

processing of individual data. This proactive approach extends beyond fitness, offering predictive 

details of possible health hazards and enabling early interventions. For instance, wearables equipped 

with AI/ML capabilities that can monitor corporeal indicators like oxygen levels, heart rate, and 

stress levels, facilitating personalized mental health monitoring and overall well-being improvement 

[16]. A survey in [19] explains edge computing for IoT systems whereas more specialized 

applications of wearable and IoT technologies have been explored in activity recognition and chronic 

disease management. A distributed intelligence framework for human activity recognition (HAR) 

using smart wearable sensors, ensuring real-time, edge-based processing was proposed [20]. 

An IoT-driven framework for personalized health evaluation utilizes ML to process and 

interpret data obtained from smart wearables and remote health tracking systems. The framework 
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offers individualized food and exercise recommendations by merging real-time data with user-

specific parameters, which include gender, BMI, age, and lifestyle behaviors. This method enables 

people to actively control their health, encouraging preventative care and general well-being. 

Combining IoT with AI/ML allows for data-driven insights, improving healthcare efficiency and 

convenience by providing individualized suggestions based on individual objectives and health 

situations. Fig. 1 depicts the general structure and key components of a standard diet and exercise 

guidance system. The research contributions of this paper are as follows: 

1. Problem definition & gap analysis: We articulate the limitations of existing IoT-AI health 

platforms, particularly in real-time adaptability, parameter coverage, and ethical safeguards [1], 

[17]. 

2. Unified IoT-AI framework: We design and implement an end-to-end architecture that integrates 

real-time wearable data, adaptive ML models, and user-feedback mechanisms to personalize 

dietary and fitness plans. 

3. Ethical & practical safeguards: We incorporate data-privacy, security, and accessibility 

measures—addressing the digital divide—to ensure responsible deployment [18]. 

4. Web-based platform: We deliver a user-friendly interface that visualizes live vitals, health-score 

analytics, and dynamic recommendations, fostering sustained engagement. 

 

Fig. 1. Comprehensive structure for the diet and fitness recommendation system 

The structure of the article as illustrated in Fig. 2, outlines the essential sections that 

systematically present the research on the health monitoring system. The article begins with Section 

1, which introduces the system’s framework and organizational structure. Section 2 reviews related 

research, covering health monitoring frameworks, wearable technologies, dietary recommendation 

models, and algorithms aimed at enhancing classification accuracy. In Section 3, we explore the 

technical components, detailing hardware elements like health monitoring sensors, software 

resources including visualization tools, and systems designed to generate personalized dietary and 

exercise recommendations. In Section 4, test plots, prediction models, and confusion matrices for 

several ML algorithms are evaluated. Comparative tables that measure classification performance 

and accuracy are also included. Section 5 examines the project’s inherent limitations and challenges, 

particularly in terms of data acquisition, computational analysis, system infrastructure, and 

technological integration. Lastly, Section 6 summarizes the analysis of the proposed framework and 

presents the concluding remarks. 
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Fig. 2. Organization of our paper 

2. Related Works 

This section covers many methods, strategies, and techniques researchers and practitioners 

present for health monitoring and recommendation systems, it is organized into three thematic 

subsections. This paper provides a better grasp of the present technology, highlights inadequacies in 

current research, and indicates the potential for additional investigation and new development in the 

subject.  

2.1. Wearable Technologies 

The wearable system proposed in the paper [21] by G. Hussain et al. (2022) is a necklace with 

an embedded piezoelectric sensor that monitors food intake by detecting skin movement on the lower 

trachea during eating. The system uses a smartphone app to classify food, estimate volume, and 

calculate calories. The sensor generates distinct voltage patterns for chewing and swallowing, and 

the necklace is designed as a stretchable sports band for comfort and stability. The system uses an 

interval of 30 samples (1.5 s) to capture chewing and swallowing events, with the swallow placed at 

the end of the frame. It extracts twelve statistical features and uses a heuristic algorithm (RELIEFF) 

to select the most important ones for food classification using ML algorithms. The estimation of food 
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weight is determined by analyzing the number of swallows, and the corresponding calorie intake is 

calculated based on this estimated weight. A smartphone application offers users real-time feedback 

on their consumption. The authors C. Li et al. (2024) provided a detailed overview in the survey 

paper [17] on the integration of IoT technologies in healthcare, focusing on sensor types and 

communication methods. It highlights applications such as remote patient monitoring, personalized 

treatment, and efficient healthcare delivery. The review explores how IoT enhances patient care 

through real-time data and reduces costs by streamlining processes. It also discusses challenges like 

data security, interoperability, and the need for standards. The review covers the role of AI, 

blockchain, edge computing, and 5G networks in healthcare. Additionally, it investigates IoT 

applications in indoor and outdoor settings, remote monitoring, and smart cities. Finally, the review 

emphasizes personalized medicine and optimizing IoT through seamless integration, robust security, 

and data analytics. The research paper [22] proposed by G. Cosoli et al. (2022) presented a system 

for evaluating the metrological performance of wearable devices, specifically smartwatches, during 

swimming activities by comparing them to a reference cardiac belt. The system involves a test 

protocol with both dry and in-water conditions, including rest and varied activity intensities, using a 

treadmill and different swimming strokes. The data is analyzed using Bland-Altman plots, deviation 

analysis, and Pearson’s correlation coefficients to determine accuracy and precision. The goal is to 

evaluate the impact of water and movement on the devices' heart rate measurements, providing a 

validation protocol for swimming-related wearable devices. The system uses a Polar H10 cardiac 

belt as a reference and evaluates Polar Vantage V2 and Garmin Venu Sq smartwatches. Beyond heart 

rate, the suggested system seeks to be flexible enough to adjust to various situations and 

circumstances.  

L. G. Machado-Jaimes et al. (2022) propose an intelligent system called LM Research that 

monitors physical and mental parameters to avoid well-being crises. Physical parameters obtained 

from smartwatches and mental health inputs derived from questionnaire responses are used to 

construct a supervised ML model for estimating user wellness. The system integrates wearable, IoT, 

and cloud computing technologies and employs ML to analyze the collected data. The analysis 

demonstrated that the Random Forest model has the highest accuracy of 88% in classifying the data 

obtained through the implemented system, outperforming other models [23]. Additionally, a real-

time health assessment system was proposed by Xingdong Wu et al. (2023) in a research paper [24], 

which employs IoT-integrated wearable technologies to monitor the well-being of Sanda athletes. 

Data collected by these devices is transmitted wirelessly to a centralized server via a relay network, 

supporting real-time observation and evaluation. To enhance data quality and reduce complexity, 

PCA is applied for noise filtering and dimensionality reduction. Furthermore, DL algorithms, 

including GD, are utilized to optimize system performance and improve prediction accuracy across 

all stages of data handling—transmission, monitoring, storage, and analysis—pertaining to athletic 

metrics. Table 1 presents a comparative analysis of various wearable technologies. 

2.2. IoT-Based Health-Monitoring Frameworks 

According to the study presented by S. K. Jagatheesaperumal et al. (2023) in the research paper 

[16], an IoT-enabled framework was introduced for delivering individualized health assessment and 

recommendations. Health data, including blood oxygen level, body temperature, BMI, and pulse rate, 

are collected by the system via IoT-integrated devices. It entails collecting and evaluating health 

metrics related to various health indicators, using ML algorithms such as Catboost and RF to deliver 

individualized food and exercise recommendations, and comparing the results using RF and MLP 

classifiers. The system also includes an interactive web platform for engaging with the outlined 

framework. The research paper [25] proposed by Mohammed and Hasan (2023), presented an IoT-

based system for remote health monitoring, utilizing a Raspberry Pi 4B microcontroller to gather 

data from sensors, process it, and transmit it to cloud storage. The system focuses on monitoring 

three key health parameters: body temperature, heart rate, and SPO2, using the DS18B20 temperature 

sensor and the MAX30100 pulse oximeter, respectively. The patient's position is tracked with a 
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SIM7600E GSM/GPRS/GNSS HAT module. The system also incorporates a mobile application 

compatible across multiple platforms, which facilitates real-time access to health-related 

information, warning signals, and updates for both patients and medical professionals. In the MySQL 

database, the data is stored and if any of the measured parameters are out of the defined normal 

ranges, an SMS alert is sent to medical professionals and the patient's relatives. 

Table 1.  Comparative analysis of various IoT and wearable technologies 

Literature 
Health 

Parameter 
Description 

Algorithms 

Used 
Sensors Used Limitations 

[21] 
Food intake 

monitoring 

Necklace with piezoelectric 

sensor to detect 

chewing/swallowing events; 

provides calorie estimation. 

RELIEFF 

heuristic 

algorithm 

Piezoelectric 

sensor 

Requires proper 

positioning for 

accuracy, and 

potential 

discomfort. 

[22] 

Heart rate 

(during 

swimming) 

Evaluation of smartwatch 

accuracy during swimming 

activities against a reference 

cardiac belt. 

Bland-Altman 

plots, Pearson’s 

correlation 

Polar Vantage 

V2, Polar H10, 

Garmin Venu 

Sq 

Limited to heart 

rate; swimming-

specific context. 

[23] 

Mental and 

Physical well-

being 

Monitors physical and mental 

parameters to predict well-being 

crises using supervised ML 

models. Random Forest emerged 

as the leading model, reaching an 

88% accuracy rate. 

KNN, RF, 

Decision Tree, 

and SVM. 

Smartwatches 

Focus on limited 

health indicators; 

accuracy varies 

because of 

insufficient 

datasets. 

[24] 

Athlete health 

(Sanda 

athletes) 

Real-time monitoring of athlete 

health with optimization and 

prediction during data 

transmission. 

PCA, Gradient 

Descent (GD) 

ECG, frame 

module for 

general wireless 

sensors 

Limited to athletes; 

high computational 

resource 

requirements for 

real-time DL 

models. 

 

Alternatively, the system proposed by Vayadande et al. (2024) in a study [26] distinctively 

combines conventional Ayurvedic principles with contemporary technological advancements. It 

assesses an individual's Dosha type (Vata, Pitta, and Kapha) through a detailed quiz that considers 

physical, psychological, and emotional factors. Additionally, a heart rate sensor is integrated with an 

Arduino UNO microcontroller to collect real-time data efficiently. Based on the user's Dosha type, 

the system makes tailored suggestions using ML algorithms to forecast heart disease risk, including 

dietary advice, exercise regimens, lifestyle modifications, and Ayurvedic treatments. The system 

incorporates various ML models, like K-NN, Random Forest, Decision Tree, and Logistic 

Regression, which have respective accuracy rates of 85.94%, 86.43%, 99.70%, and 89.21%. A user-

friendly web-based interface that makes use of HTML, CSS, and JavaScript is another feature of the 

system, along with a MySQL database to store user data, and it incorporates cultural sensitivity and 

educational resources to empower users in managing their health. The system aims to provide a 

holistic health assessment by integrating ancient knowledge with modern technology, offering 

predictive and personalized health management. Divya et al. (2023) demonstrated the proposed 

system in a paper [27] that uses an IoT-based ESP32 Node MCU and a MAX30100 sensor to detect 

heart attacks and monitor heart rate. The system measures heart rate in real-time, identifies 

irregularities that may indicate a heart attack, and uploads data to the cloud for in-depth evaluation. 

and storage. The system utilizes Wi-Fi to transmit data to the cloud for access by both patients and 

healthcare professionals. The system provides continuous monitoring, real-time data processing, and 

automatic heart attack detection, which can help in early diagnosis. 

J. Mistry et al. (2023) propose an IoT-based Congenital Heart Disease (CHD) prediction system 

that utilizes wireless sensors to monitor a user's heart rate, oxygen saturation levels, and blood 



 

1260 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 5, No. 2, 2025, pp. 1254-1277 

 

 

Ruwayd Hussain Charfare (Smart Healthcare Framework: Real-Time Vital Monitoring and Personalized Diet and 

Fitness Recommendations Using IoT and Machine Learning) 

 

pressure. It uses wearable devices and remote diagnostic sensors to acquire patient medical records 

and ECG/EEG waveforms. This data is seamlessly incorporated into cloud computing services and 

ML algorithms to predict cardiovascular diseases with higher precision. ML algorithms are utilized 

for classification and anomaly detection, as well as AI algorithms trained on collected data from IoT 

devices for predictive analysis. Moreover, advanced ML algorithms like DNNs and DL are 

employed. to provide accurate diagnoses of CHD. Personalized cardiovascular risk profiles are 

generated by the automated system, enabling clinicians to observe health trends and design 

customized preventive treatment plans. The system also uses real-time monitoring to provide 

warnings when complications arise, allowing for remote monitoring, and minimizing the necessity 

for hospital visits. It also lowers healthcare costs [28]. Table 2 presents a comparative analysis of 

various IoT frameworks. 

Table 2.  Comparative analysis of various IoT-based health-monitoring frameworks 

Literature 
Health 

Parameter 
Description 

Algorithms 

Used 
Sensors Used Limitations 

[16] 

Pulse rate, 

BMI, body 

temperature, 

SpO2 

A framework for tailored health 

evaluation and recommendations. 

based on health data collected via 

IoT devices. 

CatBoost, RF, 

MLP 

LM35, 

MAX30100 

Limited scalability, 

and reliance on IoT 

device accuracy. 

[25] 

Heart rate, 

body 

temperature, 

and SpO2, 

location 

Remote health monitoring 

system sends real-time data to 

cloud storage for alerts and 

notifications. 

Not specified 
DS18B20, 

MAX30100 

Dependence on 

GSM network 

coverage; limited 

health parameters. 

[26] 

Heart rate, 

Ayurvedic 

Dosha 

assessment 

Combines modern technology 

with Ayurvedic principles for 

personalized health 

recommendations. 

Decision Tree, 

Logistic 

Regression, RF, 

K-NN 

Heart rate 

sensor 

Subjectivity in 

Dosha assessment, 

cultural 

adaptability. 

[27] 

Heart rate, 

heart attack 

detection 

Detects irregularities in heart rate 

to identify heart attacks, with 

cloud-based storage and analysis. 

Not specified MAX30100 

Reliance on cloud 

infrastructure; 

potential latency in 

emergencies. 

[28] 

Heart rate, 

blood pressure, 

SPO2, 

ECG/EEG 

Predicts cardiovascular diseases 

and CHD using wearable devices 

and advanced ML algorithms 

DNN 

Wireless 

sensors, 

ECG/EEG 

sensors 

Data privacy 

concerns; complex 

model training 

requirements 

 

2.3. Dietary Recommendation Systems 

The authors L. I. Coman et al. (2024) propose a novel approach in a research paper [18] to 

managing diet-related diseases through the use of Remote Health Monitoring Systems (RHMS) that 

integrate advanced technologies such as the Internet of Medical Things (IoMT) and connected care. 

The authors present three tailored RHMS: the RO-SmartAgeing System, which describes age-related 

aspects of diet and health; the NeuroPredict Platform, which focuses on the connection between brain 

health, nutrition, and overall well-being; and the HepatoConect system, which provides real-time 

data for personalized dietary recommendations for liver health. These systems are designed to move 

beyond traditional healthcare boundaries by offering comprehensive, personalized monitoring, 

timely recommendations, and online consultations. The system integrates input from ambient 

sensors, wearable devices, and patient feedback to construct an in-depth health profile, promoting 

early diagnosis and preventive care strategies. Prabhakar et al. propose a user-cloud-based ensemble 

framework (DP-UCE) for type-2 diabetes prediction, which utilizes the Pima Indian Diabetes (PID) 

dataset. The system is unique because it operates in user and cloud environments. Three separate 

models—a decision tree classifier (DTC), SVM, and ANN—are trained using the preprocessed 
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dataset on the cloud. The features of these models are then used to train a bagging ensemble classifier. 

Ablation studies confirm the ensemble model's superiority to individual classifiers. Furthermore, the 

DP-UCE framework maintains superior accuracy even when handling larger datasets, achieving 97% 

accuracy on a large dataset. The user application uses this trained model to predict a user's diabetes 

status based on their uploaded test data. Finally, the system provides a diet plan based on the 

prediction [29]. Table 3 presents a comparative analysis of various dietary recommendation systems. 

Table 3.  Comparative analysis of various dietary recommendation systems 

Literature 
Health 

Parameter 
Description 

Algorithms 

Used 
Sensors Used Limitations 

[18] 
Diet-related 

diseases 

Personalized monitoring and 

recommendations for diet-related 

diseases using wearable and 

ambient sensors. 

Not specified 

Various 

wearable and 

ambient sensors 

Limited scalability; 

data integration 

challenges. 

[29] 
Diabetes 

prediction 

Predicts Type-2 diabetes using 

ensemble classifiers and provides 

diet plans based on predictions 

Decision Tree, 

SVM, ANN, 

Bagging 

Not specified 

Focuses on 

diabetes; no real-

time monitoring 

3. Methodology 

This section outlines the design, implementation, and analysis steps utilized in our health 

monitoring framework. The framework is structured to integrate multiple functionalities, including 

sensor-based health monitoring, heart attack detection, dietary recommendations using machine 

learning (ML), workout plans using AI/ML, and a unique health scoring algorithm. In contrast to 

existing methods that separately address specific aspects such as diet or fitness, our framework 

integrates these components into a unified system. Fig. 3 illustrates the flow of the methodology 

conducted to get personalized recommendations. 

3.1. Health Parameters 

Tracking vital health metrics in adults is of paramount importance. As chronic illnesses and 

physically inactive lifestyles continue to rise, keeping track of physical health is crucial for 

implementing well-informed adjustments to daily habits. Below are the key factors when evaluating 

health concerns. 

3.1.1. Heart  Rate 

It is measured in beats per minute (bpm), refers to the number of heartbeats occurring within a 

minute, and is a vital health parameter used to assess cardiovascular health and fitness. In healthy 

adults, the average resting heart rate generally falls between 60 and 100 beats per minute, whereas 

individuals with high levels of physical training, such as athletes, may exhibit lower rates ranging 

from 40 to 60 bpm, reflecting enhanced cardiovascular efficiency. Factors like stress, physical 

activity, emotions, medications, and health conditions like heart disease and thyroid imbalances can 

influence heart rate. Monitoring heart rate is very important for early detection of health issues, 

tracking exercise intensity, managing stress through heart rate variability (HRV), and gaining 

insights into overall fitness. Effective tracking can guide better lifestyle choices and improve heart 

health management. 

3.1.2. Body Temperature 

It is a vital health parameter that shows the body's ability to maintain thermal balance and 

indicates overall physiological health. The average normal body temperature is around 98.6°F 

(37°C), though it varies between 97°F (36.1°C) and 99°F (37.2°C) which is contingent upon factors 

including time of day, activity level, and individual differences. Elevated temperatures (above 

100.4°F or 38°C) typically indicate fever, which may result from infections, inflammation, or other 

medical conditions, while lower-than-normal temperatures (below 95°F or 35°C) signal 
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hypothermia. Continuous tracking of body temperature is crucial for detecting infections, managing 

illness, and maintaining thermal homeostasis during extreme weather or physical exertion. 

 

Fig. 3. Workflow of the health monitoring framework 

3.1.3. Oxygen Level (SpO₂) 

Oxygen level, commonly measured as blood oxygen saturation (SpO₂), indicates the percentage 

of oxygen-carrying hemoglobin in the blood. A healthy SpO₂ level typically ranges from 95% to 

100%, while levels below 90% may signal hypoxemia, a condition requiring medical attention. 

Factors affecting oxygen levels include respiratory conditions, altitude, physical activity, and sleep 

disorders. Monitoring SpO₂ is crucial for detecting issues related to lung function, cardiovascular 

health, and overall oxygen delivery to tissues. A significant role is played by this technology in 

addressing disorders such as sleep apnea, COPD, and COVID-19, as well as in improving recovery 

and performance among athletes. 

3.1.4. Body Mass Index (BMI) 

It is commonly utilized to evaluate an individual's body mass relative to their height and to 

classify them into various categories of weight status. It is computed using the Equation (1). The 
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standard categories are underweight (BMI < 18.5), normal weight (18.5 - 24.9), overweight (25 - 

29.9), and obese (30 or higher). BMI offers a general estimation of body fat; however, it fails to 

differentiate muscle from fat and overlooks critical variables such as age, gender, and body fat 

distribution. Despite its drawbacks, BMI remains a useful tool for evaluating health risks, including 

those related to cardiovascular disease, diabetes, and metabolic disorders, prompting 

recommendations for weight management when necessary. 

  𝐵𝑀𝐼 =
𝑊𝑒𝑖𝑔ℎ𝑡(𝑘𝑔)

[𝐻𝑒𝑖𝑔ℎ𝑡(𝑚)]2
 (1) 

3.2. Hardware Formulation 

The hardware and sensors used in the framework form the backbone of real-time health 

monitoring. We use the MAX30100 for detecting heart rate and SpO₂ levels [30], [31]. This sensor 

is renowned for its precision and reliability in capturing pulse oximetry data, making it an ideal 

choice for health applications. Additionally, we employ the LM35 temperature sensor, which 

measures body temperature with remarkable accuracy. The LM35 is instrumental in identifying 

anomalies such as fever or hypothermia, which indicate more health issues [32]. These sensors are 

connected to the Arduino Uno board, a robust and cost-effective microcontroller platform. Arduino 

Uno facilitates the seamless collection and transmission of sensor data, ensuring the framework 

remains responsive and efficient. It processes this data in real-time, transmitting it to the backend via 

a serial connection or a web-based interface. This setup ensures that users have access to their health 

data at all times, whether through a connected device or a dedicated app. The hardware setup is 

powered by a transformer that provides a stable DC, thereby ensuring consistent sensor performance 

and reliable data acquisition. Although the sensors demonstrate dependable performance under 

controlled conditions, their measurement precision can be influenced by factors such as user 

movement, improper sensor placement, or fluctuating environmental parameters. The existing 

hardware configuration, which utilizes the Arduino Uno, is well-suited for real-time monitoring in 

single-user scenarios; however, it may encounter limitations when extended to multi-user contexts. 

Future implementations could consider adopting microcontrollers with greater processing 

capabilities or integrating cloud-based solutions to enhance scalability and computational efficiency. 

The collected data is pivotal in heart rate detection and general health monitoring. Real-time 

tracking of parameters such as pulse rate, oxygen saturation, and temperature allows the system to 

recognize deviations indicative of possible health hazards. For instance, tachycardia, where the heart 

rate increase more than 100 beats per minute, can signify stress, cardiovascular strain, or underlying 

health conditions. Similarly, oxygen saturation levels below 95% may point to respiratory distress or 

other serious issues. The system is designed to flag such anomalies in real-time, enabling users and 

healthcare providers to take prompt corrective action. This real-time alert mechanism is particularly 

valuable for early detection of heart rate anomalies, where timely intervention can significantly 

improve outcomes. 

The proposed health monitoring framework for individuals aged 16 to 25 relies on the analysis 

of a systematically generated dataset. As illustrated in Fig. 4, the system integrates the MAX30100 

sensor to measure SpO₂ level, and pulse rate, alongside the LM35 sensor for body temperature 

monitoring. Data collected via the Arduino UNO is displayed on an LCD screen and can be accessed 

in real-time through an interactive interface. On the backend, a ML algorithm processes the acquired 

data to assess the user's health condition, categorizing it into three levels: fit, medium risk, or high 

risk. Depending on this classification, the system generates personalized recommendations for 

dietary and exercise modifications. 

3.3. Software Formulation 

This healthcare framework integrates real-time sensor data, machine learning models, and a web 

interface to deliver personalized health insights. Using algorithms like RF, LR, and K-NN, it analyzes 
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health parameters like heart rate, BMI, and oxygen levels to provide individualized diet and fitness 

recommendations tailored for individuals. The seamless hardware-software integration enables 

efficient monitoring of health and proactive lifestyle management. 

 

Fig. 4. Proposed diagram of health monitoring framework 

3.3.1. Dataset 

The developed hardware module, in conjunction with supplementary datasets generated via 

Python, forms a robust framework for adult healthcare. The acquired data encompasses various 

health metrics, including BMI, heart rate, oxygen saturation levels, body temperature, parameter 

ranges, and corresponding outcomes. Following collection and processing, the data is converted into 

an Excel format to facilitate in-depth analysis. The dataset creation process involves establishing an 

initial data frame in Excel, incorporating multiple health parameters. By utilizing Python’s itertools 

library, diverse parameter combinations are systematically generated. Individual lists are created for 

each parameter, specifying their respective ranges. Python scripts are employed to compute the 

“range” and “result” columns based on predefined criteria, ensuring that parameters are categorized 

using an ordinal scale. These computed columns are subsequently integrated into the data frame 

according to established conditions and range specifications. The finalized dataset is then formatted 

into Excel for further evaluation. 

For validation, the dataset was loaded using Python’s Pandas library. Missing values were 

imputed using the mean of each respective parameter. Duplicate entries were removed to maintain 

data integrity. Range validation was applied to ensure physiological plausibility, restricting heart rate 

to 40–180 bpm, SpO₂ to 70–100%, BMI to 10–60, and body temperature to 35–42°C. Outliers were 

detected and removed using z-score analysis, retaining values within three standard deviations. All 

features were then normalized using Min-Max scaling to ensure uniformity across the dataset for ML 

applications. The generated dataset primarily represents individuals aged 16–25 and may not 

generalize well to other age groups with different physiological characteristics. As a result, the 

dataset may have inherent biases that could affect model generalization in diverse real-life scenarios. 

It comprises approximately 540,000 samples, with 324,000 samples allocated for training and the 

remaining 216,000 used for testing, maintaining a 60:40 split. A 60:40 training-to-testing split was 

used, as it provided the highest accuracy across all models. To address class imbalance in the training 

data, random up-sampling was applied using the RandomOverSampler from the imbalanced-learn 

package. This ensured equal representation of all classes during training, while the original test set 

was kept unchanged to maintain evaluation integrity. The proposed framework incorporates a 
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compact hardware system utilizing Arduino alongside digital output components. Specifically, the 

MAX30100 sensor measures oxygen saturation and heart rate, while the LM35 sensor is used to 

detect body temperature. Real-time data is generated from the processed digital outputs and 

transmitted to a local host using a measure button incorporated into a custom-made web application 

encompassing both front-end and back-end functionalities. Real-time health assessments are 

conducted, providing tailored diet and exercise recommendations based on the analyzed data. User 

data is collected with informed consent and anonymized before processing. No personally 

identifiable information is stored. For web-based access, data transmission is secured using HTTPS 

[33], [34]. This comprehensive system integrates hardware and software components, extensive 

datasets, and advanced data processing techniques to offer an all-encompassing approach to adult 

healthcare. 

3.3.2. Machine Learning Algorithms Implemented 

A. Random Forest: This method employs ensemble learning by generating multiple decision trees 

and integrating their results to improve prediction accuracy. In diet and fitness, it can be used to 

classify individuals into different fitness levels based on factors like exercise habits, physical 

activity data, and personal health metrics. It can also predict the effectiveness of various diet 

plans by analyzing features like calorie intake, age, and metabolic rate. Because of its ability to 

handle large datasets and identify complex, non-linear relationships, Random Forest is highly 

effective in offering personalized fitness plans and dietary recommendations [35]-[37]. 

B. Logistic Regression: It is a statistical model used to predict binary or multi-class outcomes, 

applying a logistic function to determine the probability of an event occurring. In diet and 

fitness, it is often used to predict whether a person will achieve their weight loss or fitness goals 

based on features like activity levels, food intake, and adherence to fitness plans. It can also 

assess health risks, such as predicting the likelihood of developing conditions like obesity or 

diabetes based on lifestyle factors. It is advantageous in scenarios with clear linear relationships 

between variables, providing a simple and interpretable model for predicting outcomes [38]-

[40]. 

C. K-Nearest Neighbors (KNN): This algorithm follows a non-parametric approach, classifying 

data points based on their spatial proximity to neighboring instances. In the context of diet and 

fitness, KNN can be applied to recommend personalized meal plans or exercise routines by 

identifying users with similar characteristics, such as fitness goals, dietary preferences, and 

activity levels. It can also be used for anomaly detection, such as flagging irregular patterns in 

exercise or eating behaviors. KNN is very beneficial for developing recommendation systems 

since it assumes that comparable persons have similar health and fitness preferences or goals 

[41]-[43]. 

3.3.3. Heart Rate Monitoring and Diet and Fitness Recommendations 

The framework's diet and fitness recommendation component leverages ML to provide 

personalized nutritional guidance. It analyzes user-specific health metrics such as BMI, heart rate, 

fitness level, and activity level. Using an ML model called Random Forest, the system generates 

tailored dietary plans that address individual needs and health goals, ensuring effectiveness and 

sustainability. The adaptive nature of the framework ensures that recommendations evolve with the 

user’s progress. Central to the system is the health scoring mechanism, which gives a detailed 

assessment of overall health through a weighted analysis of parameters, which include oxygen levels, 

heart rate, temperature, BMI, and physical activity. This score serves as both a diagnostic tool and a 

motivational metric, encouraging healthier choices. The uniqueness of the framework lies in its 

holistic integration of sensor-based health monitoring, dietary recommendations, fitness guidance, 

and health scoring into a single, cohesive system, offering a more comprehensive view of health for 

better decision-making. Additionally, the heart rate monitoring system employs statistical techniques 

to establish baseline values and detect deviations, which are analyzed in consideration of other health 
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parameters to provide actionable insights. For instance, an elevated heart rate with normal oxygen 

levels and temperature might indicate stress, whereas the same heart rate with low oxygen levels and 

high temperature could signal a serious condition. This contextual analysis enhances the framework’s 

accuracy, making it a highly effective and impactful health management solution [44]-[47].  

The design of a diet and fitness website incorporating real-time sensor data involves combining 

front-end technologies like HTML, CSS, and JavaScript with backend data processing frameworks. 

The website includes a measure button that, when clicked, fetches real-time sensor data after a 10-

second delay. Based on the analyzed digital sensor output, users are categorized as fit, medium-risk, 

or high-risk, and personalized diet and exercise recommendations are provided accordingly. The 

sensor data is kept as a list and analyzed using ML methods. Pickle files facilitate the efficient storage 

and retrieval of the trained model for quick deployment. The Random Forest classifier is used to 

generate customized health and fitness plans, ensuring data-driven and effective recommendations. 

4. Results  

This section examines the findings derived from the proposed approach alongside cutting-edge 

techniques applied in this study, highlighting both human and computational assessments. 

4.1. Confusion Matrix 

Around 538 individuals categorized as medium risk were correctly identified for the Random 

Forest model, along with an equal number of high-risk individuals. Likewise, the fittest 538 

individuals were accurately classified. Fig. 5a illustrates a comparison between the actual test and 

predicted test results. The Random Forest algorithm attained an accuracy of 99% in the evaluation. 

The dataset comprises 1542 individuals, with 428 being classified as medium risk, as depicted 

in Fig. 5b. The analysis successfully identified 442 high-risk individuals and 527 as fit. However, 71 

fit individuals were mistakenly classified as medium risk, while 97 high-risk individuals were 

mistakenly categorized as fit. Additionally, 44 individuals were incorrectly labeled as medium risk 

when they belonged to the high-risk category. The Logistic Regression model achieved an accuracy 

of 85%, showing greater variation between predicted and actual test results compared to other 

methods. 

Similarly, in the case of the KNN algorithm, approximately 497 medium-risk individuals were 

correctly classified, as indicated in Fig. 5c. The model accurately categorized 446 high-risk 

individuals and properly identified 508 fit individuals. However, 98 high-risk individuals were 

mistakenly assigned to the fit category, while 32 high-risk as well as fit individuals were incorrectly 

classified as the medium risk category. The overall accuracy of the algorithm was 82%, highlighting 

a larger difference between predicted and actual test results compared to other models. Our Random 

Forest model achieved an accuracy of 99.23% using a 60:40 training-to-testing ratio. Compared to 

[16] where the highest achieved accuracy was 88% using CatBoost and RF models, and [26] where 

an accuracy of 99.7% was reached for Ayurvedic Dosha-based prediction (limited to heart risk), our 

proposed framework demonstrates superior or comparable performance across multiple health 

parameters (BMI, SpO₂, Pulse, Temperature) and personalized lifestyle recommendation, 

highlighting its broader applicability. 

Fig. 5 illustrates the confusion matrices for the Random Forest, Logistic Regression, and KNN 

models. In particular, Random Forest shows near-perfect classification across all three categories 

(fit, medium risk, high risk) with minimal misclassification, unlike KNN and Logistic Regression. 

This underscores Random Forest’s superiority in handling complex health parameter datasets. 

Although the Random Forest classifier achieved a high accuracy of 99%, care was taken to 

reduce overfitting through proper preprocessing and balanced class representation within the dataset. 

To improve the model's generalizability, future work will include implementing k-fold cross-
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validation and testing on larger, diverse datasets across different age groups and health profiles. 

Furthermore, misclassification cases—especially false negatives in high-risk individuals—will be 

examined in greater detail, as these errors carry significant clinical implications. To enhance practical 

relevance, we also plan to integrate an alert mechanism within the system that flags potential high-

risk readings with confidence scores, allowing users to consult healthcare professionals even in 

borderline cases. Computational aspects such as model runtime, latency, and memory usage are being 

profiled in ongoing testing on embedded IoT devices to ensure the system meets the requirements 

for real-time health monitoring in low-power environments. 

 

Fig. 5. Confusion matrices of all algorithms 

4.2. Performance Metrics 

The presented study shows the training and testing size in percentage for ML algorithms like 

KNN, Random Forest, and Logistic Regression to analyze the constructed dataset for healthcare 

frameworks. In this study, the highest accuracy provided is by using a 60:40 ratio for training and 

testing the model. Table 4 shows that a 60:40 training-to-testing ratio produced the highest accuracy 

across all models, with Random Forest achieving 99.23%. This suggests that a larger training set 

enhances model generalization for health monitoring datasets. 

A classification report is a key metric used to describe the ML model's prediction ability. These 

performance metrics are statistical values that are used to evaluate a model’s effectiveness in making 

accurate predictions. Accuracy, precision, recall, and F1 score are common evaluation metrics in 

classification tasks. These metrics are usually represented atas probabilities ranging from 0 to 1. 

These metrics aid in analyzing how effectively the model classifies data and generalizes to new 

inputs. 

4.2.1. Recall 

Recall metric quantifies the model's ability to indicate how comprehensively the actual positive 

cases were accurately detected. High recall suggests a lower number of false negatives. Table 5 

provides a comparative analysis of probability distributions corresponding to fit, medium-risk, and 

high-risk outcomes across various algorithms. 

4.2.2. Precision 

Precision metric evaluates the percentage of predicted positive cases out of the cases that are 

indeed positive. High precision signifies a lower occurrence of false positives. Table 6 provides a 

comparison that displays how probability values are distributed among fit, medium-risk, and high-

risk results across various algorithms. 

4.2.3. F1-Score 

The metric represents the weighted harmonic average of precision and recall, balancing both 

metrics. A high F1 score signifies a balance between precision and recall. Table 7 provides a 

comparative analysis of F1 scores across Multiple algorithms and presents the distribution of 

probabilities across fit, medium-risk, and high-risk groups. 
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Table 4.  Comparative analysis of training and testing size of algorithms 

Training Size 

(%) 

Testing Size 

(%) 

Random Forest 

(%) 

Logistic 

Regression 

(%) 

KNN 

(%) 

60 40 99.23 85.78 82.37 

70 30 98.84 84.91 81.5 

80 20 98.56 83.67 81.12 

Table 5.  Comparative Analysis of Training and Testing Size of Algorithms 

Algorithm Fit Medium Risk High Risk 

Random Forest 1 1 0.99 

Logistic Regression 0.85 0.83 0.84 

KNN 0.82 0.8 0.81 

Table 6.  A tabular analysis of different ML algorithms based on their precision 

Algorithm Fit Medium Risk High Risk 

Random Forest 1 0.98 1 

Logistic Regression 0.88 0.86 0.87 

KNN 0.85 0.83 0.84 

Table 7.  Comparative table of ML algorithms based on F1-score 

Algorithm Fit Medium Risk High Risk 

Random Forest 1 1 1 

Logistic Regression 0.86 0.84 0.84 

KNN 0.83 0.81 0.82 

4.3. Monitoring and Personalized Recommendations 

This research aims to design a system to monitor health that integrates API, JSON, and IoT to 

deliver comprehensive health insights, including summaries, sleep patterns, daily activities, and 

overall wellness metrics. The system implements KNN for analyzing health-related and generating 

reports within the Amazon Web Services (AWS) cloud. 

The login/sign-up page will prompt users to enter their information, encompassing height, 

weight, age, gender, name, mobile number, and email. Upon successful logging in, users will be 

directed to a dashboard where through measure button displays real-time sensor values, along with a 

health analysis section that assesses overall health as illustrated in Fig. 6 a and Fig. 6 b. Heath score 

is computed using the averaged real-time sensor values which offer a deeper understanding of vital 

sign analysis regarding the heart and put under any of the three categories. According to the user's 

health condition, nutrition, and fitness level, Individualized suggestions are formulated, as shown in 

Fig. 7 a and Fig. 7 b. 

For wireless connectivity, the system employs a NodeMCU module, leveraging its embedded 

ESP8266 WiFi capabilities. This configuration facilitates the transmission of processed data to 

external platforms such as servers or smartphone applications, enabling remote monitoring and 

analysis. Table 8 provides a detailed comparative analysis demonstrating the superiority of the 

proposed IoT-ML health monitoring framework over existing systems in terms of parameter 

coverage, real-time monitoring, recommendation adaptability, machine learning accuracy, and 

overall user engagement. 
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5. Discussion 

This section begins with a summary of key findings and their broader implications. The primary 

goal was to create a system that minimizes frequent hospital visits by enabling home-based real-time 

health monitoring and lifestyle guidance. The results align well with this goal, showing that smart 

sensors combined with machine learning algorithms can deliver reliable and personalized health 

advice. The proposed IoT-based health monitoring framework, powered by machine learning, 

particularly the Random Forest classifier, achieved high accuracy (99%) in classifying individuals 

into fit, medium-risk, and high-risk categories. The integration of real-time physiological data with 

an intelligent recommendation engine allows for personalized dietary and fitness plans, marking a 

significant step toward individualized digital healthcare.Compared to Jagatheesaperumal et al. [16], 

who achieved 88% accuracy in a similar IoT health framework, and Vayadande et al. [26], who 

focused mainly on Ayurvedic Dosha analysis with 99.7% accuracy for heart disease prediction, our 

system demonstrates broader parameter monitoring and real-time personalized advice across a 

general young adult population.  Also, while Mistry et al. [28] used cloud-driven prediction for 

congenital heart disease, our system simplifies deployment by using a lightweight Arduino-IoT setup 

without heavy cloud dependence. The results of this study demonstrate that integrating IoT-enabled 

health monitoring with machine learning-driven recommendations can significantly improve the 

accuracy and personalization of preventive healthcare solutions. This high level of precision confirms 

that real-time, multi-parameter monitoring-combined with adaptive algorithms like Random Forest-

can provide actionable insights that go beyond traditional health assessments.  

 
(a) 

 
(b) 

Fig. 6. Heart rate monitoring (a) Real-time data collection; (b) Health score and vital sign analysis 
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(a) (b) 

Fig. 7. Personalized recommendations. (a) Workout recommendations; (b) Diet recommendations 

Importantly, our work fills a critical gap by focusing on young adults (16-25), a group often 

overlooked in early-stage health interventions, thereby contributing to a growing field of proactive 

digital health solutions. By demonstrating the feasibility of low-cost hardware, scalable design, and 

accurate ML models, this framework serves as a stepping stone toward more accessible and 

personalized healthcare systems that can adapt to users' evolving needs. 

5.1. Advantages and Disadvantages 

The IoT-based individualized health monitoring system using ML presents various advantages. 

It ensures personalized health evaluations tailored for individual needs which can assist in analyzing 

the health risks of the user. It helps early detect a user's wellness risks, facilitating them to early 

action and prevention. This framework helps continuously monitor the user's vitals and enables 

proactive health management and modifications to treatment plans. It also provides an advantage 

over the disadvantages of other research papers. The findings imply that integrating multi-sensor IoT 

data with robust ensemble ML models like Random Forest significantly enhances the accuracy and 

reliability of health monitoring. Real-time feedback can facilitate early lifestyle interventions, thus 

promoting proactive health management. In the papers [29], [51], the dataset used is not generalized, 

whereas our dataset is generalized. Also, another advantage is considering the prior medical records 

of the user to suggest a dietary plan.  

The disadvantage of this research is the privacy and security concerns that it has over the data. 

The user's health data may be vulnerable to security breaches which may leak the health metrics of 

the user while the collection and assessment of individual health data. Another disadvantage is its 

heavy dependence on real-time data of the user which may alter from various room temperatures. 

Thus, mitigating these drawbacks is crucial to increase positive outcomes and reduce the potential 

hazards linked to the IoT-driven framework for tailored health evaluation and suggestions. To 

address current limitations, several measures are being considered. Privacy and data security will be 

strengthened by incorporating AES-based encryption for data in transit and at rest, along with HTTPS 

protocols for secure communication between sensors and the web interface. In future iterations, we 
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plan to implement differential privacy techniques and explore federated learning approaches, which 

allow personalized model updates without transmitting raw data. To mitigate the influence of 

environmental variables such as room temperature on sensor accuracy, sensor calibration routines 

will be built into the system, and data smoothing techniques will be applied to reduce noise. A 

detailed benchmarking study will also be included, comparing the proposed framework against 

established systems in terms of accuracy, usability, scalability, and processing speed. Furthermore, 

a long-term roadmap includes integration with electronic health record (EHR) systems and 

collaboration with healthcare professionals to validate clinical utility, making the framework more 

scalable and suitable for deployment in real-world healthcare environments. 

Table 8.  Comparative Analysis of the proposed system with existing systems 

Feature Proposed System Existing Systems 

Vital Parameters Monitored 
Heart rate, SpO₂, body temperature, BMI — full 

basic vitals covered 

Mostly limited to either heart rate 

(e.g., [25], [27]) or body temp; some 

systems only track food intake [21] 

Real-Time Monitoring 
Yes, immediate real-time data from wearable 

devices to web app 

Often delays due to GSM/cloud 

dependency ([25], [27]); no real-time 

personalization 

Diet & Fitness 

Recommendations 

Yes, fully personalized based on live vitals, 

fitness level, and health status 

Diet only ([26], [18]); fitness-only 

solutions ([23], [48]); often generic 

advice 

Adaptability 
Adaptive learning based on user feedback, 

dynamically improving recommendations 

Static recommendations in most 

systems; little or no user feedback 

loop [25] 

Machine Learning 

Performance 

Random Forest achieves 99% accuracy with a 

60:40 dataset split 

Existing systems like Ayurvedic [26] 

(Random Forest ~86%), others lower 

User Engagement 
Web platform with real-time updates, health 

scoring system, easy-to-use dashboard 

Separate apps ([16], [25]) but not 

tightly integrated with live sensor 

feedback 

Heart Attack Risk 

Detection 

Yes, heart rate analysis linked to risk alerting 

mechanisms 

Only specialized systems detect heart 

issues ([27], [49]), not generalized 

ones 

Hardware Efficiency 
Low-cost setup: Arduino Uno + MAX30100 + 

LM35 

Some use costly setups like Raspberry 

Pi 4B, complex GSM units ([25]) 

Health Score Calculation 
Custom health score based on multiple vitals for 

better risk assessment 

No unified health scoring in other 

systems ([50]) 

Scalability 
Large dataset generated (540,000 samples) for 

ML training and validation 

Many systems rely on limited, non-

generalized datasets ([29]) 

5.2. Challenges and Trends 

During the execution of this project and the associated research, several challenges emerged due 

to different aspects of technological advancement. Despite the numerous technological 

advancements recently still measuring the vitals of the users such as SpO2 levels, temperature 

readings, and heart rate of the user is a major task to be done. Also, the cost of the equipment and 

finding the best hardware components and ML algorithm were major challenges. Additionally, 

creating datasets manually, mainly when there are many variations in dietary habits and food 

preferences, achieving optimal accuracy is a significant challenge. The lack of datasets that are 

generalized and contain many dietary preferences is another challenge.  

Another challenge is to understand the hardware components and the connection between the 

software modules. Also, the major challenge includes finding a proper nutritionist who could suggest 

different diets that adhere to individual dietary preferences and individual health needs, by also 

providing a proper workout routine maintaining a nutrient limit for the user. 
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5.3. Emerging Technologies 

Multiple advancements in technologies have been made recently. In preparation for this 

research, we conducted a comprehensive survey of existing systems to explore the integration of IoT 

and AI technologies in healthcare. The survey highlighted the current advancements in wearable 

devices, health monitoring solutions, and data-driven approaches for personalized care. Additionally, 

it identified key challenges, including data privacy, interoperability, social and psychological data, 

and the need for secure data exchange protocols [1], [52]-[54]. Healthcare monitoring is increasingly 

leveraging AI to process comprehensive patient records and deliver health insights customized to an 

individual’s health history and physiological conditions. Deep Learning can also be used which could 

contain more complex datasets and could give more accurate solutions [55]. Augmented reality or 

Virtual reality may also be used to provide an immersive experience to suggest workout plans and 

also to be able to constantly monitor the vitals of the user. Also, the concept of Green IoT, 

emphasizing energy-efficient solutions to make IoT sustainable, including in healthcare systems 

where wearable devices and remote health monitors need to minimize power usage, as described in 

[56]-[58]. 

Also, the estimation of food volume and calories based on swallow count is employed to 

measure the calories of the individual using a piezoelectric-based wearable system [21]. Another 

technology is using an EAI-based procedure for providing ayurvedic treatment by analyzing the 

doshas of the individual [26]. Providing comprehensive and personalized diet Advice tailored 

according to liver function, heart, brain, diet, and age using the integration of modern technologies 

like AI, ML, and predictive analytics to enhance disease management [18]. Virtual coaching via 

video conferencing has become a vital tool for supporting individuals in remote areas to improve 

their health. A systematic review on machine learning applications for diabetes management via 

smart devices, emphasizing personalization and early diagnosis was conducted [59]. Finally, an AI-

driven fall prediction system for the elderly using wearable IoT sensors, providing a proactive 

healthcare solution aimed at reducing fall-related injuries and improving quality of life was 

introduced [60]. 

5.4.  Strength and Limitations 

This study presents several important strengths. The system is capable of monitoring multiple 

health parameters in real time, including heart rate, SpO₂, body temperature, and BMI, offering a 

complete view of an individual’s health status. It achieves very high accuracy (99%) using Random 

Forest, ensuring reliable predictions. Unlike many previous works, it goes beyond just monitoring to 

provide personalized diet and workout recommendations through a simple and accessible web 

interface. The flexible hardware setup makes it easy to upgrade with more sensors if needed. 

Importantly, by focusing on young adults, the framework addresses a critical group often overlooked 

in early preventive healthcare strategies. Although this project offers several benefits, certain 

limitations of the technology persist. Many applications provide nutrition and exercise routines 

without relying on real-time data by using user-provided data. Mobile applications for healthcare 

self-management and wearable technology were not evaluated.  It may also involve potential sensor 

inaccuracies affected by environmental factors (like room temperature) and challenges with data 

privacy. This technology may only alert the user during vital spikes but will not help during diseases 

or other organ failures. Data leaks and privacy violations are also possible while collecting sensitive 

health information. The sensors might take some incorrect values of the user’s body temperature 

based on the room temperature.  By highlighting these drawbacks, potential solutions could be 

made in future by focusing on improving the accuracy of sensor readings through hardware 

calibration and robust environmental compensation techniques. Moreover, incorporating 

secure data transmission protocols and privacy-preserving machine learning approaches can 

help mitigate concerns related to data security and user confidentiality. As this framework 

opens new pathways for preventive, personalized healthcare. Future improvements could 
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integrate additional parameters (e.g., blood pressure, glucose levels), mental health tracking, 

and more advanced AI models like Deep Learning for predictive risk assessment. The system 

could also be expanded to cater to elderly populations and chronic disease management. 

6. Conclusion 

This study proposes an integrated IoT and machine-learning framework for personalized health 

monitoring, combining embedded sensors that continuously measure BMI, heart rate, blood oxygen 

saturation, and body temperature with a secure wireless–cloud interface to deliver tailored diet and 

fitness recommendations. By enabling real-time data collection and predictive analytics via a 

Random Forest algorithm—shown to outperform baseline approaches in recommendation 

accuracy—the system promotes self-monitoring, enhances individual independence, and supports a 

more confident, healthier lifestyle. Wearable devices maintain uninterrupted assessment, while cloud 

storage ensures baseline information remains accessible for longitudinal analysis. This framework 

thus advances preventive care by facilitating remote health monitoring, improving patient outcomes, 

and reducing management costs through data-driven insights. 

Building on these findings, future work should pursue specific, actionable enhancements to 

guide subsequent research. Potential directions include optimizing the energy efficiency of wearable 

hardware to extend operating time, refining user-engagement strategies (e.g., adaptive reminders or 

gamification) to improve compliance, and incorporating real-time anomaly-detection modules that 

flag critical deviations for timely intervention. Moreover, methodological improvements such as 

mitigating dataset biases that skew algorithmic decisions and enhancing computational efficiency for 

on-device processing are essential for practical deployment at scale. By articulating these targeted 

goals, this research invites others to continue refining both the technical and human-centered aspects 

of digital health ecosystems. 

However, several practical barriers must be addressed before wide scale adoption. Data privacy 

concerns, the cost of advanced wearable devices, and challenges in achieving interoperability across 

heterogeneous platforms can impede effective scalability and user trust. The reliance on accurate 

real-time data also introduces vulnerability: sensor errors and environmental factors may 

compromise measurement quality, while the ethical implications of collecting and storing sensitive 

health information raise regulatory and trust issues. Furthermore, limited IoT infrastructure in low-

resource settings and the necessity for consistent device use and honest self-reporting may restrict 

both reach and reliability. 

Broader implications of this work include enabling early disease detection, advancing remote 

diagnostic capabilities, and improving equitable access to preventive healthcare. Yet, to ensure 

robustness and equity, further study must address ethical data governance, evaluate sensor 

performance under varied conditions, and validate system adaptability across diverse demographic 

groups to avoid algorithmic bias. Collectively, these contributions demonstrate a feasible integration 

of IoT and machine learning for wellness management and set a clear agenda—through defined 

technical objectives and ethical considerations—for building scalable, accessible, and secure digital-

health ecosystems. 
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