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ABSTRACT

This study examines an integro-differential equation involving fractional
conformable derivatives and non-local conditions. It proves the existence
and uniqueness of mild solutions by applying the Banach fixed-point the-
orem. Furthermore, it demonstrates a notable result about the existence
of at least one solution, backed by conditions based on the Krasnoselskii
fixed-point theorem. The investigation also explores the Ulam stability of
integro-differential equations. To highlight the practical relevance and ro-
bustness of the findings, an illustrative example is provided.

This is an open access article under the CC-BY-SA license.

1. Introduction

The fractional derivative extends the concept of the classical derivative to an arbitrary order and
has been a part of calculus for centuries. Over the past thirty years, it has found applications across
a wide range of fields, including science, engineering, and mathematics [1]–[7]. There are various
definitions of fractional derivatives in the literature today, each relying on different assumptions.
Among the most widely recognized are the Riemann–Liouville and Caputo fractional derivatives,
see [8]–[13]. However, it’s important to highlight that these two forms of derivatives do not adhere to
the classical chain rule.

In [14], Khalil proposed an operator derived from a local limit, which serves as a natural exten-
sion of the traditional derivative while maintaining the core properties of the classical derivative. This
operator is known as the conformable fractional derivative [15], [16]. In [17], Abdeljawad further
examined this derivative, addressing topics such as the chain rule, mean value theorem, Grönwall
inequality, exponential function, and Laplace transform. Its various applications and extensions were
also explored [18]–[26].
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The existence of solutions to initial value problems for certain conformable fractional differential
equations has been extensively explored in the literature, particularly in studies [27]–[33]. These
works aim to identify the conditions that guarantee the existence of solutions, examine the properties
of these solutions, and provide the theoretical framework that underpins their existence. Additionally,
several research papers have been dedicated to studying the Hyers–Ulam stability of conformable
differential equations [34]–[37]. This concept, which deals with the stability of solutions to functional
equations under small perturbations, has been applied to a wide range of conformable fractional
differential equations.

In this paper, we investigate the existence and stability of the conformable fractional integro-
differential equations with non-local conditions in Banach spaces (U, ∥ · ∥U ). A conformable integro-
differential equation with non-local conditions can be written as:

ψ(α)(t) = ϕ(t, ψ(t), Nψ(t)), t ∈ [0, T ], 0 < α ≤ 1,

With non-local conditions of the form:

ψ(0) = ψ0 + φ(ψ),

Where:
- ψ(α)(t) denotes the conformable fractional derivative of order α.
- Nψ(t) is an integral operator given by:

Nψ(t) =

∫ t

0
f(s, ψ(s)) ds,

Where f ∈ C(I × U,U) is a given function.
- ϕ ∈ C(I × U × U,U) is a nonlinear function.
- φ(ψ) represents a non-local condition, which means the solution at a point depends on its values
over an entire interval rather than just an initial condition.

The remainder of the paper is structured as follows. Section 2 presents key definitions and
theorems that are essential for the subsequent analysis. In Section 3, we first establish criteria for
the existence of solutions to the non-local problem using fixed point theorems and the conformable
fractional calculus. We also further explore the Ulam stability of these solutions.

2. Preliminaries

Khalil et al. proposed a completely innovative definition of fractional calculus, which is formu-
lated as follows:

Definition 2.1 [14]Let ψ : [0,∞) → R be a real valued function. Then the conformable fractional
derivative of ψ of order α ∈ (0, 1], at t > 0 is defined by

ψ(α)(t) = lim
ϵ→0

ψ(t+ ϵt1−α)− ψ(t)

ϵ
,

and
ψ(α)(0) = lim

t→0+
ψ(α)(t).

When the limit exists, we say that ψ is α-differentiable at t.
The integral operator corresponding to the derivative operator is given by the following definition.

Iaα(ψ)(t) =

∫ t

a

ψ(s)

s1−α
ds.
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Theorem 2.2 [14] Let α ∈ (0, 1] and ψ, ω be α-differentiable at a point t > 0 then

1. (ψ + ω)(α)(t) = aψ(α)(t) + bω(α)(t) for all a, b ∈R.

2. (tp)(α)(t) = ptt
p−α

for all p ∈R.

3. ψ(α)(t) = 0, for all constant function ψ(t) = λ.

4. (ψω)(α) = ψω(α) + ωψ(α).

5. In addition, ψ is differentiable then ψ(α)(t) = t1−α dψdt (t).

Theorem 2.3 [17] Let 0 < α ≤ 1, and ψ : [a,+∞) → R be a function, where a ≥ 0. For t ≥ a, we
have if ψ is a differentiable function, then Iaαψ

(α)(t) = ψ(t)− ψ(a).

Theorem 2.4 [38](Krasnoselskii Fixed-Point Theorem). Let M be a closed, convex, and non-
empty subset of a Banach space U , and let P :M →M be a mapping of the form:

Pz = Bz +Az,

Where:

• A is a continuous and compact operator,

• B is a contraction, i.e., there exists a constant k ∈ [0, 1) such that

∥B(x)−B(y)∥ ≤ k∥x− y∥

for all x, y ∈M
Then, P has at least one fixed point in M .

Theorem 2.5 (Banach Fixed Point Theorem). Let (U, ∥·∥) be a Banach space, and let P : U → U
be a contraction mapping. Then, P has a unique fixed point.

3. Main Results

Let C(I, U) be the space of functions ψ(·) defined on I = [0, T ] with values in U , such that ψ(·)
is continuous on the interval I . It is evident that C(I, U) forms a Banach space with the norm

∥ψ∥ = sup{∥ψ(t)∥U : t ∈ I}.

Additionally, the space Cα(I, U) consists of functions ψ : I → U that are α-continuously
differentiable, which generalizes the notion of differentiability to fractional orders. We present the
expression for the mild solution of the problem{

ψ(α)(t) = ϕ(t, ψ(t), Nψ(t)), t ∈ [0, T ], 0 < α ≤ 1,

ψ(0) = ψ0 + φ(ψ).
(1)

Lemma 3.1 A solution ψ ∈ C(I, U) of problem (1) has the following form

ψ(t) = ψ0 + φ(ψ) +

∫ t

0
sα−1ϕ(s, ψ(s), Nψ(s)) ds, t ∈ I.
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Proof 1 Applying the conformable fractional integral of order α to both sides of the differential
equation, we use the fundamental property of conformable fractional derivatives:

Iαψ(α)(t) = ψ(t)− ψ(0).

Thus, integrating both sides from 0 to t, we obtain:

ψ(t) = ψ(0) +

∫ t

0
sα−1ϕ(s, ψ(s), Nψ(s)) ds.

Substituting the initial condition ψ(0) = ψ0 + φ(ψ), we get:

ψ(t) = ψ0 + φ(ψ) +

∫ t

0
sα−1ϕ(s, ψ(s), Nψ(s)) ds.

Definition 3.2 A function ψ ∈ C(I, U) is called a mild solution of problem (1) if it satisfies the
integral equation

ψ(t) = ψ0 + φ(ψ) +

∫ t

0
sα−1ϕ(s, ψ(s), Nψ(s)) ds, t ∈ I. (2)

3.1. Existence of Mild Solutions

Our objective is to explore the existence theory for the conformable integro-differential equation
with non-local conditions, making use of fundamental concepts. Our study is based on the functional
analysis theorems of Banach and Krasnoselskii. For any ψ ∈ C(I, U), let

𭟋ψ(t) = ψ0 + φ(ψ) +

∫ t

0
sα−1ϕ(s, ψ(s), Nψ(s)) ds. (3)

It is easy to show that 𭟋ψ : C(I, U) → C(I, U), and the problem (1) is equivalent to the integral
equation (2), that is, ψ = ψ(t) is a solution of (1) if and only if ψ ∈ C(I, U) is a fixed point of the
operator 𭟋.

Let us present the assumptions required to ensure the uniqueness of the solution for our results
in this section.
(A1) There exist constants δ1, δ2 > 0 such that

∥ϕ(t, ψ, ω)− ϕ(t, ψ, ω)∥ ≤ δ1∥ψ − ψ∥+ δ2∥ω − ω∥, ∀ψ, ω, ψ, ω ∈ C(I, U).

(A2) There exists constant γ > 0 such that

∥f(t, ψ)− f(t, ψ)∥ ≤ γ∥ψ − ψ∥, ∀ψ,ψ ∈ C(I, U).

(A3) There exists constant η > 0 such that

∥φ(ψ)− φ(ψ)∥ ≤ η∥ψ − ψ∥, ∀ψ,ψ ∈ C(I, U).

Theorem 3.3 Suppose (A1)-(A3) hold. If

η + δ1
Tα

α
+ γδ2

Tα+1

α
< 1 (4)

holds, then the conformable integro-differential equation (1) has a unique solution.
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Proof 2 For any ψ,ψ ∈ C(I, U), and any t ∈ I , from assumptions (A1) and (A2), we get

∥ϕ(t, ψ,Nψ)− ϕ(t, ψ,Nψ)∥ ≤ δ1∥ψ − ψ∥+ δ2∥Nψ −Nψ∥

≤ δ1∥ψ − ψ∥+ δ2

∫ t

0
∥f(s, ψ(s))− f(s, ψ(s))∥ds

≤ δ1∥ψ − ψ∥+ δ2

∫ t

0
γ∥ψ − ψ∥ds

≤ δ1∥ψ − ψ∥+ δ2γT∥ψ − ψ∥.

Thus, we have

∥𭟋(ψ)−𭟋(ψ)∥ ≤ ∥φ(ψ)− φ(ψ)∥+
∫ t

0
sα−1

(
δ1∥ψ − ψ∥+ δ2γT∥ψ − ψ∥

)
ds

≤ η∥ψ − ψ∥+
(
δ1
Tα

α
+ γδ2

Tα+1

α

)
∥ψ − ψ∥

≤
(
η + δ1

Tα

α
+ γδ2

Tα+1

α

)
∥ψ − ψ∥.

By inequality (4), it follows that the operator 𭟋 is contractive. Hence, by the Banach fixed-
point theorem, 𭟋 admits a unique fixed point in C(I, U). Consequently, the conformable fractional
integro-differential equations with non-local conditions (1) has a unique solution.

We will now apply Krasnoselskii’s fixed point theorem to prove an existence result. To proceed,
we introduce the following hypotheses:
(H1) There exist continuous functions ρ, µ, τ, σ, θ mapping I into [0,+∞) such that, for all ψ,ψ ∈
C(I, U) and t ∈ I , the following inequalities hold:

∥ϕ(t, ψ, ψ)∥ ≤ ρ(t) + µ(t)∥ψ∥+ τ(t)∥ψ∥, ∥f(t, ψ)∥ ≤ σ(t) + θ(t)∥ψ∥.

Furthermore, we define the supremum values:

ρ∗ = sup
t∈I

ρ(t), µ∗ = sup
t∈I

µ(t), τ∗ = sup
t∈I

τ(t), σ∗ = sup
t∈I

σ(t), θ∗ = sup
t∈I

θ(t).

(H2) There exists a positive constant ℓ∗ in (0, 1) and a nonnegative, nondecreasing function ν in
C([0,∞)) such that

ν(z) < ℓ∗z, for z > 0,

and
∥φ(ψ)− φ(ψ)∥ ≤ ν(∥ψ − ψ∥),

for any ψ,ψ ∈ C(I, U) and φ(0) = 0.
(H3) Suppose that

β = ℓ∗ +
µ∗Tα

α
+
τ∗θ∗Tα+1

α
< 1.

Let Bξ = {ψ ∈ C(I, U) : ∥ψ∥ ≤ ξ and ξ ≥ β∗

1−β} and β∗ = ∥ψ0∥ + ρ∗Tα

α + τ∗σ∗Tα+1

α .
Then Bξ is clearly a bounded closed and convex subset in C(I, U). Consider the operator 𭟋 defined
in (3) on Bξ , and divide it into two operators Λ and Υ on Bξ as follows:

Λ(ψ(t)) = ψ0 + φ(ψ),

Υ(ψ(t)) =

∫ t

0
sα−1ϕ(s, ψ(s), Nψ(s)) ds.
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Theorem 3.4 Given that the hypotheses (H1), (H2), and (H3) are satisfied, problem (1) admits at
least one solution ψ ∈ Bξ.

Proof 3 The proof consists of four steps:
Step 1: We demonstrate that (Λ + Υ)(Bξ) ⊆ Bξ.
For any t ∈ I and ψ ∈ Bξ, we have

∥Λ(ψ) + Υ(ψ)∥ ≤ ∥ψ0∥+
ρ∗Tα

α
+
τ∗σ∗Tα+1

α
+

(
ℓ∗ +

µ∗Tα

α
+
τ∗θ∗Tα+1

α

)
∥ψ∥

≤ β∗ + βξ

≤ ξ.

Thus, (A+ P )(Bξ) ⊆ Bξ.
Step 2: We show that Λ is a contraction mapping.
For any ψ,ψ ∈ Bξ, we get

∥Λ(ψ)− Λ(ψ)∥ = ∥φ(ψ)− φ(ψ)∥ ≤ ν(∥ψ − ψ∥)
≤ ℓ∗∥ψ − ψ∥.

Since ℓ∗ < 1, then Λ is a contraction mapping.
Step 3: We will prove that the operator Υ is continuous.
Let {ψn} be a sequence such that ψn → ψ in Bξ. Define ϕn(·) = ϕ(·, ψn, Nψn) and ϕ(·) =
ϕ(·, ψ,Nψ). We note that

sα−1ϕn(s) → sα−1ϕ(s) as n→ ∞,

and the bound
sα−1∥ϕn − ϕ∥ ≤ 2sα−1 (ρ∗ + τ∗σ∗T + ξ(µ∗ + τ∗θ∗T ))

holds. Applying the Lebesgue Dominated Convergence Theorem, we obtain the inequality

∥Υψn(t)−Υψ(t)∥ ≤
∫ t

0
sα−1∥ϕn − ϕ∥ds, t ∈ I,

which tends to zero as n→ ∞. Therefore, the operator Υ is continuous.
Step 4. We show Υ(Bξ) is equicontinuous.
For ψ ∈ Bξ and t1, t2 ∈ I such that t1 < t2, we have

∥Υψ(t2)−Υψ(t1)∥ ≤ (ρ∗ + τ∗σ∗T + ξ(µ∗ + τ∗θ∗T ))

∫ t1

t2

sα−1ds

= (ρ∗ + τ∗σ∗T + ξ(µ∗ + τ∗θ∗T ))

(
tα2 − tα1
α

)
.

Thus, ∥Υψ(t2)−Υψ(t1)∥ → 0 as t1 → t2. Therefore, Υ(Bξ) is equicontinuous.
From the Arzela–Ascoli theorem, Υ(Bξ) is relatively compact. Finally, the Krasnoselskii fixed point
theorem completes the proof.

3.2. Ulam Stability Analysis

Ulam stability analysis examines whether small perturbations in functional equations allow ap-
proximate solutions to be adjusted into exact ones, ensuring stability and resilience in mathematical
structures. This section explores the concepts of Ulam–Hyers stability and Ulam–Hyers–Rassias
stability.
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Ulam–Hyers stability

Definition 3.5 The equation (1) is said to be Ulam–Hyers stable if, for every approximate solution
ψ̃(t) satisfying ∥∥∥ψ̃(α)(t)− ϕ(t, ψ̃(t), Nψ̃(t))

∥∥∥ ≤ ϵ, ∀t ∈ I, (5)

there exists an exact solution ψ(t) of (1) such that

∥ψ̃ − ψ∥ ≤ Cϵ, ∀t ∈ I, (6)

Where C is a constant independent of ϵ.

Remark 3.6 A function ψ̃ ∈ C(I, U) is a solution of (5) if and only if there exists a function g ∈
C(I, U) such that:

(i) ∥g(t)∥ ≤ ϵ, for all t ∈ I ,

(ii) ψ̃(α)(t) = ϕ(t, ψ̃(t), Nψ̃(t)) + g(t), for all t ∈ I .

Lemma 3.7 Let ψ̃ ∈ C(I, U) be a solution of (5). Then ψ̃ satisfies the inequality:∥∥∥∥ψ̃(t)− ψ0 − φ(ψ̃)−
∫ t

0
sα−1ϕ(s, ψ̃(s), Nψ̃(s)) ds

∥∥∥∥ ≤ ϵ
Tα

α
, t ∈ I. (7)

Proof 4 From Remark 3.6, the solution of the equation

ψ̃(α)(t) = ϕ(t, ψ̃(t), Nψ̃(t)) + g(t)

can be expressed as

ψ̃(t) = ψ0 + φ(ψ̃) +

∫ t

0
sα−1ϕ(s, ψ̃(s), Nψ̃(s)) ds+

∫ t

0
sα−1g(s)ds.

For all t ∈ I , we obtain∥∥∥∥ψ̃(t)− ψ0 − φ(ψ̃)−
∫ t

0
sα−1ϕ(s, ψ̃(s), Nψ̃(s)) ds

∥∥∥∥ ≤
∫ t

0
sα−1∥g(s)∥ds ≤ ϵ

Tα

α
.

Theorem 3.8 If all the conditions of Theorem 3.3 hold, then the conformable fractional integro-
differential equation with non-local conditions (1) is U-H stable.

Proof 5 As all the conditions of Theorem 3.3 are fulfilled, the conformable fractional integro-differential
equation with non-local conditions (1) has a unique solution ψ ∈ C(I, U).

Let ψ̃ ∈ C(I, U) be a solution of the inequality system (5). According to Lemma 3.7 and
Remark 3.6, for any t ∈ I , we have:

∥ψ̃(t)− ψ(t)∥ = ∥ψ̃(t)− ψ0 − φ(ψ)−
∫ t

0
sα−1ϕ(s, ψ(s), Nψ(s)) ds∥

≤
∥∥∥∥ψ̃(t)− ψ0 − φ(ψ̃)−

∫ t

0
sα−1ϕ(s, ψ̃(s), Nψ̃(s)) ds

∥∥∥∥+ ∥φ(ψ̃)− φ(ψ)∥

+

∥∥∥∥∫ t

0
sα−1(ϕ(s, ψ̃(s), Nψ̃(s))− ϕ(s, ψ(s), Nψ(s)) ds

∥∥∥∥
≤ ϵ

Tα

α
+

(
η + δ1

Tα

α
+ γδ2

Tα+1

α

)
∥ψ̃ − ψ∥.
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Hence, we obtain

∥ψ̃ − ψ∥ ≤ Tα

α(1−ϖ)
ϵ,

Whereϖ =
(
η + δ1

Tα

α + γδ2
Tα+1

α

)
.By Definition 3.5, the conformable fractional integro-differential

equation with non-local conditions (1) is U-H stable.

Ulam–Hyers–Rassias Stability

Definition 3.9 The equation (1) is said to be Ulam–Hyers–Rassias stable if, for every approximate
solution ψ̃(t) satisfying ∥∥∥ψ̃(α)(t)− ϕ(t, ψ̃(t), Nψ̃(t))

∥∥∥ ≤ ϵh(t), ∀t ∈ I, (8)

Where h : I → R+ is a given function, there exists an exact solution ψ(t) of (1) such that

∥ψ̃ − ψ∥ ≤ Cϵh(t), ∀t ∈ I, (9)

Where C is a constant independent of ϵ.

Remark 3.10 A function ψ̃ ∈ C(I, U) is a solution of (8) if and only if there exists a function
g̃ ∈ C(I, U) such that:

(i) ∥g̃(t)∥ ≤ ϵh(t), for all t ∈ I ,

(ii) ψ̃(α)(t) = ϕ(t, ψ̃(t), Nψ̃(t)) + g̃(t), for all t ∈ I .

Lemma 3.11 Let ψ̃ ∈ C(I, U) be a solution of (8). Then ψ̃ satisfies the inequality for all t ∈ I:∥∥∥∥ψ̃(t)− ψ0 − φ(ψ̃)−
∫ t

0
sα−1ϕ(s, ψ̃(s), Nψ̃(s)) ds

∥∥∥∥ ≤ ϵ

∫ t

0
sα−1h(s)ds. (10)

Proof 6 From Remark 3.10, the solution of the equation

ψ̃(α)(t) = ϕ(t, ψ̃(t), Nψ̃(t)) + g̃(t)

can be expressed as

ψ̃(t) = ψ0 + φ(ψ̃) +

∫ t

0
sα−1ϕ(s, ψ̃(s), Nψ̃(s)) ds+

∫ t

0
sα−1g̃(s)ds.

For all t ∈ I , we get∥∥∥∥ψ̃(t)− ψ0 − φ(ψ̃)−
∫ t

0
sα−1ϕ(s, ψ̃(s), Nψ̃(s)) ds

∥∥∥∥ ≤
∫ t

0
sα−1∥g̃(s)∥ds ≤ ϵ

∫ t

0
sα−1h(s)ds.

Theorem 3.12 Suppose that all the assumptions of Theorem 3.3 are satisfied. Additionally, assume
that there exists a continuous function h(t) > 0 for t ∈ I and a constant ch > 0 such that the
following inequality holds: ∫ t

0
sα−1h(s) ds ≤ chh(t), ∀t ∈ I.

Then, the conformable fractional integro-differential equation with non-local conditions (1) is
U-H-R stable.
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Proof 7 Since all the conditions of Theorem 3.3 are satisfied, the conformable fractional integro-
differential equation with non-local conditions (1) admits a unique solution ψ ∈ C(I, U).

Let ψ̃ ∈ C(I, U) be a solution of the inequality system (8). Based on Lemma 3.11 and Remark
3.10, it follows that for any t ∈ I , we have:

∥ψ̃(t)− ψ(t)∥ = ∥ψ̃(t)− ψ0 − φ(ψ)−
∫ t

0
sα−1ϕ(s, ψ(s), Nψ(s)) ds∥

≤
∥∥∥∥ψ̃(t)− ψ0 − φ(ψ̃)−

∫ t

0
sα−1ϕ(s, ψ̃(s), Nψ̃(s)) ds

∥∥∥∥+ ∥φ(ψ̃)− φ(ψ)∥

+

∥∥∥∥∫ t

0
sα−1(ϕ(s, ψ̃(s), Nψ̃(s))− ϕ(s, ψ(s), Nψ(s)) ds

∥∥∥∥
≤ ϵ

∫ t

0
sα−1h(s)ds+

(
η + δ1

Tα

α
+ γδ2

Tα+1

α

)
∥ψ̃ − ψ∥

≤ ϵchh(t) +

(
η + δ1

Tα

α
+ γδ2

Tα+1

α

)
∥ψ̃ − ψ∥.

Thus, we get
∥ψ̃ − ψ∥ ≤ ch

1−ϖ
ϵh(t),

Whereϖ =
(
η + δ1

Tα

α + γδ2
Tα+1

α

)
.By Definition 3.9, the conformable fractional integro-differential

equation with non-local conditions (1) is U-H-R stable.

Example 3.13 We examine the following conformable integro-differential equation subject to non-
local conditions in R:

ψ( 1
2
)(t) =

1

4

(
t+

ψ(t)

t+ 1

)
+

∫ t

0

cos(s)

4
ψ(s)ds, t ∈ [0, 1],

ψ(0) = ψ0 +

∫ 1

0

1

3
ψ(s)ds.

(11)

Corresponding to equation (11), where

α =
1

2
, φ(ψ) =

∫ 1

0

1

3
ψ(s)ds,

and

ϕ(t, ψ(t), Nψ(t)) =
1

4

(
t+

ψ(t)

t+ 1

)
+

∫ t

0

cos(s)

4
ψ(s)ds, f(t, ψ(t)) =

cos(t)

4
ψ(t).

For any ψ, ω, ψ, ω ∈ C(I,R), and any t ∈ [0, 1], we have

∥f(t, ψ)− f(t, ψ)∥ ≤ 1

4
∥ψ − ψ∥,

∥ϕ(t, ψ, ω)− ϕ(t, ψ, ω)∥ ≤ 1

4
∥ψ − ψ∥+ 1

4
∥ω − ω∥,

and
∥φ(ψ)− φ(ψ)∥ ≤ 1

3
∥ψ − ψ∥.

It is clear that η + δ1
Tα

α + γδ2
Tα+1

α = 23
24 < 1. According to Theorem 3.3, the conformable

fractional integro-differential equation with non-local conditions (11) possesses a unique solution.
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Moreover, Theorem 3.8 ensures that conformable fractional integro-differential equation (11) is U-H
stable.
Let h(t) =

√
t+ 1, t ∈ [0, 1], we have∫ t

0
s−

1
2 (
√
s+ 1) ds = t+ 2

√
t ≤ 3 ≤ 3(

√
t+ 1) = 3h(t),

where ch = 3. All the conditions of Theorem 3.12 are satisfied, then the conformable fractional
integro-differential equation with non-local conditions (11) is U-H-R stable.

4. Conclusion
This paper investigates a class of conformable fractional integro-differential equations with non-

local conditions. After addressing the existence and uniqueness of solutions, we concentrate on the
Ulam-Hyers (U-H) stability and Ulam-Hyers-Rassias (U-H-R) stability of the solutions to problem
(1). Finally, an example is presented to illustrate the practicality and effectiveness of our results. In
our future work, we aim to extend the current research by investigating more general forms of con-
formable fractional integro-differential equations.
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