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ABSTRACT

Online education, especially post-COVID, faces the challenge of maintain-
ing student engagement, particularly at the college level. A key factor in
effective learning is understanding students’ emotional states, as they in-
fluence comprehension and participation. To address this, we propose an
intelligent system that classifies students’ emotions by analyzing facial ex-
pressions, allowing teachers to adapt their methods in real-time. Our system
utilizes the Learning Focal Point algorithm to improve emotion classifica-
tion accuracy, focusing on key facial regions related to emotional expres-
sions. The methodology involves preprocessing facial images, extracting
features, and classifying emotions using the algorithm. Trained on a di-
verse dataset, the system performs well under various conditions, with a
classification accuracy of 94% based on a well-known database. Although
the system shows significant improvements over traditional methods, fac-
tors like image quality and internet connection can impact accuracy in real-
world applications. Ultimately, our approach enhances remote learning by
providing real-time emotional feedback, fostering a more responsive and
student-centered environment.

This is an open access article under the CC-BY-SA license.

1. Introduction

The growth of online education, particularly following the COVID-19 pandemic, has reshaped
how learning is delivered. While remote learning provides flexibility and accessibility, it also brings
challenges in sustaining student engagement and ensuring effective teaching. A key issue is the
difficulty in gauging students’ emotional states, which significantly impact their learning experience.
Unlike in traditional classrooms, where teachers can observe body language and facial expressions,
remote education restricts these visual cues, making it harder to adjust teaching methods in real-
time [1]–[3].

To address this challenge, integrating AI-driven emotion classification systems into virtual class-
rooms can help teachers better understand student engagement and learning difficulties. By analyzing
facial expressions, AI can classify emotions and provide real-time feedback, enabling educators to
adjust their teaching methods accordingly. However, this solution is not yet supported by popular
platforms like Microsoft Teams or Google Meet. Our vision is to integrate this solution into these
applications using their APIs, allowing users to benefit from both solutions. This approach enhances
remote learning by creating a more interactive and adaptive educational environment [4], [5].
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In order to safeguard student privacy and avoid potential misinterpretation of individual emo-
tions, our solution provides only aggregated emotion data for the entire classroom. Professors will
not see the specific emotional states of individual students. Instead, they will receive global statistics
that reflect the overall emotional mood or engagement level of the class. This ensures that students’
privacy is maintained while still offering useful insights into the classroom’s emotional dynamics.
By focusing on class-wide trends, educators can adjust their teaching methods based on the general
emotional state of the group, creating a more adaptive and responsive learning environment.

Recent studies have explored facial expression recognition to monitor student progress in online
education. By using ResNet-50 for feature extraction and a convolutional attention mechanism, one
approach achieved 87.62% and 88.13% accuracy on the RAF-DB and FER2013 datasets. These
advancements demonstrate the effectiveness of AI-driven emotion detection in enhancing teaching
methods and improving student engagement [7]–[9].

Understanding student emotions is vital for improving engagement in virtual education. Existing
systems like Affectiva and Emotient face integration challenges on platforms like Microsoft Teams.
This study presents a Teams-based system using speech and facial emotion detection with Tensor-
Flow, PyTorch, and OpenCV, achieving 95% precision for positive emotions. While engagement
improved, further work is needed to detect complex emotions such as stress and frustration [10]–[12].

Recent research on emotion classification using EEG data focuses on dry electrodes, machine
learning, and brain-computer interfaces. This study compares three EEG features, introduces feature
smoothing to reduce noise, and uses manifold learning to track emotion changes. Results show that
power spectrum features perform best, smoothing improves accuracy, and emotion trajectories can be
visualized [13], [14].

As we can observe, there has been considerable research on emotion classification, with various
methods proposed to improve the accuracy and effectiveness of emotional state detection. However,
most of these approaches do not utilize our proposed method, the Learning Focal Point (LFP) algo-
rithm. Unlike traditional methods, which rely on standard machine learning techniques or existing
deep learning models, the LFP algorithm focuses on enhancing precision by effectively identifying
key features within the emotional data. By applying this method, we have achieved a remarkable
accuracy of 94%. The unique structure of LFP enables it to optimize the classification process, dis-
tinguishing emotional states with greater accuracy and providing more reliable real-time feedback.
This demonstrates the potential of LFP to outperform existing methods and significantly advance the
field of emotion classification [15]–[17]. This article presents the proposed method, the Learning
Focal Point (LFP) algorithm, followed by the results and discussion section, where its performance
is compared to traditional methods. The conclusion summarizes the findings and explores future
applications, particularly in emotion detection for online education.

2. The Proposed Method

2.1. Dataset

The dataset used in this study is from the ”Representation Learning Challenges: Facial Expres-
sion Recognition (FER) Challenge” on Kaggle. The main objective of this challenge is to classify
facial expressions into various emotion categories, which is critical for applications such as emotion
recognition in human-computer interaction and affective computing. The dataset typically consists of
images that are labeled with one of several distinct emotion categories, including happiness, sadness,
anger, surprise, fear, disgust, and neutral. For our work, we leveraged this dataset to train our neural
network model [18]–[20].

Specifically, we utilized the ”Facial Expression Recognition 2013 (FER2013)” dataset, which is
commonly used in facial expression recognition tasks. This dataset contains 48×48-pixel grayscale
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images of human faces, where each image is associated with one of seven emotion labels. The
FER2013 dataset includes approximately 35,000 images, categorized into seven different emotional
states, providing a rich resource for training deep learning models to classify emotions accurately.
By using this dataset, we were able to build and evaluate a robust model capable of detecting and
classifying facial expressions in various emotional categories, ultimately improving the performance
of our emotion recognition system [21], [22].

2.2. Research Design and Implementation

Our emotion classification system, which analyzes facial expressions to determine emotional
states, consists of three primary modules, as illustrated in Fig. 1. The first module is responsible for
detecting and tracking the student’s face within video or image frames. It utilizes the OpenCV library,
a powerful computer vision tool, to identify and locate the face in real-time, continuously tracking the
face’s position and movement across frames. This ensures that the facial features remain accurately
identified, even when the student moves or changes facial expressions. The second module is based
on the Learning Focal Point (LFP) algorithm, which enhances the system’s ability to focus on the
most relevant facial regions for emotion classification. By returning the coordinates of key areas such
as the eyes, mouth, and eyebrows, the LFP algorithm extracts important facial regions that are critical
for detecting emotions, filtering out irrelevant information and allowing the system to concentrate on
expressive regions [23]–[26]. The third module calculates the weights of a neural network, which
is trained to recognize different emotional states based on the identified facial features. Using these
weights, the neural network classifies the facial expression into one of several emotion categories,
such as happiness, sadness, anger, or surprise. Together, these three modules work seamlessly to
provide an effective and efficient emotion classification system for various applications, such as online
education or virtual interactions, see Fig. 1.

Fig. 1. System architecture for emotion classification based on facial expressionst

2.3. Method

In this paper, we have utilized the LFP Architecture, designed to enhance the efficiency and
accuracy of data processing tasks. The architecture consists of three fundamental components: the
LFP Algorithm, which serves as the foundational framework for data extraction and manipulation; the
Selector, which aids in the precise identification and selection of relevant data subsets; and a dedicated
block of neural networks, employed for advanced learning and processing tasks. Together, these
components form a cohesive system that optimizes both data extraction and its subsequent analysis,
contributing to the overall effectiveness of the methodology proposed in this study [27]–[29].

Our method is based on a novel concept centered around coordinates. Specifically, we partition
each image into multiple sections and assign unique indices, referred to as coordinates, to each sec-
tion. These coordinates are crucial as they guide the selector in extracting the most relevant pixel
patches for analysis. As we see in the Fig. 2.
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Fig. 2. Flowchart of the methodology using coordinate-based image partitioning

Our classification method uses the Learning Focal Point (LFP) algorithm to identify key regions
in images for emotion recognition. Based on the Perceptron, LFP processes image datasets to high-
light essential features like facial expressions and landmarks for accurate emotion classification. LFP
then determines the coordinates of these critical regions, such as the eyes, mouth, and eyebrows, iso-
lating the most relevant information for analysis and improving classification accuracy. The flowchart
below (Fig. 3) illustrates the LFP algorithm’s systematic approach to image analysis, feature extrac-
tion, and data processing, highlighting its efficiency in emotion classification.

Fig. 3. Flowchart of the Learning Focal Point (LFP) algorithm: a visual guide to image analysis and feature
extraction

The Learning Focal Point (LFP) algorithm starts by dividing each image in the dataset into
distinct regions, creating smaller subdatasets, each with a unique coordinate index. This segmentation
allows the algorithm to focus on specific parts of the image for targeted feature extraction [30], [31].

The algorithm then trains a perceptron model on each subdataset, allowing it to learn key patterns
and features within the images. Afterward, the log-loss (a) is calculated for the training of each
subdataset [32]–[34].

Log-Loss = − 1

N

N∑
i=1

C∑
c=1

yi,c log(pi,c) (a)
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Finally, the algorithm identifies the subdataset with the lowest log-loss and returns its coordi-
nates, highlighting key areas for emotion detection, such as facial features. This systematic approach
ensures efficient feature extraction, laying a strong foundation for emotion classification [35], [36].

In conclusion, the Learning Focal Point (LFP) algorithm functions similarly to a pre-training
step, enabling the calculation of Log-Loss by extracting the essential patches from the original data.
What sets this method apart from others, such as Principal Component Analysis (PCA), is that instead
of simply returning a reduced set of data or transformed features, the LFP algorithm identifies and
provides the coordinates of the most critical patches within the data. This focus on the ”effective” or
key regions ensures that only the most relevant information is retained, which enhances the precision
of emotion classification and feature extraction. Unlike methods like PCA, which may lose inter-
pretability by compressing the data into abstract components, LFP directly highlights the significant
regions for further analysis, making it a more targeted and effective approach [37]–[39].

In more detail, the LFP algorithm starts with a dataset where each row represents an image,
including its pixel values and label, as shown in Fig. 4. It performs an initial estimation of latent
factors, which are iteratively updated during training to improve accuracy until the model converges,
ensuring precise predictions [40]–[42].

Fig. 4. A dataset containing pixel values and target labels for each image: a comprehensive overview of image
data representation

The first step in the Learning Focal Point (LFP) algorithm is to partition each image into distinct
regions, as shown in Fig. 5. This segmentation divides the image into groups of columns, each with
a unique coordinate index, allowing for more targeted analysis of key features. By organizing the
image into smaller sections, the LFP algorithm focuses on the most relevant parts, improving feature
extraction and classification accuracy.

Next, the LFP algorithm generates subdatasets by applying techniques like filtering or sampling
to isolate important areas of the data. These subsets provide a refined view of the original dataset,
allowing for more focused exploration of specific features or patterns. This approach enhances the
flexibility of the analysis, as different subsets can be used to test various hypotheses, leading to more
precise insights and robust conclusions. The process of creating and utilizing these subdatasets is
visually illustrated in the Fig. 5, showcasing the segmentation and subsequent analysis [43], [44].

Each subdataset is individually trained using the perceptron model. This step is essential for
enabling the perceptron to learn and identify the key features within the images that are crucial for ac-
curate classification. Once the model has been trained, the Log-Loss is computed for each subdataset,
and the coordinates with the minimum Log-Loss are selected [45].

The Selector block refines data extraction by using the coordinates identified by the Learning
Focal Point (LFP) algorithm. These coordinates mark the most significant image regions, allowing
the Selector to focus on specific pixel patches. This approach enhances computational efficiency
by extracting only relevant visual information, reducing unnecessary data. After identifying key
patches, the Selector further processes them to optimize feature extraction, improving the accuracy of
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classification. By concentrating on critical areas, such as facial expressions or textures, the Selector
maximizes the effectiveness of emotion classification. This process streamlines the data for deep
learning tasks, as shown in Fig. 6, which illustrates how the Selector enhances input precision for
final classification [46]–[48].

Fig. 5. Generating subdatasets for targeted data analysis and enhanced insights

Fig. 6. Optimized extraction of relevant pixel patches through coordinate-guided selection in the LFP
algorithm

The LFP algorithm is initially executed during the preprocessing stage to determine the foun-
dational coordinates that guide the subsequent selection of crucial image regions. These coordinates
serve as reference points for identifying the most relevant pixel patches within each image. However,
unlike the LFP algorithm, which runs once during preprocessing, the Selector operates dynamically
throughout both the training and testing phases. It continuously adapts to the current context, select-
ing the most informative pixel patches at each step of the learning process [49], [50]. This ensures
that the model consistently utilizes the most relevant data points, enhancing its ability to extract mean-
ingful features for classification. The dynamic nature of the Selector allows it to refine its selection
iteratively, improving the efficiency and accuracy of both model training and evaluation. To demon-
strate its effectiveness, we applied the LFP algorithm and Selector blocks to faces images, extracting
essential pixels for further analysis, as illustrated in the Fig. 7.
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Fig. 7. Workflow illustration of the selector during training and testing stages

The Selector is an algorithmic filter that extracts relevant pixel patches from an image based
on coordinates, optimizing neural network performance by focusing on significant features. After
applying the LFP algorithm, which identifies key feature points, the Selector filters out irrelevant
pixels, ensuring only the most crucial information is retained. These selected pixel coordinates are
passed to the neural network, allowing it to focus on relevant features during training and testing.
This targeted approach improves efficiency, accuracy, and overall network performance in image
processing tasks, as shown in Fig. 8.

Fig. 8. Training and testing phases using the Multilayer Perceptron (MLP) neural network

We implemented a Multilayer Perceptron (MLP) neural network for learning, structured with
four layers. The first layer consisted of 6,636 neurons, corresponding to the number of input pixels
used for initial processing and feature extraction. The final layer was designed with six neurons, each
corresponding to a specific emotion. To calculate the probability for each emotion, we employed the
Softmax function, which enabled the network to output the likelihood for each emotional class.

3. Result and Discussion

After reviewing the methods employed in this research, we present the results obtained using the
LFP algorithm and compare them with those from max pooling. The experiments were conducted
using the Facial Expression Recognition (FER) challenge database available on Kaggle. Two exper-
iments were performed, as shown in Fig. 6, to develop the models: in the first experiment, the LFP
algorithm was applied in a convolutional neural network (CNN), and in the second experiment, max
pooling was used. The performance of the models was evaluated using several metrics, including
classification accuracy (CA), precision, recall, F1 score, and ROC-AUC values. These performance
indices were automatically generated using the TensorFlow library [51]. Classification Accuracy
(CA) is a fundamental metric in AI that measures how well the model performs by determining the
proportion of correct predictions relative to the total number of predictions. It is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Where TP refers to True Positives, TN to True Negatives, FP to False Positives, and FN to False
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Negatives. While accuracy is essential, it might not fully capture model performance, especially with
imbalanced datasets, where it may be skewed by the majority class.

Precision is a metric used in classification tasks to measure the relevance of the positive predic-
tions. It calculates the ratio of true positive predictions to the total number of predicted positives. The
formula for precision is:

Precision =
TP

TP + FP
(2)

A higher precision value indicates that the model is effective in making correct positive predic-
tions, ensuring fewer false positives.

Recall, also known as sensitivity, measures the model’s ability to identify all relevant instances
within a dataset. It calculates the ratio of true positives to the sum of true positives and false negatives.
The formula for recall is:

Recall =
TP

TP + FN
(3)

A high recall indicates that the model captures most of the relevant instances, though it may
include false positives [56].

The F1 score is a balanced measure that combines both precision and recall into a single value.
It is particularly useful when class distributions are imbalanced. The F1 score is given by:

F1 Score = 2× Precision × Recall
Precision + Recall

(4)

This score provides a comprehensive evaluation of the model’s effectiveness by considering both
false positives (precision) and false negatives (recall).

ROC-AUC (Receiver Operating Characteristic - Area Under the Curve) is a metric commonly
used in binary classification to assess a model’s ability to correctly classify positive and negative
examples across various threshold values. AUC specifically measures the area under the ROC curve,
which plots the true positive rate (TPR) against the false positive rate (FPR). The formula for AUC is:

AUC =

∫ 1

0
TPR(f) dFPR(f) (5)

Where TPR is the True Positive Rate, and FPR is the False Positive Rate. A higher AUC score
indicates a better-performing model, as it signifies that the model is more adept at distinguishing
between the positive and negative classes.

We conducted two distinct experiments, as illustrated in Fig. 9, to evaluate the performance of
different methods in our facial expression recognition task. In the first experiment, we implemented
the LFP algorithm in combination with a neural network architecture, aiming to extract key features
from the input images and leverage these features to improve model performance. The LFP algorithm
is specifically designed to identify the most relevant pixel groups within the images, which are then
processed by the neural network for further analysis. In contrast, the second experiment used max
pooling, a more traditional approach, to reduce the spatial dimensions of the input features while
retaining the most important information.

The results of these experiments are summarized in Table 1, which clearly demonstrate the supe-
rior performance of the LFP algorithm in terms of classification precision. Specifically, the LFP-based
model achieved significantly higher precision, indicating that it was more effective in correctly iden-
tifying positive instances without misclassifying negative examples as positive. This highlights the
strength of the LFP algorithm, particularly in enhancing the accuracy of the model’s predictions by
focusing on the most relevant features in the image.
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Fig. 9. Training the Neural Network Using Key Features Selected by the LFP Algorithm

Furthermore, when comparing the results from the two experiments, we observed a noticeable
improvement in classification accuracy when the LFP algorithm was used. The accuracy of the model
in the first experiment, where the LFP algorithm was implemented, was higher by up to 10% com-
pared to the second experiment, which used only max pooling. This suggests that incorporating the
LFP algorithm into the neural network pipeline not only improves the precision of predictions but
also leads to a more accurate overall classification performance, providing a clear advantage over
traditional methods like max pooling [57].

The results presented in Table 1 demonstrate the superior performance of the LFP Algorithm
compared to Max Pooling across all five key evaluation metrics: Accuracy, Precision, Recall, F1
Score, and AUC. Specifically, the LFP Algorithm achieved an Accuracy of 0.931, outperforming
Max Pooling, which achieved 0.826, representing a significant improvement of 10.5%. In terms of
Precision, the LFP Algorithm recorded 0.931, while Max Pooling had a precision of 0.826, indi-
cating a better relevance in positive predictions with the LFP Algorithm. Similarly, for Recall, the
LFP Algorithm achieved 0.930, surpassing Max Pooling’s 0.825, showcasing better identification of
all relevant instances. The F1 Score for the LFP Algorithm was 0.930, compared to 0.824 for Max
Pooling, highlighting a more balanced performance in terms of both precision and recall. Finally,
in terms of AUC (Area Under the Curve), the LFP Algorithm reached an impressive 0.944, while
Max Pooling achieved 0.835, indicating superior model discrimination between positive and negative
classes with the LFP Algorithm. The LFP Algorithm outperforms Max Pooling in facial expression
recognition, showing up to a 10.5% improvement in Accuracy. It excels in Precision, Recall, and F1
Score, offering a balanced trade-off, and achieves an AUC of 0.944, indicating better class discrimina-
tion. These results confirm the LFP Algorithm as a more effective method for improving recognition
performance.

Table 1. Comparison of model performance: LFP algorithm vs. max pooling

Method Accuracy Precision Recall F1 Score AUC
LFP Algorithm 0.931 0.931 0.930 0.930 0.944

Max Pooling 0.826 0.826 0.825 0.824 0.835

Although the LFP algorithm requires time to identify the coordinates of essential pixel patches,
once this step is completed, the selection process during training or testing is significantly faster
than Max-Pooling. Unlike Max-Pooling, which recalculates with each data input, the LFP Selector
divides the image and directly retrieves the relevant patches based on the coordinates, streamlining
the process. This key advantage of LFP over other methods is crucial for improving both efficiency
and speed.

Finally, in this study, we utilized the widely recognized ”Facial Expression Recognition 2013
(FER2013)” dataset to demonstrate the effectiveness of the LFP algorithm. While our approach
showed promising results, it remains somewhat limited in real-world applications due to several fac-
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tors. These include challenges such as image quality, which can vary depending on factors like
lighting, resolution, and facial positioning, as well as the quality of the internet connection, which
can affect the speed and accuracy of data transmission and processing. These limitations highlight
the need for further refinement and optimization of the system before it can be effectively deployed in
practical scenarios. Nonetheless, our findings underscore the potential of the LFP algorithm, offering
a solid foundation for future improvements in emotion recognition.

4. Conclusion

This work demonstrates the effectiveness of the LFP Algorithm in classifying emotions through
facial expressions, enhancing personalized learning in our E-learning project. We explored its use in
modifying CNN architectures by replacing max and average pooling layers. In experiments, the LFP
Algorithm outperformed alternatives, achieving a 0.931 accuracy—10% higher than other methods.
After showcasing the LFP algorithm’s performance, our next step is to acquire images from real meet-
ings to assemble the best data and retrain our model. Additionally, we plan to create another solution
for meetings using the APIs of Google Meet, Microsoft Teams, and Zoom, aligning with our vision.
The promising results suggest that further advancements in machine learning could boost emotional
recognition and improve E-learning systems.
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