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 Acute Lymphoblastic Leukemia (ALL) is an aggressive hematologic 

malignancy that necessitates early and accurate diagnosis for improved 

therapeutic efficacy. Although it is a routine practice, the visual blood 

smear analysis is tedious and subject to human inaccuracies. This paper 

proposes a novel morphology-guided deep learning approach called 

Morphological Context Blocks (MCB)-HyperNet embedding 

morphological operations into a hybrid CNN architecture. The CNN 

architectures depend mainly on automatic learning through convolutive 

filters, so they miss crucial morphological features that distinguish 

between leukemic and normal cells. In this study, we propose a deep 

learning-based approach that directly incorporates morphological dilation 

and erosion in the deep learning data pipeline to exploit the potential of 

morphological feature extraction for our specific task, resulting in 

enhanced accuracy and reduced diagnostic costs, which ultimately can 

improve patient outcomes. In addition, the computational efficiency and 

modularity of the MCB-HyperNet framework facilitate easy adaptation and 

scalability to many other medical imaging tasks, such as the classification 

of various diseases, except the classification of leukemia.  We trained the 

proposed MCB-HyperNet on different image resolutions from the ALL 

dataset (168×168, 224×224, 256×256), different batch sizes (16 and 32), 

and also different training epochs (30, 35, 40, 45, 50) to get the best 

hyperparameter configuration. The MCB-HyperNet takes advantage of the 

strong feature extraction ability of ResNet and the light computing resource 

of MobileNetV3, ultimately obtaining 99.69% accuracy, 98.78% precision, 

99.49% sensitivity, 99.12% F1-score, and 99.78% specificity. This new 

integration greatly enhances the accuracy of early detection, minimizes 

diagnostic errors, and could have significant clinical and economic 

advantages. MCB-HyperNet is a mini CNN, so it shows a good balance 

between efficiency and accuracy, making scalability and extensibility 

possible in more medical imaging tasks. 
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1. Introduction  

Acute Lymphoblastic Leukemia (ALL) is an aggressive hematological malignancy most seen in 

children, necessitating both timely and accurate diagnosis to improve survival [1]-[5]. Diagnosing 

ALL is the classical procedure of microscopic lymphocyte blood smear images in which human 

experts check lymphocyte cell morphology and compare it with normal cells [6], [7]. In contrast, this 

process is time-consuming, human error-driven, and reliant upon the expertise of hematologists [8], 

[9]. The emergence of digital pathology and medical imaging Artificial Intelligence (AI) has opened 

applications for automated diagnostic models, significantly improving the efficiency and accuracy of 

diagnosing leukemia [10]-[12]. Deep learning, particularly Convolutional Neural Networks (CNNs), 

has achieved convincing performance in classifying blood smear images [13]-[15]. 

Nevertheless, traditional CNN-based architectures mainly depend on learning features using 

convolutional filters [16], [17]. In contrast, important structural and morphological features essential 

for distinguishing leukemic from normal cells are often neglected [18], [19]. In hematopathology, the 

analysis of morphology is an important step that enables the recognition of unique features, including 

cell size, shape, nuclear configuration, and margin contours [20], [21]. Classical image processing 

techniques like mathematical morphology implement dilation and erosion operations to boost the 

edges and identify abnormal cell structures [22]-[24]. Although effective, these operations have not 

been directly incorporated into deep learning models so far, restricting the capacity of CNN for 

maintaining fine morphological features. Deep learning-based methods for leukemia classification, 

like ResNet, VGG, and MobileNet, have shown strong performance [6], [13], [25]. However, they 

often fail to generalize across different blood smear samples, particularly with high intra-class 

variability in cell morphology. This is a limitation, as the state-of-the-art CNN-based classification 

methods are not robust in a few cases. This establishes the need for a model to help represent 

morphology by directly enforcing morphology informed priorities within the deep learning 

framework.  

However, to overcome such limitations, we present a Morphology-Guided Deep Learning 

Framework of ALL classification, which exploits Morphological Context Blocks into a hybrid CNN 

pipeline. Instead of being merely dependent on learned convolutional filters, our proposed model 

incorporates morphological operations, specifically dilation and erosion, deeper into the network 

structure for learning edge-based and shape-based features. ResNet is employed to mine deep 

hierarchically sparse features, while MobileNetV2 is utilized to efficiently mobilize memory 

bandwidths, maintaining the required high accuracy in a possibly least computationally weighted 

manner. The design of MCB-HyperNet is a new module with dilation expanding the bright area, 

erosion shrinking the dark area, and the morphological gradients focusing on the edges. In addition, 

incorporating a gating mechanism to the MCB-HyperNet enables it to adaptively determine the 

importance of different morphological features, allowing only the most relevant structural information 

to contribute to the classification process.  

Moreover, to address this gap, we propose MCB-HyperNet to directly embed a morphological 

feature learning mechanism in a deep network to improve classification performance without 

significantly compromising computational efficiency. As far as we know, this study is among the first 

to seamlessly incorporate mathematical morphology into the deep learning framework for BM image 

analysis, thus providing an effort to contribute towards AI-powered hematopathology. Such work has 

substantially contributed to a new landscape in AI-based leukemia classification by incorporating 

morphological priors into a CNN, providing greater accuracy, robustness, and interpretability. This 

work forms the basis for future morphology-aware medical AI models that could enable precise 

disease recognition in a range of medical imaging scenarios by linking the concepts of mathematical 

morphology to deep learning. 

Furthermore, Our contributions are summarized as follows: (i) A novel MCB-HyperNet 

architecture integrating morphological operations (dilation and erosion) within the CNN framework. 

(ii) A ResNet is used for deep hierarchical feature extractors, and MobileNetV3 is used for 
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computational efficiency in a hybrid implementation. (iii) Resulting unprecedented performance 

metrics with 99.69% accuracy, outperforming all current state-of-the-art methods.  

However, the inclusion of morphological operations comes with challenges and risks. The 

expanded number of morphological modules increases model complexity and can present an 

overfitting risk for training on smaller or less diverse datasets. In addition, pooling-based 

approximations of morphological dilation and erosion may also introduce artifacts or inaccuracies, 

potentially impeding the identification of subtle morphologies important for accurately classifying 

leukemia subtypes. Moreover, the generalization of such morphology-guided models to other clinical 

settings, where staining protocols, image resolutions, or slide preparations may differ, is a critical and 

still open question that has a bearing on their clinical applicability. 

Our study balances the trade-off between rate and performance by identifying these challenges. 

It shows that the MCB-HyperNet framework reaches a state-of-the-art accuracy while guaranteeing 

acceptable computational efficiency for real clinical applications. However, rigorous hyperparameter 

tuning and deliberate data augmentation procedures are implemented, to some extent improving the 

ability of the model to generalize and mitigating the aforementioned inherent shortcomings of the 

model. 

2. Related Works 

Deep learning and computational intelligence-based approaches for leukemia classification and 

detection, which have completely revolutionized the field of medical diagnostics, have become a hot 

research area [26]-[28]. Artificial intelligence and deep learning improvements made scientists create 

automated systems that greatly enhance classification performance [29]-[31]. All while minimizing 

the use of human participants. Leukemia is one of the various types of cancer; their early diagnosis 

can be lifesaving, especially in the case of ALL [12]. Conventional diagnostics, including blood smear 

examination and bone marrow aspirates, are labor-intensive, time-consuming, and subject to human 

errors [7], [12]. Consequently, computational models that utilize machine learning and deep learning 

algorithms have received considerable interest as they can be used to automate the detection process, 

improve accuracy, and reduce time to diagnosis [32]. Deep learning is one of the best approaches to 

leukemia classification, where blood smear images have been used for feature extraction using CNN 

and transfer learning [33], [34]. Pretrained CNNs have been used in some studies and achieved high 

classification accuracies [35]. Gokulkrishnan et al. [36] proposed ResNet-50 and ResNet-101 for ALL 

detection with blood smear images to classify the benign and malignant cells. Their system attained 

more than 98% precision, indicating the power of profound learning classifiers in exceptional 

hematology. Similarly, Kadhim et al. [37] Classifying AML via a multi-layer CNN architecture 

reported accuracies greater than 98% with enormous specificity and sensitivity, establishing the 

robustness of CNN architectures for distinguishing leukemic cells. Mohamed et al. [38] conducted a 

study in which a deep learning model was created to classify eight blood cancer types, including 

subtypes of AML and ALL. The performance of VGG16 and DenseNet-121 was compared, and the 

authors concluded that VGG16 gave the highest classification accuracy at 98.2%. 

Furthermore, Rejula et al. [39] presented a modified Adaptive Neuro-Fuzzy Inference System 

(ANFIS) model that combines neural networks and fuzzy logic to classify leukemia. It had high 

sensitivity and specificity and addressed some of the limitations of traditional classification. Feature 

optimization has been a critical component in minimizing computation costs without sacrificing 

classification accuracy for leukemia detection. Once again, choosing dependent and independent 

variables plays a huge role in making the model more efficient by eliminating redundancy and 

improving interpretability. Metaheuristic algorithms have been integrated into these research studies 

to select features and show better performance. Awais et al. [40] presented a nature-based optimization 

approach (deep-feature optimization) using the binary Grey Wolf Algorithm, with classification 

accuracy for ALL subtypes being 98.14%. Their approach reduced the feature vector size by 80%, 

keeping the important discriminative information but lessening the computational complexity. 

Another study by Awais et al. [41] proposed a new memetic deep feature optimization method 
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composed of a neural ensemble and a binary whale optimization algorithm. The computational model 

achieved a total accuracy of 99.15%, indicating the high classification potential, accompanied by an 

impressive reduction in feature vector size at 85%. The feature selection techniques demonstrate more 

accelerated convergence properties than classical optimization methods, allowing for their direct 

application in real-time leukemia detection systems.  

Most deep learning models are challenging to replicate, mainly due to their computational cost, 

which reminded researchers to investigate lightweight architectures to classify leukemia whilst 

maintaining their robustness. Batool and Byun [42] proposed an EfficientNet-B3-based model 

integrated with a depthwise separable convolutional block to improve classification performance and 

reduce the model size. Their lightweight deep learning model proved to be significantly efficient in 

detecting leukemia and suitable for practical applications in clinical settings, particularly in resource-

limited areas. Lalithkumar et al. [43] proposed a hybrid model that combines the Capsule Networks 

(CapsNet) elements and generalizes the improvement in classification accuracy while finding the 

balance between classification accuracy and interpretability. CapsNet's retention of spatial 

relationships in image data makes it especially useful for differentiating among leukemia subtypes. 

Ultra-light models are optimized for minimal memory footprint and computation time, making them 

a natural fit for deployment on mobile or edge-computing hardware where computation is a premium. 

Many researchers have adopted transfer learning for detecting leukemia, tuning their CNNs that have 

been pre-trained for extracting features followed by a classification module. Acquiring large, labeled 

datasets for leukemia detection can be problematic, so transfer learning allows models to be fine-

tuned from large image datasets to classify various leukemia types. Preanto et al. [44] Next, multiple 

pre-trained CNNs like InceptionV3, ResNet101, VGG19, DenseNet121, and MobileNetV2 were 

used for feature extraction. They achieved an accuracy of 87% as well after using feature selection 

techniques, including ANOVA, Recursive Feature Elimination (RFE), and Principal Component 

Analysis (PCA) to help classify the data. Their work emphasizes the importance of transfer learning 

to improve classification accuracy with small training databases. In addition, Tusar et al. [45] 

proposed an intelligent telediagnosis system for ALL detection using histopathological deep learning. 

Their model helps to facilitate remote diagnosis and telemedicine, as hematologists are not always 

available to those patients. This not-vein approach highlights the growing utilization of deep learning 

in remote healthcare and has implications for improving leukemia detection in underserved areas.  

Another promising approach is hybrid learning and ensemble models, which often involve 

combining several models to improve overall accuracy for leukemia classification. Rejula et al. [39] 

proposed, based on ANFIS, that combined neural networks and fuzzy logic and got 97.14% accuracy. 

The novel solution they proposed combined the advantages of both techniques and demonstrated 

efficacy in overcoming certain limitations of single-model classifiers. Similarly, Awais et al. [41] 

proposed an ensemble-based model that integrates GoogleNet CNN and 88-layer deep CNN, which 

could achieve state-of-the-art accuracy on B-ALL subtype classification at 98.69%. Their studies 

introduce an ensemble learning approach that considers multiple classifiers and addresses issues 

related to imbalanced datasets, which enhance robustness and ultimately allow for greater efficacy in 

real-world leukemia diagnosis. This showcases the hybrid potential outcome of fulfilling the 

reliability and generalization problem in classification. Tusar et al. [46] proposed an ALL subtype 

detection system, for which the authors employed deep neural networks (DNNs) classifiers to classify 

leukemia cells with an accuracy of 96.13%. Atteia et al. [47] introduced a hybrid feature-learning 

model utilizing Particle Swarm Optimization (PSO) in conjunction with PCA for blood cancer 

classification, resulting in a 97.4% accuracy. Rehman et al. [25] Deep learning-based segmentation 

methods for ALL detection, achieving 97.78% accuracy due to the high performance of CNN-based 

classification models. However, based on previous research, the morphology-guided deep learning 

method we proposed in this work characterized a new feature design of the structures corresponding 

to the data for CNN by introducing MCB. Although convolutional filters would explicitly teach 

convolutional models, this inherently applies morphological operations (dilate and erode), raising 

edge and deduction researchers for blood smear images.  
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3. Methodology 

This study presents the MCB-HyperNet Deep Learning Framework for ALL classification with 

MCB in a hybrid ResNet and MobileNetV3 architecture.  

3.1. Dataset Description 

The ALL dataset comprises 3,256 Peripheral Blood Smear images from 89 patients [48], [49]. 

The images were labeled in four classes: Benign, Early Pre-B, Pre-B, and Pro-B. The data was split 

into training, validation and testing parts (80%, 10%, and 10%, respectively). Fig. 1 Displays sample 

images from the ALL dataset. Nevertheless, we believe the dataset will be useful for training our 

proposed models for automated diagnosis to classify the dataset. 

    

Fig. 1. Sample images, from left to right, Benign, Early Pre-B, Pre-B and Pro-B [48], [49] 

Next, we will provide a complete view of how our proposed MCB-HyperNet extract feature 

works. 

3.2. Feature Extraction, Morphological Operations, and Model Architecture 

In this subsection, we will go through the MCB-HyperNet computational flow step by step. The 

MCB-HyperNet stage transforms the input feature maps by applying conventional operations, 

morphological operations, pooling, and fusion mechanisms. 

At the beginning, the input image (𝑖𝑚) has the shape of: 

 𝑖𝑚 ∈  ℝ𝐻,𝑊,𝐶 (1) 

Where 𝐻, 𝑊, 𝐶 denote the height, width, and number of channels, which are 3 channels, respectively. 

The image pixels are normalized between zero and one. 

The ResNet block represents the first stage of MCB-HyperNet. ResNet is used to extract 

hierarchical, deep-level sparse features using (2).  

 ℱ𝑟𝑒𝑠 =  𝜎 (𝐵𝑁(𝑊2 ∗  𝜎(𝐵𝑁(𝑊1 ∗ 𝑖𝑚 + 𝑏1)) + 𝑏2)) + 𝑖𝑚 (2) 

Where 𝑊1, 𝑊2 denote to the trainable kernels (3×3 filters), 𝑏1, 𝑏2 denote the bias terms, 𝐵𝑁 denote 

the Batch Normalization, and 𝜎(. ) denote the Rectivaed Learning Unit (ReLU) activation function of 

channels, respectively. The output of ResNet at this stage remains the same spatial size 𝐻, 𝑊 but has 

more feature channels. 

 ℱ𝑟𝑒𝑠 ∈  ℝ𝐻,𝑊,64 (3) 

The proposed MCB-HyperNet improves feature extraction using morphological operations 

(dilation and erosion), which are approximated by max and min pooling operations. The Dilation 

operation is a morphological operation that allows us to permeate the image. 

 𝔇1(𝑖𝑚) =  max
(𝑖,𝑗)∈𝒩(𝑥,𝑦)

𝑖𝑚(𝑖, 𝑗) (4) 
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Where 𝑖𝑚(𝑖, 𝑗) represents the input feature map, 𝒩(𝑥, 𝑦) represents the local neighborhood with 

(𝑘, 𝑘) kernel size, and 𝔇1(𝑖𝑚) represents the output of the dilated operation.  

The dilation operation can be implemented through deep learning utilizing MaxPooling with a 

stride of 1. 

 𝔇1(ℱ𝑟𝑒𝑠) =  𝑀𝑎𝑥𝑃𝑜𝑜𝑙2𝐷(ℱ𝑟𝑒𝑠, 𝑃𝑜𝑜𝑙𝑆𝑖𝑧𝑒 = 𝑘, 𝑆𝑡𝑟𝑖𝑑𝑒 = 1, 𝑃𝑎𝑑𝑑𝑖𝑛𝑔 = same) (5) 

Conversely, erosion ℰ1(𝑖𝑚) is the opposite operation that reduces the bright spots and increases 

the dark areas. It is calculated via min pooling that negative MaxPooling can approximate. 

 ℰ1(𝑖𝑚) =  min
(𝑖,𝑗)∈𝒩(𝑥,𝑦)

𝑖𝑚(𝑖, 𝑗) (6) 

Since deep learning does not have min pooling, we approximate it using negative MaxPooling. 

 ℰ1(ℱ𝑟𝑒𝑠) =  𝑀𝑎𝑥𝑃𝑜𝑜𝑙2𝐷(−ℱ𝑟𝑒𝑠, 𝑃𝑜𝑜𝑙𝑆𝑖𝑧𝑒 = 𝑘, 𝑆𝑡𝑟𝑖𝑑𝑒 = 1, 𝑃𝑎𝑑𝑑𝑖𝑛𝑔 = same) (7) 

The gradient ℱ𝑀𝐶𝐵1 that highlights the edges is calculated as follows:  

 ℱ𝑀𝐶𝐵1 = 𝔇1(ℱ𝑟𝑒𝑠) −  ℰ1(ℱ𝑟𝑒𝑠) (8) 

The gradient output at this stage remains the same spatial size 𝐻, 𝑊 but has more feature channels. 

 ℱ𝑀𝐶𝐵1 ∈  ℝ𝐻,𝑊,64 (9) 

Furthermore, we integrate MobileNetV3, a lightweight CNN that down samples the image while 

extracting meaningful features. MobileNetV3 is used to refine the extracted features using depthwise 

separable convolutions utilizing 10 to 13. 

 ℱ𝐷𝑊 =  𝐷𝑒𝑝𝑡ℎ𝑊𝑖𝑠𝑒𝐶𝑜𝑛𝑣2𝐷(𝔇𝑀𝐶𝐵1, 𝑊𝑑𝑤) (10) 

 ℱ𝑃𝑊 =  𝑃𝑜𝑖𝑛𝑡𝑊𝑖𝑠𝑒𝐶𝑜𝑛𝑣2𝐷(ℱ𝐷𝑊, 𝑊𝑝𝑤) (11) 

 ℱ𝑆𝐸 =  𝑆𝐸(ℱ𝑃𝑊) (12) 

 ℱ𝑚𝑜𝑏 =  𝜎(ℱ𝑆𝐸) (13) 

Where 𝑊𝑑𝑤 represents the input feature map, 𝑊𝑑𝑤 represents the local neighborhood with (𝑘, 𝑘) 

kernel size, and 𝑆𝐸(. ) represents the output of the dilated operation. The dilation operation can be 

implemented through deep learning utilizing MaxPooling with a stride of 1. 

The gradient output at this stage reduces the resolutions 𝐻, 𝑊 into 𝐻𝑑 , 𝑊𝑑. 

 ℱ𝑚𝑜𝑏 ∈  ℝ𝐻𝑑,𝑊𝑑,576 (14) 

Where 𝐻𝑑 =  𝑊𝑑 = 6 for input 168×168 and 𝐻𝑑 =  𝑊𝑑 = 8 for input 244×244 and 256×256. 

The dilation operation can be implemented through deep learning utilizing MaxPooling with a 

stride of 1. 

 𝔇2(ℱ𝑚𝑜𝑏) =  𝑀𝑎𝑥𝑃𝑜𝑜𝑙2𝐷(ℱ𝑚𝑜𝑏, 𝑃𝑜𝑜𝑙𝑆𝑖𝑧𝑒 = 𝑘, 𝑆𝑡𝑟𝑖𝑑𝑒 = 1, 𝑃𝑎𝑑𝑑𝑖𝑛𝑔 = same) (15) 

Since deep learning does not have min pooling, we approximate it using negative MaxPooling. 

 ℰ2(ℱ𝑚𝑜𝑏) =  𝑀𝑎𝑥𝑃𝑜𝑜𝑙2𝐷(−ℱ𝑚𝑜𝑏, 𝑃𝑜𝑜𝑙𝑆𝑖𝑧𝑒 = 𝑘, 𝑆𝑡𝑟𝑖𝑑𝑒 = 1, 𝑃𝑎𝑑𝑑𝑖𝑛𝑔 = same) (16) 

The gradient ℱ𝑀𝐶𝐵2 that highlights the edges is calculated as follows:  

 ℱ𝑀𝐶𝐵2 = 𝔇2(ℱ𝑚𝑜𝑏) −  ℰ2(ℱ𝑚𝑜𝑏) (17) 
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The gradient ℱ𝑀𝐶𝐵2 output at this stage remains the same spatial size  𝐻𝑑 , 𝑊𝑑. 

 ℱ𝑀𝐶𝐵2 ∈  ℝ𝐻𝑑,𝑊𝑑,576 (18) 

We apply the MaxPooling in order to align the ℱ𝑟𝑒𝑠 and ℱ𝑀𝐶𝐵1 feature maps with ℱ𝑚𝑜𝑏 and ℱ𝑀𝐶𝐵2. 

 ℱ𝑟𝑒𝑠_𝑑 =  𝑀𝑎𝑥𝑃𝑜𝑜𝑙2𝐷(ℱ𝑟𝑒𝑠, 𝑃𝑜𝑜𝑙𝑆𝑖𝑧𝑒 = (𝐻/𝐻𝑑 , 𝑊/𝑊𝑑)) (19) 

 ℱ𝑀𝐶𝐵1_𝑑 =  𝑀𝑎𝑥𝑃𝑜𝑜𝑙2𝐷(ℱ𝑀𝐶𝐵1, 𝑃𝑜𝑜𝑙𝑆𝑖𝑧𝑒 = (𝐻/𝐻𝑑 , 𝑊/𝑊𝑑)) (20) 

Once all the features are aligned, we connect them using (21). 

 ℱ = 𝑐𝑜𝑛𝑐𝑎𝑡(ℱ𝑟𝑒𝑠_𝑑 , ℱ𝑀𝐶𝐵1_𝑑, ℱ𝑚𝑜𝑏 , ℱ𝑀𝐶𝐵2) (21) 

All feature maps at this stage have: 

 ℱ ∈  ℝ𝐻𝑑,𝑊𝑑,1280 (22) 

Finally, A fully connected (FC) layer and a SoftMax classifier predict the ALL subtype using the 

probability distribution over the classes 𝒫(𝑦) [50]. 

 𝒫(𝑦) =  concat(𝑊ℱ +  𝑏) (23) 

This framework explicitly extracts morphological features that conventional CNNs, such as cell 

boundaries, nuclear texture and edge details, may not maintain. Fig. 2 displays the methodology for 

ALL disease classification.  

 

Fig. 2. Methodology for ALL classification 

Furthermore, Fig. 3 illustrates the proposed CMB-HyperNet. 

3.3. Scalability and Potential Pitfalls 

Scalability, especially concerning resource-constrained clinical settings, needs thorough 

consideration. Despite powerful computing efficiency from leveraging MobileNetV3, MCB-

HyperNet is still more demanding than simpler architectures dedicated to deployment in very 

resource-constrained scenarios like mobile or edge-computing devices. Thus, future works should 

thoroughly compare multilayered approaches with lighter-weight architecture or other hybrid models 

to analyze performance vs resource usage trade-offs and real-world deployability. Another important 

consideration is how well the model will generalize to the variability seen in real-world data. This is 

because blood smear images in clinical practice have common staining inconsistencies, illumination 

variation, and imaging artifacts, potentially hindering morphological feature extraction accuracy. 

Even so, while data augmentation methods used in this paper, including random rotations, flips, and 

changing the brightness/contrast and other factors, alleviate this problem to some extent, the inherent 

challenges that arise with this limited and very variable, uncontrolled clinical datasets remain. Hence, 

the empirical robustness and generalization ability of MCB-HyperNet still rely on the proper data 

curation and the right augmentation strategies. Moreover, hybridizing ResNet and MobileNetV3 

architectures with MCB in a CNN layer introduces complexity trade-offs for the models. This shows 
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the ability to compensate different aspects of building a model (dimensional feature extraction quality 

(ResNet), computational resource efficiency (MobileNetV3)) but, after all, this can be a sign of 

increasing the complexity of the model and adding a factor of problems with overfitting, especially 

on lower dimensional or unbalanced datasets. While extensive hyperparameter tuning and validation 

offer some assurance against this concern, robust empirical nuance on larger multi-center datasets 

would be critical to determining our approach's scalability and generalization boundaries. 

 

Fig. 3. The proposed MCB-HyperNet Blocks (a) ResNet Block, (b) MCB (1, 2) Blocks, (c) MobileNetV3 

Block, and (d) Squeeze and Excitation (SE) Block 

4. Proposed Method 

In order to find the optimal hyperparameter configuration, we trained the proposed MCB-

HyperNet on various image resolutions, batch size and training epochs using the ALL dataset. The 

ALL dataset is divided into training, validation, and testing 80:10:10. The data treatment aimed to 

optimize classification performance accuracy, precision, sensitivity (recall), F1-score, and specificity. 

4.1. MCB-HyperNet Performance Evaluation 

To examine the influence of diverse hyperparameters, we assessed performance based on 

different image resolutions (168×168, 224×224, 256×256), different batch sizes (16 and 32), and also 

different training epochs (30, 35, 40, 45, 50). Performance was evaluated using accuracy, precision, 

recall (sensitivity), F1-score, and specificity. Multiple data augmentation methods are applied to the 

input images before training MCB-HyperNet to augment its generalization ability and reduce 

overfitting. Since blood smear images may have differences in color intensity, illumination and angle, 

augmentation also guarantees that the model extracts robust and invariant features. The augmentation 

methods used are random rotations (±15°) to reflect the varying orientations of blood smear, horizontal 

and vertical flipping to enhance dataset diversity, and changes of brightness and contrast to 

accommodate variations in staining intensity among different samples.  

Moreover, image rescaling, which normalizes pixel values from [0, 255] to [0, 1], is performed 

to ensure that the dataset complies. These transformations are applied during training, enabling the 
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model to observe variations of the identical samples and consequently enhancing its capacity to 

generalize to unseen data. Examples of augmented images used during training are shown in Fig. 4.  

 
Fig. 4. Augmented images used in training 

We analyzed the impact of different hyperparameters on classification performance. 

Furthermore, the experimental results offer insight into the effects of distinct values for 

hyperparameters, namely image resolution, batch size, and epochs of training in the behavior of the 

MCB-HyperNet model when making the classification of leukemia. However, each performance 

metric trends differently based on those, as illustrated in Fig. 5, Fig. 6, Fig. 7, Fig. 8, Fig. 9. 

 
Fig. 5. Model accuracy across different hyperparameter configurations 

The trend across epochs in terms of accuracy indicates that as we move towards more training 

epochs, our classification performance tends to increase, which is expected. The best accuracy of 

99.69% was achieved on the image resolution of 256×256, the batch size 32, and 50 epochs. The 

accuracy decreased for the lower resolutions (168×168), illustrating that the image's details improve 

the model's learning. A larger batch size (32) consistently outperformed even batch size 16, implying 
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that larger batch sizes help in better generalization. We noticed that with a greater number of epochs, 

the accuracy of the networks improved progressively; however, some fluctuations were observed, 

especially in the lower-resolution images. 

 
Fig. 6. Model precision across different hyperparameter configurations 

Precision, which measures the model's ability to classify positive cases correctly, exhibited a 

similar pattern concerning accuracy. The maximum precision of 98.78 is obtained by 256×256 

resolution, 32 batch sizes, and 50 epochs. Precision was consistent across all configurations, although 

batch size 32 usually performed better than batch size 32. This suggests that epoch learning is more 

in-depth and that feature extraction is better due to the smaller batch size. In addition, precision is of 

utmost importance in medical diagnosis, focusing on minimizing false positives, and these results 

strongly indicate this model's utility. 

 
Fig. 7. Model sensitivity across different hyperparameter configurations  
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Sensitivity (recall), which quantifies the model's ability to detect true positive cases, was better 

for cases with higher image resolution and longer training. The highest recall value of 99.49% was 

achieved using 256×256 resolution, batch size 32, and 50 epochs. We found that lower resolutions 

(168×168) diminished sensitivity, likely owing to loss of critical image detail. Because recall is 

critical in medical applications where failure to identify a positive case can be injurious, these 

findings validate that the model can correctly identify more leukemia-positive cases with more 

training epochs and resolution. 

 
Fig. 8. Model F1 score across different hyperparameter configurations  

Similar to the overall trend with improved resolutions and longer training, the F1-score, which 

combines precision and recall, also improved. An F1 score of 99.12% was achieved at resolution 

256×256, batch size 32, and 50 epochs. This metric guarantees that false positives and false negatives 

are both reduced. The replicated F1 scores across different epoch configurations indicate that the 

model is well-optimized, with no major signs of overfitting. 

 
Fig. 9. Model specificity across different hyperparameter configurations  
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Fu th  m   , sp c f c t , wh ch m  su  s th  m d  ’s  b   t  t   d  t f      t v  c s s 

accurately, progressively improves with higher resolutions and additional training. The highest 

specificity, 99.78%, was achieved with the same best-performing configuration, including resolution 

256×256, batch size 32, and epochs 50. These high specificity values show that the model can 

minimize false positives, a crucial aspect of medical diagnosis where false alarms can lead to undue 

anxiety and unwarranted treatments for patients. 

4.2. Comparison with Relevant Literature  

In this subsection, we present experimental results to evaluate the performance of our model. 

We evaluate classification accuracy over multiple metrics, such as the confusion matrix, that give us 

insights into class-wise performance and misclassification. We also look at misclassified samples to 

identify patterns of errors and possible difficulties encountered by the model. Fig. 10 presents the 

training and validation accuracy and loss over 50 epochs. 

 
Fig. 10. MCB-HyperNet monitoring accuracy and loss during  

Our access for 50 epochs shows the training, validation accuracy, and loss graphs. The accuracy 

plot further shows that with the training loss decreasing close to 0 in the beginning epoch, the training 

accuracy increases rapidly and stabilizes at around 15 epochs with 100% accuracy. Validation 

accuracy shows a similar trend but can be erratic in the early epochs before converging around 100%. 

The model achieves the highest validation accuracy of 1.0000, meaning it correctly classifies all 

validation samples at some epochs. 

We can further affirm this fact with the loss plot. Steady training gradually smoothens and 

consistently indicates that the model is learning. In contrast, the validation loss varies widely in the 

early epoch and stabilizes at a lower value. These variations indicate instability in generalization, 

which an imbalanced dataset, batch diversity, or a high learning rate in the first few epochs can cause. 

Although some individual spikes of increases in validation loss can be correlated to instances where 

the model thinks it has classified an image one way, this trend indicates that if the process is left on, 

eventually, the model finds a strong decision boundary. MCB-HyperNet test set confusion matrix. 

Fig. 11 shows the proposed MCB-HyperNet test set confusion matrix. Diagonal values represent 

correctly classified samples, while the off-diagonal values represent misclassifications. 

The model has high classification performance, with only two misclassifications in 325 samples. 

Exploring feature importance and further dataset augmentation might allow for this domain to be 

tuned so we can accurately predict it. Fig. 12 displays the two misclassified samples. 

The precision and recall for Early, Pre, and Pro classes are perfect, 100%, while there is still 

some confusion between the Benign and Early classes, and small improvements can be made to reduce 

this. Finally, Table 1 displays the comparative results of our model against baseline approaches. 

As shown in Table 1, the comparative matrices of classification algorithms and accuracy indicate 

that our proposed MCB-HyperNet model considerably outperforms the previous state-of-the-art 
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methods regarding accuracy, sensitivity, F1-score, and specificity. Our model results in an accuracy 

of 99.69%, the best among all the models compared. The closest competitor reported by Awais et al. 

resulted in 98.69% accuracy, which is 1% worse than our approach. Recent models such as 

Gokulkrishnan et al. and Kadhim et al. do well, but none outperform the MCB-HyperNet accuracy 

level. MCB-HyperNet also has a high precision of 98.78%, showing low false positive rates apart 

from accuracy. However, Atteia et al. demonstrated the highest precision (99.30%).  

 
Fig. 11. MCB-HyperNet test set confusion matrix  

 
Fig. 12. Misclassified samples  

Table 1.  Classification performance comparison with relevant literature 

Author Year Accuracy Precision Sensitivity F1-score Specificity 
Rehman et al. [25] 2019 97.78% - - - - 

Atteia et al. [47] 2023 97.40% 99.30% 96.60% 98.93% - 

Gokulkrishnan et al. [36] 2023 98.62% 98.75% 98.5% 98.75% - 

Kadhim et al. [37] 2023 98.15% 96.00% 94.68% 95.24% 98.87% 

Batool and Byun [42] 2023 96.81% 97.27% 97.87% 97.57%  

Mohamed et al. [38] 2023 98.10% - - - - 

Awais et al. [40] 2024 98.69% - - - - 

Awais et al. [41] 2024 98.14% 98.14% 98.11% 98.14% - 

Tusar et al. [45] 2024 97.00% 97.00% 96.00% 96.00% - 

Lalithkumar et al. [43] 2024 96.00% 96.88% 96.00% 96.50%  

Our proposed MCB-

HyperNet 
2025 99.69% 98.78% 99.49% 99.12% 99.78% 
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Nevertheless, their overall performance (97.40%) is lower than our model, indicating that their 

approach may face difficulty generalizing. In addition, MCB-HyperNet has the best sensitivity of 

99.49%, which indicates its ability to detect TP cases while minimizing FN cases. In contrast, 

Gokulkrishnan et al. reported 98.5% sensitivity, which, though high, was lower than the performance 

of our model. 

MCB-HyperNet achieved the highest F1-score, 99.12%, compared to other approaches, which 

indicates a better balancing of precision and recall. While Atteia et al. achieved 98.93%, their lower 

accuracy indicates that their model is less robust than ours. Moreover, our model achieves the highest 

specificity (99.78%), resulting in very low false positive rates. The only other models that showed 

specificity were Kadhim et al. at 98.87%, still below our approach. The MCB-HyperNet performs 

best on all classification evaluation metrics compared with all models. The model obtains significant 

accuracy, sensitivity, and specificity. However, the precision and F1-score are also high. These 

improvements showcase the power of our demonstrated methodology and architectural innovations, 

establishing MCB-HyperNet as the new state-of-the-art classification network. 

Finally, The MCB-HyperNet method proposed in this work achieves an impressive accuracy of 

99.69%, sensitivity of 99.49%, and specificity of 99.78% performance in ALL classification, 

surpassing that of the existing best models. Combining morphological operations with a hybrid CNN 

architecture allows improved classification results to be achieved through the morphological features 

that traditional convolutional layers would otherwise omit. The in-depth theory behind perfect 

learning and loss/accuracy curves, along with visual representations of misclassified examples and 

confusion matrices, only highlight how robust and generalizable the model is with hyper-tuning and 

additional data showing its promise. 

4.3. Limitations 

Even though the proposed MCB-HyperNet framework performance is promising, it has some 

inherent limitations we explicitly recognize. The main methodological limitation is the approximation 

used to compute morphological operations (dilation and erosion) with pooling operations suitable for 

deep learning. Firstly, there are issues using negative MaxPooling as an approximation of erosion, 

such as excess artifacts or loss of fine-scale features. These features are especially important when 

differentiating the subtle morphological differences between ALL subtypes. While this approximation 

greatly reduces computation costs and simplifies integration with CNN architectures, it can potentially 

lose the fine-tuned or more subtle difference in morphological features. 

5. Conclusion 

In this study, we propose MCB-HyperNet, a new deep learning framework to classify ALL using 

hybrid CNN architecture exploiting morphological operations. Although conventional approaches 

based on an ensemble of CNNs heavily depend on learned convolutional filters, our model 

complements them with morphological p    s’ dilation and erosion to refine features retaining the 

shapes and contours necessary for proper leukemia classification. The incorporation of ResNet enables 

MCB-HyperNet to learn deep hierarchical features while adopting MobileNetV3 optimizes it for 

computational efficiency, thus ensuring the overall performance is accurate, robust, and interpretable 

for hematopathological analysis. It was found through well-defined hyperparameter tuning that the 

best configuration was the image size was 256×256 pixels, the batch size was 32, and the training 

epoch was 50, where the best performance metrics with an accuracy of 99.69%, a sensitivity of 

99.49%, a specificity of 99.78% and a precision of 98.78%. MCB-HyperNet outperforms several 

state-of-the-art leukemia classification methods. 

Moreover, comparing the most recent deep learning models demonstrates MCB-HyperNet's 

advantage over them concerning classification performance and reliability. The present study forms 

part of a novel approach to AI-powered hematopathology by bridging start-of-the-art image 

processing methods and contemporary deep learning tools by wrapping the morphological operations 

in the deep learning pipeline. Morphology-aware features increase the model's generalization potential 
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on varied blood smear samples, decreasing errors and improving clinical applicability. This work 

builds upon the use of morphology-guided AI in medical imaging. It demonstrates shape-based 

potential that can be generalized to other aspects of hematological imaging and pathologies that other 

models can address. MCB-HyperNet also shows competitive performance in ALL classification, 

generalization and deployment ability, which remains challenging. Future research efforts should 

scale datasets, improve the efficiency of models, and strengthen clinical integration. With the 

restructuring of AI development in this area, morphology-guided deep learning could transform AI-

powered hematopathology and enable worldwide to be more accurate, accessible, and automated 

leukemia diagnostics. 
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