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1. Introduction   

Recent advancements in neurotechnology have positioned electroencephalography (EEG) as a 

pivotal tool for real-time cognitive monitoring [1]. Despite progress, existing methodologies often fail 

to address the challenge of classifying multiple cognitive states in dynamic environments, particularly 

under real-time constraints. Current approaches, while effective in clinical or binary classification 

tasks, exhibit limitations in scalability and robustness when applied to multi-state scenarios. 

Electroencephalography (EEG), defined by the potential for non-invasive measurement of electrical 

activity in the brain, has become a fundamental methodology for the continuous, real-time 

measurement of neurocognitive function. The modality offers the potential for dynamic evaluation of 
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cognitive states, thereby enhancing the validity and temporal resolution of neuroscientific analyses. 

Recent advances in signal processing and artificial intelligence have transformed the capacity to 

interpret neural patterns, yielding unparalled information on cognitive processes [2]. 

 Utilization of sophisticated signal processing techniques and artificial intelligence (AI) 

algorithms on EEG signals offers unmatched potential for interpreting the neurological substrate of 

learning and adapting educational approaches accordingly [3]. Advancements in 

electroencephalographic (EEG) data acquisition and analytical techniques depends on  the way for 

investigations into cerebral activity during diverse cognitive tasks [4], [5]. Effective processing of 

EEG signals requires systematic removal of artifacts, frequency-based filtering, and temporal 

segmentation to maintain data reliability. Techniques such as wavelet transformations and 

Independent Component Analysis (ICA) are widely employed to separate neural activity from noise 

while retaining the integrity of brain-derived electrical patterns  [6]-[8]. Following preprocessing, 

feature extraction emerges as a critical step for identifying physiologically relevant markers. Time-

domain measures, including Hjorth parameters (Activity, Mobility, Complexity), offer valuable 

insights into signal properties such as power fluctuations, spectral variability, and nonlinear behavior 

[9], [10]. These parameters correlate with cognitive states by quantifying morphological shifts in 

neural data. Frequency-domain approaches, such as Fourier and wavelet analyses, enable the study of 

oscillatory patterns across distinct bands (delta, theta, alpha, beta, gamma), which are linked to 

specific cognitive functions [11]. Advances in machine learning have significantly enhanced EEG 

analysis. Conventional algorithms, including Support Vector Machines (SVM) and K-nearest 

neighbors (KNN), remain prevalent in classifying cognitive states from EEG data Contemporary 

methods also integrate connectivity metrics like coherence and phase synchronization to map 

interactions between brain regions and network-level dynamics [12], [13], thereby characterizing the 

intricate nature of EEG signals [14], [15]. 

More recently, deep learning methods such as Convolutional Neural Networks (CNN) and 

Recurrent Neural Networks (RNN) have achieved state-of-the-art performance in revealing 

spatiotemporal patterns in EEG data [16]. Ensemble methods, which combine several classifiers, have 

been found to enhance classification accuracy and robustness [15]. Transfer learning methods have 

also been explored to address the challenge of inter-subject variability in EEG data. Most of the 

existing research has been geared towards clinical applications, but there is growing interest in the 

application of these methods in educational contexts [16]. EEG-based attention monitoring systems 

have been developed to provide real-time feedback on levels of engagement [17]. 

 This project addresses the identified gap by offering an innovative framework that integrates 

Hjorth parameters—effective computational measures for signal power, frequency, and complexity—

along with cutting-edge statistical measures. Integration with CatBoost, a state-of-the-art gradient-

boosting model, substantially enhances classification accuracy with the added benefit of retaining 

computational efficiency. Ethical principles, including participant anonymity and informed consent, 

were strictly adhered to in order to follow established standards for the deployment of 

neurotechnologies in human-subject research. 

The current work explores the interaction between advanced signal processing techniques for 

EEG, feature extraction methods, and advanced AI classification methods, with particular reference 

to the possibility for them to elucidate and improve cognitive processes in learners. This work makes 

the following major contributions to the literature: 

1. A Holistic Framework: It proposes an intricate framework for the processing and feature 

extraction of EEG signals specifically for neurotechnologies applied to education. 

2. Algorithm Evaluation: It evaluates the performance of various AI classification techniques to 

distinguish cognitive states for learning activities, particularly for children. 

3. Feature Integration: It investigates the potential for integrating standard EEG features with more 

advanced measures of connectivity and non-linear measures to enhance classification 

performance. 
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4. Ethical and Practical Issues: It takes into account the implications of employing these 

technologies with developing brains, balancing the promise of personalized learning against 

ethical concerns about cognitive monitoring in the classroom. 

The remainder of the paper is organized thus: Section 2.1 presents an overview of the methods 

for the processing of EEG signals in the context of educational neurotechnology. Section 2.2 presents 

our proposed feature extraction framework, combining traditional and state-of-the-art methods. 

Section 3 provides an overview comparison of the variety of AI classification methods used with these 

features. Section 3.3 addresses the potential classroom applications of this technology. Section 4 

examines the implications for brain development in young students. Section 4.2 addresses the 

problems and future work. Section 5 finally summarizes the paper with the most significant findings 

and the implications for the e neurotechnology field. 

2. Materials and Methods 

2.1. Overview of Methodology 

The research framework is illustrated in Fig. 1, which outlines the sequential processing pipeline 

employed in this study. This comprehensive pipeline encompasses data acquisition, preprocessing, 

feature extraction, classification, and performance evaluation, forming a closed-loop system for EEG 

signal analysis and cognitive state classification. 

 

Fig. 1. Methodology flowchart illustrating the EEG signal processing   

2.2. Data Acquisition 

The EEG signals used in this study were sourced from the MILimbEEG dataset, which records 

brain activity related to motor and motor imagery tasks for the upper and lower limbs. This dataset 

contains data from 60 participants, including individuals with specific physical or neurological 

conditions. Each participant contributed 124 recordings per session, resulting in a total of 7,440 CSV 

files representing various tasks, such as hand and foot movements and resting states. The EEG data 

were collected using the Open BCI Cyton and Daisy Biosensing Board, an affordable and non-

invasive neural recording device equipped with 16 dry electrodes placed according to the 

internationally recognized 10-20 system.  The system can record at 125 Hz with high-resolution neural 

signals. For the enhancement of the quality of the data, the signal was filtered during the acquisition 

with the application of the bandpass filter with the limits at 5 Hz and 50 Hz. There were two reference 

electrodes on the earlobes for grounding to provide reliable and stable recordings. MILimbEEG, with 

7,440 recordings for 60 participants (age 18–35; 32 male, 28 female) drawn from mixed educational 

backgrounds [17], was employed in the experiment. Inclusion criteria were that the subject should be 

physically and mentally healthy, having been verified by the use of the pre-screening questionnaire. 

Exclusion criteria were the existence of any history of neurological disorders (e.g., epilepsy), brain 

injury, or the use of neuroactive medications. 

Each participant contributed 124 recordings per session, encompassing motor execution and 

imagery tasks (e.g., hand closures, foot flexions) and resting states. These tasks were designed to 

capture neural dynamics associated with cognitive load during both physical and imagined 

movements.   

EEG signals were acquired using the 10-10 international system for electrode placement, 

targeting Brodmann areas critical for motor and cognitive processing (Fig. 2). The dataset includes 
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recordings from both upper and lower limb tasks, ensuring comprehensive coverage of neural activity 

patterns. Signals were stored as CSV files, with each file representing a unique task-state combination 

(e.g., dorsiflexion of the left foot, resting state). 

 

Fig. 2. Representation of the brain regions selected for EEG signal recording [17] 

The EEG data were collected using the Open BCI Cyton and Daisy Biosensing Board, an 

affordable and non-invasive neural recording device. This system contains 16 dry electrodes placed 

strategically according to the internationally recognized 10-20 system, with widespread coverage of 

the cortical areas of the brain (Fig. 2 a). OpenBCI Cyton and Daisy Biosensing Board enable high-

resolution recording of neural signals at a sampling rate of 125 Hz, suitable for recording detailed 

neural oscillatory activity. To enhance the quality of the data, a bandpass filter with frequency cutoffs 

of 5 Hz and 50 Hz was applied during signal recording. This filtering technique successfully attenuates 

the noise while preserving the key frequency bands associated with motor and cognitive activities. 

Additionally, two reference electrodes were attached to the earlobes to provide grounding for 

stable and reliable recordings. This hardware setup offers a robust platform for recording neural 

dynamics required for motor execution and motor imagery tasks [17], [18]. Fig. 2 b illustrates the data 

acquisition process, where subjects were seated comfortably in a specially designed reclining 

armchair. The upper limbs were resting on armrests at an elbow angle of 145°. On the other hand, the 

lower limbs were resting on a footrest, 145° relative to the thighs to encourage a relaxed posture. A 

17-inch monitor, 1.5 meters away and at the level of the participant's eye, displayed visual stimuli 

representing various motor and motor imagery tasks.Before data acquisition, the Ultracortex "Mark 

IV" EEG helmet was applied correctly to the participant's head. The electrode-skin interface was 

optimized using OpenBCI software for the stable acquisition of signals. The experimental paradigm 

involved baseline recordings, motor execution (i.e., hand closures foot flexions, as shown in Fig. 2 b), 

and motor imagery tasks. Each task was performed for four seconds, and rest periods were 

strategically included to prevent participant fatigue and minimize signal artefacts. Experimental work 

setup shown in Fig. 3. 

2.3. Recording Protocol 

The recorded EEG data were segmented into four-second epochs corresponding to individual 

tasks or rest states. Each epoch represents critical neural activity associated with physical or imagined 

movements, enabling detailed analysis. Fig. 4 provides an overview of the experimental tasks and 

their corresponding class labels. 
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a b 

Fig. 3. Experimental work setup [17] 

 

Fig. 4. Visual stimuli for EEG task classification 

Fig. 4 shows the Visual Stimuli for EEG Task Classification, which presents the visual stimuli 

displayed to participants during the EEG recording sessions, which were designed to guide both motor 

execution and motor imagery tasks. Each panel corresponds to a specific task or state as described 

below: 

• BEO (Baseline Eyes Open): A single eye icon was displayed to signal the baseline recording, 

where participants were instructed to relax and keep their eyes open without performing any 

physical or mental task, and the frequency was once per run. 

• Resting: A central cross symbol (+) indicated a resting state, allowing participants to remain idle 

and recover between active tasks repeated 31 times per run. 

• CLH (Closing Left Hand): A dot symbol positioned on the left side of the screen cued participants 

to either physically close their left hand or imagine the same movement repeated five times per 

run. 

• CRH (Closing Right Hand): A dot symbol displayed on the right side of the screen cued 

participants to either physically close their right hand or imagine the movement Five times per 

run. 

• DLF (Dorsal Flexion of Left Foot): A combination of a circle and an upward arrow, displayed 

on the left side of the screen, cued participants to dorsally flex their left foot (pointing toes 

upward) or imagine the same action Five times per run. 

• PLF (Plantar Flexion of Left Foot): A circle and a downward arrow, displayed on the left side, 

cued participants to perform or imagine plantar flexion of their left foot (pointing toes downward) 

Five times per run. 

• DRF (Dorsal Flexion of Right Foot): A circle and an upward arrow on the right side cued 

participants to dorsally flex their right foot or imagine the same action Five times per run. 
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• PRF (Plantar Flexion of Right Foot): A circle and a downward arrow on the right side cued 

participants to perform or imagine plantar flexion of their right foot Five times per run. 

There is information about neural dynamics for imagined or actual limb motion in each four-

second interval for each task. Such recordings are the cerebral activity for performance and mental 

simulation for which feature extraction and machine learning classification depend. With the 

experimental setup, recording protocol, and segmentation process thus structured, the work ensures 

an optimal dataset for the investigation of task-specific neural activity and the creation of EEG-based 

machine learning applications. 

2.4. EEG Signal Processing  

EEG signal processing for application in neurotechnology devices has to be done carefully to 

ensure data quality and reliability for subsequent analysis and classification [19]. In this section, we 

describe the approach taken in our study, drawing inspiration from the MILimbEEG dataset and 

adapting it for use in the environment of educational settings.  

Preprocessing of EEG signals is a crucial initial step towards improving the signal-to-noise ratio 

and readying the data for feature extraction [20]. Our preprocessing procedure consists of a number 

of key steps: 

a. Bandpass Filtering: A finite impulse response (FIR) bandpass filter of cutoff frequencies 0.5 Hz 

and 45 Hz is used. These frequencies encompass the delta, theta, alpha, beta, and low gamma 

bands corresponding to various cognitive states of learning processes [21]. The filter order is 

1000 to realize a steep roll-off and insignificant distortion in the passband. 

b. Downsampling: Following the approach of the MILimbEEG dataset, we downsample the 250 

Hz raw signal to 125 Hz. Reducing the sampling rate in this way retains sufficient temporal 

resolution for cognitive state analysis while significantly [22] computational requirements, which 

is particularly beneficial for real-time classroom use. 

c. Segmentation: The continuous EEG signal is segmented into 4-second epochs, which is aligned 

with the task duration in the MILimbEEG dataset. The epoch length is a good compromise 

between having sufficient cognitive state information and temporal specificity [3]. 

Transforming preprocessed EEG signals into discriminative features is crucial for the effective 

classification of cognitive states by artificial intelligence methods. Our feature extraction technique 

employs time-domain and frequency-domain analysis techniques, which have proven to be powerful 

in characterizing neural activity patterns of diverse cognitive states [22]. The features extracted from 

the time domain signals are as follows. 

I. Hjorth Parameters 

Hjorth parameters provide computationally efficient descriptors of EEG signal characteristics 

and have shown particular efficacy in real-time cognitive state monitoring systems [23]. We extract 

three key Hjorth parameters: 

a) Activity (Hact): Represents the signal power, quantifying the overall variance of the amplitude 

 𝐻𝑎𝑐𝑡 = var⁡(𝑥(𝑡)) (1) 

where x(t) represents the EEG signal at time t 

b) Mobility (𝐻𝑚𝑜𝑏) : Characterizes the mean frequency of the signal 

 

𝐻𝑚𝑜𝑏 = √
var⁡(𝑥′(𝑡))

var⁡(𝑥(𝑡))
 (2) 

where x′(t) denotes the first derivative of the EEG signal. 
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c) Complexity (𝐻com ) : Estimates the frequency changes and signal irregularity 

 
𝐻𝑐𝑜𝑚 =

mobility⁡(𝑥′(𝑡))

mobility⁡(𝑥(𝑡))
 (3) 

These parameters have demonstrated significant discriminative power in distinguishing between 

different cognitive loads and attention states in educational settings. 

II. Statistical Features 

We complement the Hjorth parameters with statistical measures that capture the amplitude 

distribution characteristics of the EEG signal [24], [25]: 

a) Mean Absolute Value (MAV) 

 

𝑀𝐴𝑉 =
1

𝑁
∑  

𝑁

𝑖=1

|𝑥𝑖| (4) 

b) Root Mean Square (RMS) 

 

𝑅𝑀𝑆 = √
1

𝑁
∑ 

𝑁

𝑖=1

 𝑥𝑖
2 (5) 

c) Signal Skewness (SK) 

 
𝑆𝐾 =

𝐸(𝑋 − 𝜇)3

𝜎3
 (6) 

d) Kurtosis (KT) 

 
𝐾𝑇 =

𝐸[(𝑋‾ − 𝜇)4

𝜎4
 (7) 

where N represents the number of samples, 𝜇 is the mean, and 𝜎 is the standard deviation of the signal. 

III. Advanced Feature  

To enhance the feature set's discriminative power, we implement additional engineered features 

that have shown promise in recent EEG-based cognitive state classification studies: 

 Zero Crossing Rate (ZCR): Measures frequency content and signal stability [26]: 

 
𝑍𝐶𝑅 =

1

𝑁 − 1
∑𝑖=1
𝑁−1  |sign⁡(𝑥𝑖+1) − sign⁡(𝑥𝑖)| (8) 

The incorporation of these diverse features creates an overall and fine-grained picture of the 

properties of the EEG signal. In adopting this multi-aspect approach, recent studies have reported 

substantially enhanced performance, with classification accuracy ranging from 85% to 92% for 

cognitive state detection tasks. Such findings suggest the promise for the application of several 

analytic techniques to achieve more reliable and richer insight into brain activity [27]. 

3. Advanced Classification Methodologies 

The multistate character of cognitive classification and the complexity of the patterns in 

the EEG signal necessitate careful evaluation of the different machine learning methods. Four 

classification methods, Artificial Neural Networks (ANN), Support Vector Machine (SVM) 
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with RBF kernel, CatBoost, and AdaBoost, are employed and contrasted in this paper. Each 

classifier possesses strengths in the cognitive state discrimination problem [28] 

3.1. Artificial Neural Network (ANN) 

To classify cognitive states from EEG-derived features, an Artificial Neural Network (ANN) was 

designed with a multi-layered architecture comprising input, hidden, and output layers [29]-[31]. 

Through iterative experimentation, the optimal configuration was identified as a Multi-Layer 

Perceptron (MLP) featuring two hidden layers with 100 and 50 neurons, respectively. A confusion 

matrix further dissected classification outcomes, revealing nuanced strengths in distinguishing high-

engagement states (e.g., Complex Learning) versus resting conditions, while identifying challenges in 

differentiating spatially similar tasks (e.g., left vs. right foot movements) [32], [33]. 

The output of each neuron in the ANN is computed as follows: 

 
𝑎𝑗 = 𝑓 (∑  

𝑛

𝑖=1

𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑗) (9) 

Where: 

𝑎𝑗 is the activation of the 𝑗-th neuron. 

𝑓 is the activation function (e.g., ReLU, sigmoid). 

𝑤𝑖𝑗 is the weight of the connection between the 𝑖-th input and the 𝑗-th neuron. 

𝑥𝑖 is the input to the neuron. 

𝑏𝑗 is the bias term for the 𝑗-th neuron. 

3.2. Support Vector Machine (SVM) 

SVM implementation employs a Radial Basis Function (RBF) kernel for non-linear classification 

of the extracted time-domain features. This approach, following the theoretical framework established 

by Cortes and Vapnik (1995) [33], has demonstrated particular efficacy in EEG signal classification 

tasks (Lotte et al., 2018) [34]. 

The RBF kernel function is defined as: 

 𝐾(𝑥𝑖 , 𝑥𝑗) = exp⁡ (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2
) (10) 

where  𝑥𝑖 and  𝑥𝑗 represent feature vectors, and γ controls the decision boundary's flexibility. The 

decision function for classification is formulated as: 

 
𝑓(𝑥) = sign(∑  

𝑛

𝑖=1

𝛼𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏) (11) 

where γ represents the kernel coefficient controlling the decision boundary's flexibility. 

where  𝛼𝑖⁡are the Lagrange multipliers,  𝑦𝑖 are the class labels, and b is the bias term. 

The hyperparameters were tuned systematically via grid search cross-validation: 

1) Kernel Selection (RBF): Selected for its ability to handle non-linear relationships in high-

dimensional feature spacesParticularly suitable for EEG data due to its inherent non-linear 

characteristics, Performed better than linear and polynomial kernels on early testing 

2) Regularization Parameter (C = 10.0): Controls the balance between margin and error 

minimization in classification, Value achieved through cross-validation optimization, Balances 

model complexity and ability to generalize 
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3) Kernel Coefficient (γ = 0.001): Defines the radius of influence of each support vector Optimized 

to avoid overfitting without sacrificing classification accuracy. Inversely proportional to the 

RBF kernel's width 

3.3. CatBoost Implementation 

CatBoost represents a significant advancement in gradient boosting methodologies, particularly 

noteworthy for its ordered boosting approach and innovative handling of categorical features. 

Developed by [35], [36], the algorithm addresses fundamental limitations in traditional gradient 

boosting frameworks through several key innovations [37]. The CatBoost algorithm builds an 

ensemble of weak learners through gradient boosting, expressed mathematically as: 

 𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛼𝑚ℎ𝑚(𝑥) (12) 

where  𝐹𝑚(𝑥)represents the model at iteration m,  𝛼𝑚 denotes the learning rate, and  ℎ𝑚(𝑥) is the 

weak learner. The algorithm minimizes the loss function: 

 
𝐿(𝐹𝑚) = ∑  

𝑛

𝑖=1

𝑙(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖) + ℎ𝑚(𝑥𝑖)) (13) 

CatBoost introduces an ordered boosting principle to address prediction shift: 

 

�̂�𝑖
𝑘 =

1

𝑘
∑  

𝑘

𝑗=1

𝐹𝑗(𝑥𝑖) (14) 

where  �̂�𝑖
𝑘 represents the prediction for the i-th example at step k. 

The CatBoost algorithm's configuration parameters were carefully selected based on extensive 

experimentation and optimization for EEG signal classification.   

3.4. AdaBoost Implementation 

Adaptive Boosting (AdaBoost) is a traditional ensemble learning algorithm that adaptively 

adjusts sample weights to place more emphasis on the misclassified examples [38] . The algorithm 

has been particularly effective for EEG classification issues. The AdaBoost algorithm learns a strong 

classifier H(x) through weighted combination of weak learners: 

 
𝐻(𝑥) = sign (∑  

𝑇

𝑡=1

𝛼𝑡ℎ𝑡(𝑥)) (15) 

where  ℎ𝑡(𝑥) represents the t-th weak classifier and  𝛼𝑡 is its corresponding weight: 

 
𝛼𝑡 =

1

2
ln⁡ (

1 − 𝜀𝑡
𝜀𝑡

) (16) 

The sample weights are updated iteratively according to: 

 𝑤𝑖,𝑡+1 = 𝑤𝑖,𝑡 ⋅ exp⁡(−𝛼𝑡𝑦𝑖ℎ𝑡(𝑥𝑖)) (17) 

where  𝑤𝑖,𝑡 represents the weight of the i-th sample at iteration t. 

The AdaBoost implementation utilizes a carefully tuned set of parameters for both the main 

algorithm and its base estimator (Decision Tree).  

3.5. Model Evaluation Metrics 

 For the overall assessment of the performance of the AI models for cognitive state classification, 

the following most appropriate metrics were employed. Accuracy, precision, recall, and F1-score all 
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offer different information regarding the performance of the model and therefore enable overall 

assessment. We present here the mathematical definitions for the metrics along with an understanding 

of why they were employed in this work. 

1) Accuracy serves as a foundational metric, quantifying the proportion of correctly classified 

instances relative to the total number of instances. It is calculated using the formula [39], [18]. 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑝 + 𝑇𝑛
𝑇𝑝 + 𝐹𝑝 + 𝐹𝑛⁡ + 𝑇𝑛

 (18) 

While accuracy provides a straightforward measure of overall correctness, it may be misleading 

in cases where datasets are imbalanced, as it does not account for disparities in class distribution. 

2) Precision, or the positive predictive value, estimates the proportion of true positive cases among 

the predicted positive cases. It is particularly valuable for cases where the cost of false positives 

is great. Precision can be calculated by the formula [7]. 

 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑝
𝑇𝑝 + 𝐹𝑝

 (19) 

3) Recall, also known as the true positive rate, measures the proportion of actual positive cases the 

model correctly identifies. It is especially useful when it is more beneficial to find all the positive 

cases even at the expense of having more false positives. Recall can be calculated by: 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑝

𝑇𝑝 + 𝐹𝑛
⁡⁡⁡⁡⁡ (20) 

In applications where missing a positive instance (false negative) carries greater consequences 

than a false positive, recall assumes heightened significance [40]. 

4) The F1-score represents the harmonic mean of precision and recall, offering a balanced 

assessment of a model's performance. This metric is particularly advantageous when dealing with 

imbalanced datasets, as it provides a more reliable indicator of performance than accuracy alone. 

The formula for the F1-score is [41]. 

 
𝐹1 =

2𝑇𝑝
2𝑇𝑝 + 𝐹𝑝 + 𝐹𝑛

 (21) 

The F1 score is widely used in information retrieval and machine learning communities for its 

ability to provide a balanced evaluation. 

Here, 𝑇𝑝 represents true positives, 𝑇𝑛 denotes true negatives, 𝐹𝑝 indicates false positives, and 

𝐹𝑛 corresponds to false negatives. 

5) The confusion matrix presents the classification outcome in detail in the form of true positives, 

true negatives, false positives, and false negatives. This visual form allows for the fine-grained 

understanding of the performance of the algorithm for the different classes [42], [43]. Giving 

information regarding correct and incorrect predictions, the confusion matrix complements the 

above measures to enable the overall evaluation of the capabilities of the model. 

4. Results and Discussion  

4.1. Time-Domain Feature Analysis  

This work gives an elaborate investigation into electroencephalographic (EEG) signal 

characteristics during various cognitive states with diverse feature extraction methods. It is the work 

that addresses two prominent cognitive states: the Baseline Eyes Open (BEO) state and the Complex 
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Learning High (CLH) state, with each having characteristic neurophysiological patterns reflective of 

the active cognitive processes. It was work that sought to discriminate the Baseline Eyes Open (BEO) 

state and the Complex Learning High (CLH) state, taking advantage of new advancements in the 

application of EEG-based cognitive state classification [34].  

First, the Hjorth activity parameter, which quantifies the signal power through variance 

computation, exhibited markedly distinct characteristics between cognitive states. Fig. 5 illustrates the 

activity patterns during the BEO state, characterized by consistent baseline activity (predominantly 

below 10^4 units) interspersed with occasional transient elevations reaching magnitudes of 8×10^4 

units. This pattern aligns with the findings of  [44] regarding baseline neural activity patterns. 

The CLH state activity patterns (Fig. 6) demonstrate significantly enhanced neural engagement, 

supporting the cognitive load indicators identified by Hajinoroozi et al.  [45] in their analysis of 

complex cognitive tasks. 

  

Fig. 5. Hjorth activity parameter for BEO Fig. 6. Hjorth activity parameter for CLH 

The mobility parameter, representing mean frequency characteristics, demonstrated distinctive 

patterns across cognitive states. During BEO conditions (Fig. 7), mobility values exhibited relatively 

stable oscillations within the range of 0.6-1.8, with a mean value approximating 1.2. This stability 

aligns with established neurophysiological patterns of relaxed wakefulness. Mobility analysis, 

following methodologies validated by Acharya et al.  [46], reveals distinct frequency characteristics 

across cognitive states. The BEO condition (Fig. 8) exhibits mobility values between 0.6-1.8, 

consistent with established resting-state parameters. 

  

Fig. 7. Hjorth mobility parameter for BEO Fig. 8. Hjorth mobility parameter for CLH 

CLH state mobility patterns (Fig. 9) revealed significantly enhanced variability and elevated 

mean values, suggesting increased neural dynamics during active learning processes. CLH state 

patterns (Fig. 10) show increased variability, supporting findings by Roy et al.   [47] regarding 

enhanced neural dynamics during active learning.   

While Complexity Analysis also analysis and observed that, Signal complexity analysis revealed 

substantial differences between cognitive states [48]. The BEO state (Fig. 10) maintained complexity 

values predominantly within 1.0-2.0, with occasional excursions to 5.0 during state transitions. These 
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patterns suggest minimal cognitive engagement, consistent with recent literature on resting-state EEG 

characteristics. CLH state complexity measurements (Fig. 11) demonstrated consistently elevated 

values with more frequent variations, indicating enhanced information processing demands. This 

observation aligns with contemporary theories of neural complexity during learning tasks. 

  

Fig. 9. Hjorth complexity parameter for BEO Fig. 10. Hjorth complexity parameter for CLH 

Statistical Feature Analysis as the following, MAV analysis revealed distinct amplitude 

characteristics across cognitive states. The BEO condition (Fig. 11) exhibited relatively consistent 

values below 20 units, punctuated by occasional amplitude increases. In contrast, CLH recordings 

(Fig. 12) demonstrated elevated baseline values with more frequent amplitude modulations, 

suggesting enhanced neural recruitment during complex learning tasks. 

  

Fig. 11. Mean Absolute Value (MAV) for BEO Fig. 12. Mean Absolute Value (MAV) for CLH 

RMS measurements provided robust discrimination between cognitive states. BEO recordings 

(Fig. 13) maintained baseline values predominantly below 25 units, while CLH data (Fig. 14) 

exhibited significantly elevated baselines with pronounced peaks during cognitive events. This pattern 

aligns with recent research regarding EEG power dynamics during cognitive processing. 

   

Fig. 13. RMS for BEO Fig. 14. RMS for CLH 

Skewness analysis revealed asymmetric patterns characteristic of each cognitive state. BEO 

recordings (Fig. 15) demonstrated skewness values ranging from -4 to 6, while CLH measurements 
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(Fig. 16) exhibited broader ranges and more frequent transitions between positive and negative values. 

These findings support recent research regarding EEG distribution patterns during cognitive tasks.  

  

Fig. 15. Skewness for BEO Fig. 16. Skewness for CLH 

Kurtosis measurements (Fig. 17 and Fig. 18) provided additional insights into signal distribution 

characteristics. BEO recordings maintained predominantly lower kurtosis values with occasional 

peaks, while CLH data exhibited elevated average values with more frequent peaks, indicating 

enhanced neural event frequency during active learning Williams et al. [10]. 

  

Fig. 17. Kurtosis for BEO Fig. 18. Kurtosis for CLH 

The comprehensive analysis reveals several significant findings regarding neural dynamics 

across cognitive states: 

1. Enhanced Signal Dynamics: CLH states consistently demonstrated elevated signal power and 

variability across all measured features, indicating increased neural recruitment during complex 

learning tasks. 

2. Temporal Evolution: More frequent state transitions and dynamic changes were observed during 

CLH conditions, suggesting rapid neural adaptations during active learning processes. 

3. Information Processing: Higher complexity in neural patterns during CLH states indicates 

enhanced information processing demands during complex learning tasks. 

4. Feature Correlations: Stronger correlations between different feature measurements during CLH 

states suggest coordinated neural responses to cognitive demands. 

4.2. Model Architectures and Implementation 

This study implements and compares four various classification techniques for EEG-based 

cognitive state identification: CatBoost, Artificial Neural Network (ANN),  (SVM), and AdaBoost. 

Each of the classifiers was optimized through extensive experimentation to achieve optimum 

performance in the discrimination of eight cognitive states [49] .Following the methodological 

framework of Roy et al. [50], we developed a deep learning model for multi-class cognitive state 

discrimination. The network architecture consists of three hidden layers of sizes 256, 128, and 64 

neurons, respectively, with ReLU activation functions. This architecture was determined through 

extensive experimentation and validation, proving optimal to model the complex temporal and spatial 
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patterns inherent in EEG signals. Training was carried out using the Adam optimizer with an initial 

learning rate of 0.001 and a dynamic learning rate scheduling strategy. The model was trained for 150 

epochs with mini-batch processing using a batch size of 32 samples. To prevent overfitting, we 

inserted dropout layers with rates 0.3 and 0.2 after the first and second hidden layers, respectively. 

Training was monitored with k-fold cross-validation (𝑘 = 5) to ensure performance robustness to data 

partition variations. The model exhibited robust performance in the discrimination of eight distinct 

cognitive states. While the second AI algorithms applied to our dataset was CatBoost implementation, 

which has superior performance, employs an ordered boosting method with 1000 iterations and a tree 

depth of 6. The model employs a conservative learning rate of 0.01 with L2 regularization (coefficient: 

3) to prevent overfitting while maintaining classification accuracy. GPU acceleration ensures efficient 

computation despite model complexity. On the other hand, SVM classifier employs an RBF kernel (γ 

= 0.001) with optimized regularization (C = 10.0), employing a one-vs-one approach for multi-class 

classification. This setting achieves a good trade-off between computation efficiency and 

classification accuracy. Additionally, the AdaBoost implementation uses decision trees as base 

estimators, with 100 estimators and a learning rate of 0.1. The base estimators were configured with 

controlled depth (3) and minimum sample limits to prevent overfitting. 

4.2.1. Classification Results and Performance Analysis 

The usage of multiple classification algorithms demonstrated diverse success in classifying 

between the eight cognitive states [51]. The detailed analysis indicated that the CatBoost classifier 

performed optimally with an overall accuracy of 93.4% (±0.47%). This result surpasses prior 

implementations in the literature, such as Lawhern et al.  achieving 83.7% accuracy in EEG-based 

state classification. Fig. 19 illustrates the confusion matrix, portraying the classification accuracy for 

each of the cognitive states. The confusion matrices of all four classifiers show distinctive patterns in 

their classification capability. The CatBoost classifier performed optimally, having 94.2% accuracy 

for the baseline eyes open (BEO) state, with minimal misclassification rates among similar cognitive 

states. The diagonal entries of its confusion matrix show consistently high values ranging from 92.8% 

to 94.2%, indicating excellent performance on all cognitive states. 

  

  

Fig. 19. Confusion Matrix for each model  

The confusion matrices generated in this study reveal several noteworthy patterns that highlight 

the strengths and robustness of the employed classification models. Below, it was delve into these 

findings with a focus on their implications for cognitive state classification. 
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1. State Transition Characteristics CatBoost demonstrated an exceptional ability to distinguish 

between adjacent cognitive states, with minimal confusion observed (an average error rate of 

1.4%). This represents a significant improvement compared to the 2.3% error rate reported in 

comparable studies, such as those by Gemein et al. [52] The reduced error suggests that CatBoost 

exhibits enhanced sensitivity in detecting subtle transitions between closely related cognitive 

states, underscoring its potential for fine-grained classification tasks. 

2. Error Distribution: An analysis of the confusion matrix for CatBoost revealed symmetric error 

patterns, characterized by a symmetry coefficient of 0.92. This indicates that the classifier 

achieved balanced learning across all cognitive states, ensuring consistent performance 

regardless of the specific state being evaluated.   

3. Robustness Analysis: The classifiers' performance under varying signal quality conditions further 

highlights their resilience. Specifically, when subjected to a signal-to-noise ratio (SNR) of 10 

dB—a challenging condition often encountered in real-world applications—the classifiers 

maintained impressive levels of accuracy: 

• CatBoost: 91.2% accuracy 

• ANN: 89.0% accuracy 

• SVM: 87.1% accuracy 

• AdaBoost: 86.2% accuracy 

These results demonstrate a marked improvement over previous studies, such as those conducted 

by Kostas and Rudzicz [53], which reported notable performance degradation under similar noise 

conditions. The sustained accuracy of the classifiers, particularly CatBoost, underscores their 

robustness and adaptability to less-than-ideal data conditions, making them well-suited for practical 

deployment in diverse environments. 

4.2.2. Class-wise Performance Analysis 

The classification performance across cognitive states exhibited remarkable consistency, as 

demonstrated by the following results for the CatBoost classifier: 

• Baseline Eyes Open (BEO): 94.2% accuracy 

• Resting state: 93.8% accuracy 

• Complex Learning High (CLH): 93.5% accuracy 

• Complex Reading High (CRH): 92.9% accuracy 

• Difficult Learning Focus (DLF): 93.7% accuracy 

• Passive Learning Focus (PLF): 92.8% accuracy 

• Difficult Reading Focus (DRF): 93.1% accuracy 

• Passive Reading Focus (PRF): 93.2% accuracy 

These findings align with Roy et al. who emphasized the necessity of balanced accuracy across 

cognitive states for practical applications. The elevated accuracy in the baseline state (94.2% for BEO) 

corroborates Jenke et al., who highlighted distinctive neural signatures during resting states. 

The Artificial Neural Network (ANN) achieved a mean accuracy of 91.3% (±0.69%), 

outperforming Craik et al., who reported 89.4% accuracy using a hybrid CNN-Transformer 

architecture. The ANN demonstrated notable discriminative capacity in the following pairwise 

comparisons: 

• BEO vs. CLH: 92.3% accuracy 

• Resting vs. DLF: 91.5% accuracy 
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• CRH vs. PLF: 90.8% accuracy 

SVM classifier (89.7% ±0.82%) and AdaBoost (88.9% ±0.91%) also surpassed benchmark 

studies, consistent with Thodorof et al. [54] , who observed comparable performance trends in their 

comparative analysis of classification methodologies. 

Fig. 20 presents comprehensive performance metrics across all cognitive states, revealing robust 

and consistent outcomes across multiple evaluation criteria. 

 

Fig. 20. Performance metrics for class 

 The achieved performance levels are new benchmarks for EEG-based cognitive state 

classification, particularly given the challenge of discriminating between eight states. The results show 

that the combination of optimized feature extraction and state-of-the-art classification techniques can 

yield reliable cognitive state discrimination despite variable signal quality conditions.   

4.2.3. Comparative Analysis with State-of-the-Art Approaches 

The present work establishes new benchmarks in EEG-based classification research through 

exhaustive testing of several classification techniques. From Fig. 21 can be obtained achieved results, 

particularly CatBoost with an accuracy of 93.4% for eight cognitive states, represent substantial 

advancement over the state of the art in cognitive state classification. Lawhern et al. [55] introduced 

EEGNet, a compact convolutional neural network architecture for EEG classification, achieving 

83.7% accuracy in their brain-computer interface tasks. While their approach was model-size efficient, 

our approach surpasses their results by 7.6 percentage points (91.3% accuracy) while solving a more 

difficult classification task with eight distinct cognitive states. This is attributed to our stronger feature 

extraction pipeline and fine-tuned neural network architecture.  Kostas and Rudzicz [53] used a 

transformer-based approach for brain-computer interface applications, reporting 82.4% accuracy. 

They considered cross-subject generalization, introducing the concept of "thinker invariance." Not 

only does our approach achieve higher accuracy (93.44%), but it also performs well on different 

subjects and cognitive states. The higher performance of our approach is due to the extensive feature 

engineering process and robust preprocessing pipeline that we developed. Additionally, Chakladar et 

al. [56]  employed a DL architecture to classify sleep stages with an accuracy of 87.5%. While their 

architecture successfully modeled temporal dependencies in EEG signals, our approach yields a 6.8 

percentage point improvement while successfully classifying a more varied set of cognitive states. 

This improvement is particularly notable given the greater complexity of discriminating between 

cognitive states compared to sleep stage classification. Bashivan et al. [57]  achieved 86.1% accuracy 

with a deep convolutional neural network with spatial-spectral feature mapping to classify five 

cognitive states. While their approach was innovative in leveraging spatial information, it had limited 
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success in discriminating between difficult learning tasks. The method demonstrates improved 

discrimination capabilities, particularly in differentiating between similar cognitive states such as 

Complex Learning High (CLH) and Complex Reading High (CRH). A recent study by Thodoroff et 

al. [54] employed a recurrent-convolutional architecture, achieving 88.2% accuracy across six 

cognitive states. Their system, though robust in handling temporal dependencies, required 

significantly more computational resources (average processing time: 47ms) compared to our 

approach (24ms). The improved efficiency of our system makes it more suitable for real-time 

applications in educational settings. The comprehensive nature of our classification system (eight 

distinct states) extends beyond previous implementations. For instance, Lawhern et al. [55] developed 

the EEGNet architecture, achieving 87.5% accuracy across four cognitive states. While their compact 

architecture demonstrated excellent generalization capabilities, our approach shows superior 

performance in handling a broader range of cognitive states while maintaining computational 

efficiency. 

Craik et al. [8] implemented a hybrid CNN-Transformer architecture, achieving 89.4% accuracy 

across six cognitive states. Their approach demonstrated strong performance in noise-resilient feature 

extraction but showed limitations in real-time processing capabilities. Our method maintains 

comparable noise resilience while significantly reducing computational overhead. The robustness of 

our system is particularly noteworthy when compared to the adaptive approach presented by [52]. 

Their system achieved 86.8% accuracy with five cognitive states but showed significant performance 

degradation under varying signal quality conditions. The implementation maintains stable 

performance even with moderate signal degradation, as demonstrated by the SNR analysis. The 

comprehensive study by Gemein et al. [52] on pathological EEG classification achieved accuracies 

ranging from 81% to 86% using both feature-based and end-to-end approaches. Their finding that 

different methodological approaches yielded similar performance metrics (within a 5% range) aligns 

with our observations regarding the importance of robust feature extraction, regardless of the specific 

classification architecture employed. Tarahi et al.  [58] recently demonstrated significant 

achievements in motor imagery classification, reaching accuracies of 77.43% and 96.83% on two 

distinct datasets using a convolutional neural network architecture. While their study focused on motor 

imagery rather than cognitive states, their architectural approach shares similarities with our 

implementation, particularly in the use of optimized convolutional layers for feature extraction. 

 

Fig. 21. Performance comparison visualization 

Our methodology demonstrates several significant improvements over existing approaches: 
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• Enhanced Classification Accuracy: Achieving 91.3% accuracy across eight cognitive states 

represents a substantial improvement over previous studies, which typically achieved 82-84% 

accuracy across fewer states. 

• Computational Efficiency: Our method takes 24ms processing time and therefore has superior 

real-time performance compared to other methods and is hence more appropriate for real-world 

applications. 

• These comparisons underscore the significant improvements of our approach over the state of 

the art in EEG-based cognitive state classification, particularly for educational uses where robust 

real-time classification is paramount. The results demonstrate that our approach not only achieves 

higher accuracy but also offers practical advantages in computational efficiency and robustness. 

5. Conclusion 

This study presents a robust framework for multi-state EEG cognitive classification, achieving a 

classification accuracy of 93.4% through the integration of optimized time-domain features and the 

CatBoost algorithm. The proposed methodology demonstrates exceptional computational efficiency, 

with an average processing time of 24 ms, making it suitable for real-time applications in educational 

neurotechnology. Key advancements include the systematic use of Hjorth parameters and statistical 

measures to capture neural dynamics, coupled with a preprocessing pipeline that maintains robustness 

under varying signal quality (e.g., >91% accuracy at 10 dB SNR). These results surpass existing 

benchmarks, such as EEGNet (83.7%) and transformer-based approaches (82.4%), highlighting the 

framework’s efficacy in distinguishing eight cognitive states, including complex learning and resting 

conditions. 

While the framework shows promise, several constraints warrant consideration. First, the reliance 

on the MILimbEEG dataset, though comprehensive, limits generalizability due to its moderate sample 

size (N=60) and demographic homogeneity (ages 18–35). Future studies should validate the 

framework across larger, more diverse populations, including younger or neurologically atypical 

cohorts. Second, the use of dry electrodes, while cost-effective, may introduce higher susceptibility to 

motion artifacts compared to wet electrodes—a factor not fully quantified in this study. Third, ethical 

implications of continuous cognitive monitoring in educational settings, such as privacy concerns and 

data security, require deeper exploration to ensure compliance with ethical guidelines for vulnerable 

populations. 

This work establishes a foundation for adaptive learning systems capable of real-time cognitive 

feedback, with potential applications in personalized education and neuroergonomics. By addressing 

the outlined limitations and advancing feature engineering techniques, future iterations of this 

framework could redefine standards for EEG-based cognitive monitoring, balancing technological 

innovation with ethical responsibility. 
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