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ABSTRACT

The purpose of this study is to recall the main concepts and definitions in
relation to the fractional calculus. In light of this overview, we will propose
a novel fractional version of the so-called Trapezoid method named by the
fractional Trapezoid method. Such a method will then be used to numeri-
cally solve the analog version of the initial value problems called fractional
initial value problem FIVPs. As consequences of the proposed numerical
approach, several numerical examples will be illustrated to verify the effi-
ciency of the proposed numerical approach.

This is an open access article under the CC-BY-SA license.

1. Introduction

Fractional calculus is a useful tool for simulating memory and genetic characteristics in a variety
of systems since it expands on standard calculus by allowing differentiation and integration to non-
integer orders [1]–[3]. By extending ideas like derivatives and integrals to fractional (non-integer)
orders, it offers fresh perspectives in disciplines like finance, engineering, and physics. Complex dy-
namical systems, viscoelastic materials, and anomalous diffusion are all explained within this math-
ematical paradigm. Its versatility and wide-ranging influence may be seen in its applications, which
span from signal processing to control theory [4]–[10]. Overall, a richer language for explaining
phenomena in the actual world is offered by fractional calculus [11].

Differential equations with fractional derivatives and initial conditions are the subject of frac-
tional initial value problems, or FIVPs. By including non-integer order derivatives, these problems
extend the scope of conventional starting value problems and allow for more precise modeling of
systems with memory effects [12]–[14]. Because fractional orders contribute complexity, solving
FIVPs calls for specific numerical and analytical techniques [15]. FIVPs are used in a wide range
of domains, such as economics, biology, and physics, to simulate the complexities of real-world pro-
cesses. It is essential to comprehend and resolve FIVPs in order to advance the use many scientific
and engineering applications of fractional calculus.

One numerical method for resolving initial value problems with ordinary differential equations
is the Trapezoid method. With more accuracy, it approximates the solution by splitting the region
under the curve into trapezoids rather than rectangles. This approach is implicit, which improves
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its stability, particularly for stiff equations, as it necessitates solving a system of equations at each
stage. It entails iteratively updating the answer while accounting for the function’s slope at both the
present and subsequent time steps. Although this approach is more computationally demanding than
other, more straightforward approaches like the Euler method, it provides a more favorable balance
between precision and stability, making it appropriate for a wide range of scientific and engineering
applications.

2. Basic Fundamentals

This section reviews several key definitions and preliminaries related to fractional calculus. This
would pave the way for the major findings later on.

Definition 2.1 Let α be a real non-negative number. Then Jα
a , defined on L1[a, b] where L1[a, b] is

the set of all functions such that their absolute values are integrable on [a, b], is given by [16]

Jα
a f(t) =

1

Γ(α)

∫ t

a
(t− w)α−1f(w)dw, a ≤ t ≤ b, (1)

which is called the Riemann-Liouville fractional-order integral operator of order α.

In what follow, we mention some properties of the Riemann-Liouville fractional-order integral oper-
ator:

1. Let m,n ≥ 0 and f ∈ L1[a, b]. Then we have Jm
a Jn

a f= Jm+n
a f .

2. For m,n ≥ 0, we have Jm
a Jn

a f= Jn
a J

m
a f .

3. For m,n ≥ 0, we have Jm+n
a f= Jm+n−1

a J1
af .

Definition 2.2 Let α ∈ R and r = ⌈α⌉. The operator Dα
a defined by

Dα
a f = DrJr−α

a f, (2)

is called the Riemann-Liouville fractional-order differential operator of order α.

Definition 2.3 Let α ∈ R and r = ⌈α⌉. The Caputo fractional derivative operator Dα
a is defined by

Dα
a f = Jr−α

a Drf. (3)

Definition 2.4 Let α ∈ R+ and r = ⌈α⌉ such that r − 1 < α ≤ r. Then the Caputo fractional-order
derivative operator of order α is given by [16]

Dα
a f(t) =

1

Γ(r − α)

∫ t

a
(t− τ)r−α−1f (r)(τ)dτ, t > a. (4)

In view of equation (4), the power rule property can be obtained as follows:

Dα
∗ t

p =

{
Γ(p+1)

Γ(p−α+1) t
p−α , r − 1 < α ≤ r, p > r − 1, p ∈ R

0 , r − 1 < α ≤ r, p ≤ r − 1, p ∈ N.
(5)

Theorem 2.5 (Generalized Taylor’s Formula) Suppose that Dkα
∗ f(x) ∈ C((0, b]), for k = 1, 2, · · ·

, n+ 1, where 0 < α ≤ 1. Then, we have

f(x) =
n∑

i=0

(x− 0)iα

Γ(iα+ 1)
(Diα

∗ f)(0+) +
(D

(n+1)α
∗ f)(ζ)

Γ((n+ 1)α+ 1)
x(n+1)α, (6)

Where 0 ≤ ζ ≤ x, ∀ x ∈ (0, b] [17].
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3. Fractional Trapezoid Method

This part will address the main contribution of our work by illustrating the derivation of the frac-
tional Trapezoid method. This would be carried out by deriving the fractional forward and fractional
backward formulas. For this purpose, we consider the following fractional initial value problem in
the Caputo sense:

Dαy(t) = f(t, y(t)), (7)

With initial condition
y(0) = y0. (8)

Here, we consider Dkα
∗ ∈ C(0, b] for k = 0, 1, 2, · · · , n + 1, where 0 < α ≤ 1. Then, we may use

the generalized Taylor method to expand f around x = x0 as follows:

f(x) =

n∑
i=0

(x− x0)
iα

Γ(iα+ 1)
Diα

∗ f(x0) +
(x− x0)

(n+1)α

Γ((n+ 1)α+ 1)
D

(n+1)α
∗ f(ξ). (9)

Where x ∈ (0, b] and 0 < ξ < b. In other words, we can have

f(x) =
(x− x0)

0α

Γ(0α+ 1)
D0α

∗ f(x0) +
(x− x0)

α

Γ(α+ 1)
Dα

∗ f(x0) +
(x− x0)

2α

Γ(2α+ 1)
D2α

∗ f(x0) + · · ·

+
(x− x0)

nα

Γ(nα+ 1)
Dnα

∗ f(x0) +
(x− x0)

(n+1)α

Γ((n+ 1)α+ 1)
D

(n+1)α
∗ f(ξ).

(10)

That is, we have

f(x) = f(x0) +
(x− x0)

α

Γ(α+ 1)
Dα

∗ f(x0) +
(x− x0)

2α

Γ(2α+ 1)
D2α

∗ f(x0) + · · ·+ (x− x0)
nα

Γ(nα+ 1)
Dnα

∗ f(x0)

+
(x− x0)

(n+1)α

Γ((n+ 1)α+ 1)
D

(n+1)α
∗ f(ξ)

(11)
Where x ∈ (0, b] and ξ ∈ (0, b).

3.1. Forward Fractional Euler Method

To solve the problem of fractional initial value problem (7)-(8), we divide the interval (0, b] as
0 = x0 < x1 < x2 < · · · < xn−1 < xn = b for which xi = x0 + ih, ∀i = 1, 2, 3, · · · , n and h = b

n .
In this regard, if the generalized Taylor formula (9) is employed to expand the function y(x) around
x = xi, we get

y(x) = y(xi) +
(x− xi)

α

Γ(α+ 1)
Dα

∗ y(xi) +
(x− xi)

2α

Γ(2α+ 1)
D2α

∗ y(ξ), (12)

for ξ ∈ (0, x). By substituting xi+1 in the equality above, we get

y(xi+1) = y(xi) +
(xi+1 − xi)

α

Γ(α+ 1)
Dα

∗ y(xi) +
(xi+1 − xi)

2α

Γ(2α+ 1)
D2α

∗ y(ξ), (13)

for ξ ∈ (0, x). In other words, we have

y(xi+1) = y(xi) +
hα

Γ(α+ 1)
Dα

∗ y(xi) +
h2α

Γ(2α+ 1)
D2α

∗ y(ξ), (14)

for ξ ∈ (0, x). Formula (14) is called the forward fractional Euler formula, which can be used to
obtain an approximate solution for the FIVP (7)-(8).
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3.2. Backward Fractional Euler Method

To derive the backward fractional Euler method, the generalized Taylor formula (9) is employed
again to re-expand the function y(x) about x = xi+1 as follows:

y(x) = y(xi+1) +
(x− xi+1)

α

Γ(α+ 1)
Dα

∗ y(xi+1) +
(x− xi+1)

2α

Γ(2α+ 1)
D2α

∗ y(ξ), (15)

for ξ ∈ (0, x). By substituting xi in the equality above, we get

y(xi) = y(xi+1) +
(−h)α

Γ(α+ 1)
Dα

∗ y(xi) +
h2α

Γ(2α+ 1)
D2α

∗ y(ξ), (16)

for ξ ∈ (0, x). This is equivalent to say that

y(xi+1) = y(xi) +
hα

Γ(α+ 1)
Dα

∗ y(xi+1)−
h2α

Γ(2α+ 1)
D2α

∗ y(ξ), (17)

for ξ ∈ (0, x). In fact, formula (17) is called the backward fractional Euler formula, which can be
also used to obtain an approximate solution for the FIVP (7)-(8).

3.3. Fractional Trapezoid method For Solving FIVP

The fractional Trapezoid procedure is a combination of the forward fractional Euler method and
the backward fractional Euler method. That is, by adding (14) and (17), we get

2y(xi+1) = 2y(xi) +
hα

Γ(α+ 1)
(Dα

∗ y(xi) +Dα
∗ y(xi+1)) . (18)

This gives

y(xi+1) = y(xi) +
hα

2Γ(α+ 1)
(Dα

∗ y(xi) +Dα
∗ y(xi+1)), (19)

for i = 1, 2, 3, · · · , n. Now, in light of the FIVP (7)-(8), we can get

y(xi+1) = y(xi) +
hα

2Γ(α+ 1)
(f(xi, y(xi)) + f(xi+1, y(xi+1))) , (20)

for i = 0, 1, 2, · · · , n. In fact, formula (20) is called the fractional Trapezoid formula, which can be
carried out to find an approximate solution to the FIVP (7)-(8) as well.

4. Stability Analysis

The resolution of a fractional differential equation is considered steady if a tiny perturbation
doesn’t cause deliverance from the solution. An approach of solving a fractional differential equation
numerically is stable if a small perturbation doesn’t cause the numerical solution to diverge without
bound. To discuss the stability analysis of the considered methods, we consider the following FIVP:

Dαy(t) = λy(t),

y(t0) = y0.
(21)

It should be noted here that the solution of the FIVP (21) is stable when α = 1 if Re(λ) ≤ 0.
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4.1. Stability of the Forward Fractional Euler Method

Consider we have the FIVP (21), then by implementing the forward fractional Euler technique,
we arrive at

yn+1 = yn +
hα

Γ(α+ 1)
f(tn, yn),

or

yn+1 = yn +
hα

Γ(α+ 1)
(λyn),

or

yn+1 =

(
1 +

λhα

Γ(α+ 1)

)
yn. (22)

This is the general explicit solution of the FIVP (21). In this regard, we can have the following states:

n = 0, y1 =

(
1 +

λhα

Γ(α+ 1)

)
y0

n = 1, y2 =

(
1 +

λhα

Γ(α+ 1)

)
y1 =

(
1 +

λhα

Γ(α+ 1)

)2

y0

n = 2, y3 =

(
1 +

λhα

Γ(α+ 1)

)
y2 =

(
1 +

λhα

Γ(α+ 1)

)3

y0.

...

In general, we can have

yn+1 =

(
1 +

λhα

Γ(α+ 1)

)n+1

y0. (23)

So, the solution is stable when
∣∣∣1 + λhα

Γ(α+1)

∣∣∣ ≤ 1 because if not,
(

i.e. if
∣∣∣1 + λhα

Γ(α+1)

∣∣∣ > 1
)

, then the
solution goes to ∞.

4.2. Stability of the Backward fractional Euler Method

The FIVP (21), using the backward fractional Euler technique, can be expressed by

yn+1 = yn +
hα

Γ(α+ 1)
f(tn+1, yn+1).

This implies that

yn+1 = yn +
hα

Γ(α+ 1)
(λyn+1) =

(
1− λhα

Γ(α+ 1)

)
yn+1,

or

yn+1 =

(
1

1− λhα

Γ(α+1)

)
yn.
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This solution represents an explicit solution of the FIVP (21). In light of this solution, we can have

n = 0, y1 =

(
1

1− λhα

Γ(α+1)

)
y0

n = 1, y2 =

(
1

1− λhα

Γ(α+1)

)
y1 =

(
1

1− λhα

Γ(α+1)

)2

y0

n = 2, y3 =

(
1

1− λhα

Γ(α+1)

)3

y0.

...

Generally, we can obtain

yn+1 =

(
1

1− λhα

Γ(α+1)

)n+1

y0.

Hence, the solution is stable if ∣∣∣∣∣ 1

1− λhα

Γ(α+1)

∣∣∣∣∣ ≤ 1,

or equivalently if ∣∣∣∣∣ 1

1− λhα

Γ(α+1)

∣∣∣∣∣ ≥ 1,

provided that λhα

Γ(α+1) ̸= 1.

4.3. Stability of the Fractional Trapezoid Method

Herein, we also consider the FIVP (21) and the fractional Trapezoid formula, which can be
re-expressed as

yn+1 = yn +
hα

2Γ(α+ 1)
(f(tn, yn) + f(tn+1, yn+1)) ,

or

yn+1 = yn +
hα

2Γ(α+ 1)
(λyn + λyn+1) ,

or (
1− λhα

2Γ(α+ 1)

)
yn+1 =

(
1 +

λhα

2Γ(α+ 1)

)
yn,

which implies that

yn+1 =

(
1 + λhα

2Γ(α+1)

1− λhα

2Γ(α+1)

)
yn.
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Consequently, the following states are obtained:

n = 0, y1 =

(
1 + λhα

2Γ(α+1)

1− λhα

2Γ(α+1)

)
y0

n = 1, y2 =

(
1 + λhα

2Γ(α+1)

1− λhα

2Γ(α+1)

)
y1 =

(
1 + λhα

2Γ(α+1)

1− λhα

2Γ(α+1)

)2

y0

n = 2, y3 =

(
1 + λhα

2Γ(α+1)

1− λhα

2Γ(α+1)

)3

y0.

...

In generally, we can have

yn+1 =

(
1 + λhα

2Γ(α+1)

1− λhα

2Γ(α+1)

)n+1

y0.

Herein, one can observe that the above solution will be stable if∣∣∣∣∣1 +
λhα

2Γ(α+1)

1− λhα

2Γ(α+1)

∣∣∣∣∣ ≤ 1,

Provided that λhα

2Γ(α+1) ̸= 1.

5. Illustrative Examples

In this part, we shall study three numerical examples, the first one is linear while the others are
nonlinear.

Example 5.1 Consider the fractional initial value problem that follows [18]:

Dα
∗ y(t) = y(t)− t2 + 1, 0 ≤ t ≤ 2, (24)

Under the initial condition
y(0) = 0.5. (25)

It is important to know that the exact resolution of the problem (24)-(25) is

y(t) = (t+ 1)2 − 1

2
et. (26)

Now, for the purpose of the obtaining an approximate solution to the problem (24)-(25) with the use
of fractional Trapezoid method, we should consider the following approximate formula:

z0 = 0.5,

zi+1 = zi +
hα

Γ(2α+ 1)
(f(ti, zi) + f(ti+1, zi+1)).

(27)

To apply on (27), we should first assume h = 0.2 and obtain consequently the term of the mesh-point
ti, which would be as

ti = a+ ih = 0.2i, i = 0, 1, 2, · · · , n.

Thus, by applying on formula (27) with considering the above observation, we can plot Fig. 1
and Fig. 2 shown below. This figure contains a numerical comparison between the exact solution

I. M. Batiha (Trapezoidal Scheme for the Numerical Solution of Fractional Initial Value Problems)



ISSN 2775-2658 International Journal of Robotics and Control Systems
Vol. 5, No. 2, 2025, pp. 1238-1253

1245

and the numerical solutions performed by the fractional Euler method and the fractional Trapezoid
approach.

To increase the numerical solution’s accuracy, a smaller step size of h = 0.02 is chosen. The re-
sulting approximate solution is plotted alongside the exact solution to provide a detailed comparison.
Fig. 3 demonstrates the close agreement between the numerical approximation using the fractional
Trapezoid method and the exact solution, highlighting the precision of the method when smaller step
sizes are employed shown in Table 1.

Fig. 1. Comparing numerical and exact solution for the FIVP (24)-(25) using the fractional Trapezoid method
with α = 1 and h = 0.2

Fig. 2. The absolute error between the numerical and exact solutions of the FIVP using the fractional
Trapezoid method with α = 1 and h = 0.2

To visualize the accuracy of the fractional Trapezoid method, the total discrepancy between the
numerical approximation and the precise solution is calculated and displayed in Fig. 4. This plot
highlights the behavior of the error over time, showcasing how the numerical solution closely tracks
the exact solution with minimal deviation.

The figure provides valuable insights into the effectiveness and precision of the fractional Trape-
zoid method when solving fractional initial value problems. To explore the impact of varying the
parameter α, the approximate solutions for the FIVP (24)-(25) are plotted for different α values. Fig.
5 illustrates how the numerical solutions change as α varies, demonstrating the sensitivity of the frac-
tional Trapezoid method to this parameter. By comparing these solutions with the exact solution, the
effect of α on the accuracy and behavior of the method is highlighted.

I. M. Batiha (Trapezoidal Scheme for the Numerical Solution of Fractional Initial Value Problems)
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Table 1. Absolute errors between the exact and the fractional Euler and Trapezoid solutions of problem
(24)-(25) for α = 1 and h = 0.02

t Fractional Euler method Fractional Trapezoid method
0 0 0

0.2 0.029298620919915 0.003298620919915
0.4 0.062087651179364 0.007167651179364
0.6 0.098540599804746 0.011698199804746
0.8 0.138749535753766 0.016993807753766
1.0 0.182683085770477 0.023171497610476
1.2 0.230130338631727 0.030362681076526
1.4 0.280626576577662 0.038713810360317
1.6 0.333355659802442 0.048386616217281
1.8 0.387022514193524 0.059557718459628
2.0 0.439687446214673 0.072417320347319

Fig. 3. Comparison of the numerical and exact solutions of the FIVP (24)-(25) using the fractional Trapezoid
method with α = 1 and h = 0.02

Fig. 4. The absolute error between the numerical and exact solutions for the FIVP (24)-(25) using the
fractional Trapezoid method with α = 1 and h = 0.02

Example 5.2 Consider the fractional initial value problem that follows [18]:

Dα
∗ y(t) = et−y, (28)

with the initial condition

y(0) = 1. (29)

I. M. Batiha (Trapezoidal Scheme for the Numerical Solution of Fractional Initial Value Problems)
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Fig. 5. Comparison of approximate solutions using the fractional Trapezoid method for different fractional
values and the exact solution when h = 0.02

It should be noted that the precise solution to the aforementioned problem is provided by

y(t) = log(et + e1 − 1). (30)

Now, for the purpose of the obtaining an approximate solution to the problem (28)-(29) with the
use of fractional Trapezoid method, we should consider the following approximate formula:

z0 = 0.5.

zi+1 = zi +
hα

Γ(2α+ 1)
(f(ti, zi) + f(ti+1, zi+1)).

(31)

By using MATLAB, the numerical solution of the FIVP described in equations (31) is visualized
through a graphical representation as shown in Fig. 6. The plot illustrates the comparison between
the numerical solution obtained through the fractional Trapezoid method and the exact analytical
solution. This comparison highlights the method’s precision and demonstrates its effectiveness in
accurately approximating solutions.

Fig. 6. Comparison of numerical and exact solutions for the FIVP (28)-(29) using the fractional Trapezoid
method with α = 1 and h = 0.1

To evaluate the precision of the fractional Trapezoid method, the total discrepancy between the
numerical approximation and the exact solution for the FIVP (28)-(29) is calculated and depicted
in Fig. 7 and Table 2. A plot of the absolute error over time is presented, showing how the error
gradually increases as t grows. This visualization provides a clear understanding of the method’s
accuracy and effectiveness in approximating the solution.

I. M. Batiha (Trapezoidal Scheme for the Numerical Solution of Fractional Initial Value Problems)
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Fig. 7. Plot of the absolute error between the numerical and exact solutions of the FIVP (28)-(29) using the
fractional Trapezoid method with α = 1 and h = 0.1

Table 2. Absolute errors between the exact and the fractional Euler and Trapezoid solutions of problem
(28)-(29) for α = 1 and h = 0.1

t Fractional Euler method Fractional Trapezoid method
0 0 0

0.1 0.001172570096938 0.027686397851889
0.2 0.002325890908587 0.055392752877470
0.3 0.003449801503171 0.082890106308797
0.4 0.004534173462960 0.109938585495684
0.5 0.005569170453683 0.136292824878925
0.6 0.006545510426157 0.161707987452964
0.7 0.007454717546495 0.185946123326008
0.8 0.008289350989101 0.208782561090137
0.9 0.009043198812865 0.230012009821534
1.0 0.009711427206174 0.249454057768217

In order to increase the numerical solution’s accuracy, a smaller size of steps of h = 0.01 is cho-
sen. The resulting approximate solution is plotted alongside the exact solution to provide a detailed
comparison. Fig. 8 demonstrates the close agreement between the numerical approximation using the
fractional Trapezoid method and the exact solution, highlighting the precision of the method when
smaller step sizes are employed.

To visualize the accuracy of the fractional Trapezoid method, the absolute discrepancy between
the exact solution and the numerical approximation is calculated and displayed in Fig. 9. This plot
highlights the behavior of the error over time, showcasing how the numerical solution closely tracks
the exact solution with minimal deviation. The figure provides valuable insights into the effectiveness
and precision of the fractional Trapezoid method when solving fractional initial value problems.

To explore the impact of varying the parameter α, the approximate solutions for the FIVP (28)-
(29) are plotted for different fractional values. Fig. 10 illustrates how the numerical solutions change
as α varies, demonstrating the sensitivity of the fractional Trapezoid method to this parameter. By
comparing these solutions with the exact solution, the effect of α on the accuracy and behavior of the
method is highlighted.

Example 5.3 Consider the following fractional initial value problem [18]:

Dα
∗ y(t) = (y(t))2, (32)

with the initial condition
y(0) = 1. (33)

I. M. Batiha (Trapezoidal Scheme for the Numerical Solution of Fractional Initial Value Problems)
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It should be noted that the precise solution to the aforementioned problem is provided by

Fig. 8. Comparison of the numerical and exact solutions of the FIVP (28)-(29) using the fractional Trapezoid
method with α = 1 and h = 0.01

Fig. 9. Plot of the absolute error between the numerical and exact solutions for the FIVP (28)-(29) using the
fractional Trapezoid method with α = 1 and h = 0.01

Fig. 10. Comparison of approximate solutions using the fractional Trapzoid method for different α values and
the exact solution and h = 0.01

y(t) =
1

1− t
. (34)
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Now, for the purpose of the obtaining an approximate solution to the problem (32)-(33) with the
use of fractional Trapezoid method, we should consider the following approximate formula:

z0 = 0.5.

zi+1 = zi +
hα

Γ(2α+ 1)
(f(ti, zi) + f(ti+1, zi+1)).

(35)

Now, by using MATLAB, the numerical solution of the FIVP (32)-(33) described in equations
(35) is visualized through a graphical representation as shown in Fig. 11. The plot illustrates the
comparison between the numerical solution obtained through the fractional Trapezoid method and
the exact analytical solution. This comparison highlights the method’s precision and demonstrates its
effectiveness in accurately approximating solutions.

Fig. 11. Comparison of numerical and exact solutions for the FIVP (32)-(33) using the fractional Trapezoid
method with α = 1 and h = 0.09

To evaluate the precision of the fractional Trapezoid method, the absolute discrepancy between
the exact solution and the numerical approximation for the FIVP is calculated and depicted in Fig.
12 and Table 3. A plot of the absolute error over time is presented, showing how the error gradually
increases as t grows. This visualization provides a clear understanding of the method’s accuracy and
effectiveness in approximating the solution.

Fig. 12. Plot of the absolute error between the numerical and exact solutions of the FIVP (32)-(33) using the
fractional Trapezoid method with α = 1 and h = 0.09

In order to increase the numerical solution’s accuracy, a smaller step size of h = 0.009 is chosen.
The resulting approximate solution is plotted alongside the exact solution to provide a detailed com-
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parison. Fig. 13 demonstrates the close agreement between the numerical approximation using the
fractional Trapezoid method and the exact solution, highlighting the precision of the method when
smaller step sizes are employed.

Table 3. Absolute errors between the exact and the fractional Euler and Trapezoid solutions of problem
(32)-(33) for α = 1 and h = 0.09

t Fractional Euler method Fractional Trapezoid method
0 0 0

0.09 0.008901098901099 0.000436598901099
0.18 0.022583195121951 0.001184806341185
0.27 0.043996500904940 0.002495651761202
0.36 0.078420506329017 0.004877901816391
0.45 0.135878049592710 0.009446776806998
0.54 0.236896137606333 0.018909519376535
0.63 0.428002692403745 0.040810174187333
0.72 0.831045148812746 0.100748714244161
0.81 1.846901354855732 0.316851989153695
0.90 5.533370672953649 1.653346172476256

Fig. 13. Comparison of the numerical and exact solutions of the FIVP (32)-(33) using the fractional Trapezoid
method with α = 1 and h = 0.009

To visualize the accuracy of the fractional Trapezoid method, the absolute error between the
numerical approximation and the exact solution is calculated and displayed in Fig. 14. This plot
highlights the behavior of the error over time, showcasing how the numerical solution closely tracks
the exact solution with minimal deviation. The figure provides valuable insights into the effectiveness
and precision of the fractional Trapezoid method when solving α initial value problems.

To explore the impact of varying the parameter α, the approximate solutions for the FIVP (32)-
(33) are plotted for different α values. Fig. 15 illustrates how the numerical solutions change as
α varies, demonstrating the sensitivity of the fractional Trapezoid method to this parameter. By
comparing these solutions with the exact solution, the effect of α on the accuracy and behavior of the
method is highlighted.

6. Conclusion and Future Works

The purpose of this study was to recall the math concepts and definitions in relation to fractional
calculus. In light of this overview, we proposed a fractional version of the so-called Trapezoid method.
Such method was then used to numerically solve an analog version of the initial value problem called
fractional initial value problems (FIVP).
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Fig. 14. Plot of the absolute error between the numerical and exact solutions for the FIVP (32)-(33) using the
fractional Trapezoid method with α and h = 0.009

Fig. 15. Comparison of approximate solutions using the fractional Trapezoid method for different α values
and the exact solution and h = 0.009

As a consequence, several numerical compositions were solved to verify the effectiveness of the
proposed numerical approach. The method demonstrated good accuracy compared to exact solutions,
particularly with small step sizes. Future work will focus on extending this scheme to nonlinear sys-
tems and partial fractional differential equations.

Author Contribution: All authors contributed equally to the main contributor to this paper. All authors read
and approved the final paper.

Funding: No funding was provided.

Conflicts of Interest: The authors declare no conflict of interest.

References
[1] G. Farraj, B. Maayah, R. Khalil, and W. Beghami, “An algorithm for solving fractional differential equa-

tions using conformable optimized decomposition method,” International Journal of Advances in Soft
Computing and Its Applications, vol. 15, no. 1, 2023, https://doi.org/10.15849/IJASCA.230320.13.

[2] M. Berir, “Analysis of the effect of white noise on the Halvorsen system of variable-order fractional
derivatives using a novel numerical method,” International Journal of Advances in Soft Computing and
its Applications, vol. 16, no. 3, pp. 294–306, 2024, https://doi.org/10.15849/IJASCA.241130.16.

[3] N. R. Anakira, A. Almalki, D. Katatbeh, G. B. Hani, A. F. Jameel, K. S. Al Kalbani, and M. Abu-Dawas,
“An algorithm for solving linear and non-linear Volterra Integro-differential equations,” International

I. M. Batiha (Trapezoidal Scheme for the Numerical Solution of Fractional Initial Value Problems)

https://doi.org/10.15849/IJASCA.230320.13
https://doi.org/10.15849/IJASCA.241130.16


ISSN 2775-2658 International Journal of Robotics and Control Systems
Vol. 5, No. 2, 2025, pp. 1238-1253

1253

Journal of Advances in Soft Computing & Its Applications, vol. 15, no. 3, pp. 77–83, 2023, https://doi.
org/10.15849/IJASCA.231130.05.

[4] A. Bouchenak, I. M. Batiha, I. H. Jebril, M. Aljazzazi, H. Alkasasbeh, and L. Rabhi, “Generalization of
the nonlinear Bernoulli conformable fractional differential equations with applications,” WSEAS Trans-
actions on Mathematics, vol. 24, pp. 168–180, 2025, https://doi.org/10.37394/23206.2025.24.17.

[5] A. Bouchenak, I. M. Batiha, R. Hatamleh, M. Aljazzazi, I. H. Jebril, and M. Al-Horani, “Study and
analysis of the second order constant coefficients and Cauchy-Euler equations via modified conformable
operator,” International Journal of Robotics and Control Systems, vol. 5, no. 2, pp. 794–812, 2025, https:
//doi.org/10.31763/ijrcs.v5i2.1577.

[6] H. Qawaqneh, H. A. Jari, A. Altalbe, and A. Bekir, “Stability analysis, modulation instability, and the
analytical wave solitons to the fractional Boussinesq–Burgers system,” Physica Scripta, vol. 99, no. 12,
p. 125235, 2024, https://doi.org/10.1088/1402-4896/ad8e07.

[7] A. Boudjedour, I. Batiha, S. Boucetta, M. Dalah, K. Zennir, and A. Ouannas, “A finite difference method
on uniform meshes for solving the time-space fractional advection-diffusion equation,” Gulf Journal of
Mathematics, vol. 19, no. 1, pp. 156–168, 2025, https://doi.org/10.56947/gjom.v19i1.2524.

[8] N. Allouch, I. M. Batiha, I. H. Jebril, S. Hamani, A. Al-Khateeb, and S. Momani, “A new fractional ap-
proach for the higher-order q-Taylor method,” Image Analysis and Stereology, vol. 43, no. 3, pp. 249–257,
2024, https://doi.org/10.5566/ias.3286.

[9] A. Zraiqat, I. M. Batiha, and S. Alshorm, “Numerical comparisons between some recent modifications
of fractional Euler methods,” WSEAS Transactions on Mathematics, vol. 23, no. 1, pp. 529–535, 2024,
https://doi.org/10.37394/23206.2024.23.55.

[10] S. Momani, N. Djenina, A. Ouannas, and I. M. Batiha, “Stability results for nonlinear fractional differ-
ential equations with incommensurate orders,” IFAC-PapersOnLine, vol. 58, no. 12, pp. 286–290, 2024,
https://doi.org/10.1016/j.ifacol.2024.08.204.

[11] C. B. Boyer and U. C. Merzbach, A History of Mathematics, John Wiley & Sons, 2011, https://books.
google.co.id/books?id=V6RUDwAAQBAJ&hl=id&source=gbs navlinks s

[12] I. M. Batiha, I. H. Jebril, N. Anakira, A. A. Al-Nana, R. Batyha, and S. Momani, “Two-dimensional
fractional wave equation via a new numerical approach,” International Journal of Innovative Computing,
Information & Control, vol. 20, no. 4, pp. 1045–1059, 2024, https://doi.org/10.24507/ijicic.20.04.1045.

[13] S. Momani, M. Shqair, I. M. Batiha, M. H. E. Abu-Sei’leek, S. Alshorm, and S. A. Abd El-Azeem, “Two-
energy group neutron diffusion model in spherical reactors,” Results in Nonlinear Analysis, vol. 7, no. 2,
pp. 160–173, 2024, https://doi.org/10.31838/rna/2024.07.02.013.

[14] S. Momani, I. M. Batiha, A. Abdelnebi, and I. H. Jebril, “A powerful tool for dealing with high-
dimensional fractional-order systems with applications to fractional Emden–Fowler systems,” Chaos,
Solitons & Fractals: X, vol. 12, p. 100110, 2024, https://doi.org/10.1016/j.csfx.2024.100110.

[15] K. Diethelm and N. J. Ford, “The Analysis of Fractional Differential Equations,” Journal of Mathematical
Analysis and Applications, vol. 265, no. 2, pp. 229–248, 2002, https://doi.org/10.1006/jmaa.2000.7194.

[16] I. Podlubny, Fractional Differential Equations, Elsevier, 1998, https://books.google.co.id/books?id=
K5FdXohLto0C&hl=id&source=gbs navlinks s.

[17] Z. M. Odibat and S. Momani, “An algorithm for the numerical solution of differential equations of
fractional order,” Journal of Applied Mathematics and Informatics, vol. 26, no. 1-2, pp. 15–27, 2008,
https://koreascience.kr/article/JAKO200833338752380.pdf.

[18] W. Gauts, Numerical Analysis, Springer Science & Business Media, 2011, https://books.google.co.id/
books?id=-fgjJF9yAIwC&hl=id&source=gbs navlinks s.

I. M. Batiha (Trapezoidal Scheme for the Numerical Solution of Fractional Initial Value Problems)

https://doi.org/10.15849/IJASCA.231130.05
https://doi.org/10.15849/IJASCA.231130.05
https://doi.org/10.37394/23206.2025.24.17
https://doi.org/10.31763/ijrcs.v5i2.1577
https://doi.org/10.31763/ijrcs.v5i2.1577
https://doi.org/10.1088/1402-4896/ad8e07
https://doi.org/10.56947/gjom.v19i1.2524
 https://doi.org/10.5566/ias.3286
https://doi.org/10.37394/23206.2024.23.55
https://doi.org/10.1016/j.ifacol.2024.08.204
https://books.google.co.id/books?id=V6RUDwAAQBAJ&hl=id&source=gbs_navlinks_s
https://books.google.co.id/books?id=V6RUDwAAQBAJ&hl=id&source=gbs_navlinks_s
https://doi.org/10.24507/ijicic.20.04.1045
https://doi.org/10.31838/rna/2024.07.02.013
https://doi.org/10.1016/j.csfx.2024.100110
https://doi.org/10.1006/jmaa.2000.7194
https://books.google.co.id/books?id=K5FdXohLto0C&hl=id&source=gbs_navlinks_s
https://books.google.co.id/books?id=K5FdXohLto0C&hl=id&source=gbs_navlinks_s
https://koreascience.kr/article/JAKO200833338752380.pdf
https://books.google.co.id/books?id=-fgjJF9yAIwC&hl=id&source=gbs_navlinks_s
https://books.google.co.id/books?id=-fgjJF9yAIwC&hl=id&source=gbs_navlinks_s

	Introduction
	Basic Fundamentals
	Fractional Trapezoid Method
	Forward Fractional Euler Method
	Backward Fractional Euler Method
	Fractional Trapezoid method For Solving FIVP

	Stability Analysis
	Stability of the Forward Fractional Euler Method 
	Stability of the Backward fractional Euler Method 
	Stability of the Fractional Trapezoid Method

	Illustrative Examples
	Conclusion and Future Works

