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1. Introduction 

In recent years, with the increasing deployment of Renewable Energy Sources (RES) such as 

Photovoltaic (PV) energy into the grid, the quality electrical supply has become vitally important for 

utility providers, electrical power industry and consumers. Hence, there has been a growing interest 

in the design of new methods and devices to address power quality (PQ) issues and improve the 

efficiency and reliability of the distribution grid [1]-[5]. Several authors have studied the integration 

of PV systems into the grid, but the main problems encountered are the quality of energy produced 

and the instability of the DC bus to short circuit defects and load variation [6]-[11] . 
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After studies in [12]-[16] multilevel inverters, especially the Neutral-Point-Clamped (NPC) 

topology, have become very popular power converters in PV energy applications with high-power 

[17]-[20]. It presents many advantages when compared with the classical two-level converter such 

as reducing the Total Harmonic Distortion (THD) and improving output voltage waveform. 

However, the main disadvantage of these types of converters is the instability of the capacitor voltage 

in the intermediate circuit.  

According to the bibliographical research, to solve this problem two algorithms control is 

proposed is consist of two loops. The outer closed-loop controls the average value of the DC voltage 

using a PI regulator, whereas the inner loop controls the difference between the two voltages in each 

half-arm using a clamping bridge circuit [21], [22]. In this paper, we used the five-level NPC inverter. 

Another important element that plays a major role in the PV system is the Energy Storage System 

(ESS) [23]. In this paper, a high-power storage system SMES type is characterized by a fast dynamic 

to discharge the energy to the load and it is a long life compared to small ESS such as batteries [24]-

[27]. 

The amount of power that can be captured from a PV system depends on several parameters 

including the temperature and illumination. The Maximum Power Point Tracking (MPPT) 

algorithms are designed to search for the optimum operating point that allows the PV system to 

extract the maximum power from the available PV energy [28]. Various optimal power monitoring 

control strategies were already discussed in the literature for obtaining better energy conversion 

efficiency for all meteorological data, such as the Perturb and Observe (P&O) algorithm and 

incremental conductance are most commonly used in MPPT algorithms [29]-[32]. These control 

strategies have some disadvantages such as robustness, complexity, and difficulty for 

implementation. To overcome these disadvantages and ensure the MPPT efficiency of a PV system, 

several types of research as part of the artificial intelligence approach [33], [34] and robust nonlinear 

controller to achieve the conversion efficiency of the maximum energy of a PV system [35]. Robust 

nonlinear controllers based on Lyapunov stability have been proposed in the literature to improve 

PV performance under difficult operating conditions. Among these, Sliding Mode Controller (SMC) 

has been extensively applied because of its insensitivity to variations in internal and external 

parameters, its stability, its simplicity of implementation, and fast response. However, the main 

disadvantage of this control strategy is the presence of a chattering phenomenon. To eliminate this 

problem a Super-Twisting SMC (STSMC) is employed in this paper for the MPPT algorithm [36]. 

To strengthen the introduction and provide a stronger rationale for the proposed methodology, Table 

1 is presented. 

Table 1.  Contrasting the present work with the most well-known research in the field 

Ref. Year Publisher System components 
Bus 

type 
Controller Case studies 

[37] 
2021 

 
IEEE WT, SMES, and battery DC PI 

Wind fluctuations 

(WFs) 

[38] 2021 Elsevier PV, SMES, and battery AC PI and FLC Load change (LC) 

[39] 2020 IEEE WT, SMES, and battery AC PI WFs 

[40] 2018 ICPES WT, supercapacitor, and battery DC PI WFs 

[41] 2018 ICEES PV, , supercapacitor, and battery DC 
Rule based 

controller 

Variable irradiance 

(VI), and LC 

[42] 2018 IEECON 
PV, WT, supercapacitor, and 

battery 
DC 

Ramp rate 

limiter 
LC 

[43] 2023 MDPI 
PV, Biogas with Pumped-Hydro 

Storage system, and SMES 
AC 

Optimized 

controller 
LC, and VI 

Current work PV DC STSMC 
LC, and three phase 

fault 

 

The contribution of this article is to add a storage system connected to the DC bus using a four-

quadrant chopper for the purpose of ensuring the stability of the DC voltage against the load variation 

and the short circuit fault. STSMC is employed for MPPT. Improving the quality of energy produced 
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by the PV system with the application of a five-level inverter where it can reduce swithching losses 

and THD percentage and to ensure the stability of the DC voltage by using the SMES. 

The rest of the paper is organized as follows: Section 2 presents a description and modeling of 

the PV/SMES system connected to the grid. The control strategies are presented in Section 3. Finally, 

simulation results and conclusions are presented in Section 4 and Section 5, respectively. 

2. Modeling of Grid-Connected PV-SMES System  

The proposed grid-connected PV-SMES system is shown in Fig. 1. The way the components of 

the system under investigation are modeled and integrated into the overall system. The PV array is 

connected to the DC bus via a boost converter controlled by a MPPT algorithm to extract the 

maximum power. The DC bus is then connected to the AC bus through the NPC three-level inverter. 

The SMES is connected to the DC via DC chopper. 

 

Fig. 1. Proposed grid-connected PV-SMES system 

2.1. PV Array 

A basic equivalent circuit model of a PV cell is depicted in Fig. 2. The modeling of this solar 

cell is well presented in [44]-[47].  

 

Fig. 2. PV cell circuit model 

2.2. Three-Level NPC Inverter  

The topology of the three-level NPC converter shown in Fig. 3. It consists of two series 

capacitors (𝐶1, 𝐶2) forming a midpoint noted (0) which allows the converter to access an additional 

voltage level compared to the conventional converter. at two levels. 

This structure consists of three arms (1, 2, 3), each of the three arms is composed of four 

controlled switches (𝑇11, 𝑇12, 𝑇13, 𝑇14)  and two clamp diodes (𝐷𝐷11, 𝐷𝐷10) (for the arm (1). 
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connected to the midpoint of the DC bus are used to clamper the terminal of each controlled switch 

to the midpoint of the DC bus. The controlled switches must be bidirectional in current and 

unidirectional in voltage, they are associations of a transistor and a diode in antiparallel. The 

modeling of three-level NPC converter is discussed in more detail in [22]. 

 

Fig. 3. Topology of the three-level NPC inverter 

2.3. Modeling of Intermediate Filter  

The clamping bridge consists of a transistor in series with a resistance, inserted to improve and 

stabilize the DC-voltage dynamic [48]. The intermediate filter scheme with clamping bridge seen in 

Fig. 4. 

 

Fig. 4. Intermediate filter structure with clamping bridge 

The mathematical model of the intermediate filter given by: 

 

{
𝐶1
𝑑𝑉𝑑𝑐1
𝑑𝑡

= 𝐼1 − 𝐼𝑟1 − 𝐼𝑑1

𝐶2
𝑑𝑉𝑑𝑐2
𝑑𝑡

= −𝐼2 − 𝐼𝑟2 − 𝐼𝑑2

 (1) 
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With 

 

{
 

 𝐼𝑟1 =
𝑉𝑑𝑐1
𝑅𝑃

𝐼𝑟2 =
𝑉𝑑𝑐2
𝑅𝑃

 (2) 

2.4. Modeling of Intermediate Filter  

The SMES is a superconducting coil where energy is stored in the form of a magnetic field 

generated by the current flowing in the coil. The SMES is known for its high-power density and high 

speed of charge and discharge which makes it suitable for PV systems. The stored energy of SMES 

can be expressed as [49], [50]: 

 
𝑊𝑠𝑚 = 𝑊𝑠𝑚0 +∫ 𝑃𝑠𝑚

𝑡

𝑡0

𝑑𝜏 (3) 

 
𝑊𝑠𝑚0 =

1

2
𝐿𝑠𝑚𝐼𝑠𝑚0

2  (4) 

 
𝑃𝑠𝑚 =

𝑑𝑊𝑠𝑚
𝑑𝑡

= 𝐿𝑠𝑚𝐼𝑠𝑚.𝑊𝑠𝑚0

𝑑𝐼𝑠𝑚
𝑑𝑡

= 𝐼𝑠𝑚𝑉𝑠𝑚 (5) 

The modelling of SMES is discussed in more details in [51].  

3. Control Strategies  

This section provides a detailed description and design steps of the different control strategies 

for PV system. 

3.1. Nonlinear STSMC Control Design for MPPT Algorithm  

In this section, the basic principle and the design procedure of the MPPT algorithm based of 

STSMC are presented. The STSMC has the ability to eliminate chattering, which is inherent in 

conventional SMC (Sliding Mode Control). In addition, it retains the same tracking and robustness 

performance of the conventional SMC [52]. The STSMC scheme consists of two terms: the 

equivalent control 𝑈𝑒𝑞𝑢 and super twisting control 𝑈𝑠𝑡. 

 𝑢(𝑡) = 𝑢𝑒𝑞𝑢(𝑡) + 𝑢𝑠𝑡(𝑡) (6) 

 𝑢𝑠𝑡(𝑡) = 𝑢1(𝑡) + 𝑢2(𝑡)   (7) 

 

{
𝑢1(𝑡) = −𝜆. |𝑆|

1 2⁄ . 𝑠𝑔𝑛 (𝑆)

𝑢2(𝑡) = −∫𝛾. 𝑠𝑔𝑛(𝑆)   𝑑𝑡            
 (8) 

where λ and γ are the positive constants and the fixed-gain can choose as: 

For the equivalent control of STSMC, the same procedure is used as for the conventional SMC. 

Its design procedure applied for a MPPT algorithm include the following steps: 

(A) Equivalent control  

The switching surface is designed as: 

 
𝑆 =

𝜕𝑃𝑃𝑉
𝜕𝑉𝑃𝑉

=
𝜕(𝑉𝑃𝑉. 𝐼𝑃𝑉)

𝜕𝑉𝑃𝑉
 (9) 
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𝑆 = 𝐼𝑃𝑉 + 𝑉𝑃𝑉

𝜕𝐼𝑃𝑉
𝜕𝑉𝑃𝑉

   (10) 

 
𝑆 = 𝑉𝑃𝑉 (

𝜕𝐼𝑃𝑉
𝜕𝑉𝑃𝑉

+
𝐼𝑃𝑉
𝑉𝑃𝑉

) (11) 

 
𝑆 = 𝑉𝑃𝑉 (

𝐼𝑃𝑉(𝑘) − 𝐼𝑃𝑉(𝑘 − 1)

𝑉𝑃𝑉(𝑘) − 𝑉𝑃𝑉(𝑘 − 1)
+
𝐼𝑃𝑉(𝑘)

𝑉𝑃𝑉(𝑘)
)   (12) 

The PV output power is controlled by adjusting the duty cycle 𝛼 of the boost converter. Thus, 

the equivalent control given by: 

 
𝑈𝑒𝑞𝑢(𝑡) = 𝛼 = 1 −

𝑉𝑖𝑛
𝑉𝑜

 (13) 

(B) Super-Twisting Control (STC)  

In this work, the hyperbolic tangent surface is used for the STC due to its robustness and fast 

convergence. For the STC terms can written as [53], [54]: 

 
𝑈𝑠𝑡(𝑡) = −𝜆. |𝑆|

1 2⁄ . 𝑡𝑎𝑛ℎ (𝑆) − ∫𝛾. 𝑡𝑎𝑛ℎ(𝑆). 𝑑𝑡 (14) 

The positive gains for λ and γ are chosen to fulfil the condition of convergence. 

3.2. Clamping Bridge Control  

The control algorithm, which controls the clamping bridge, applied separately for the upper and 

the lower stages. The algorithm compares, in real-time, the differences (𝛥𝑉12) in the DC voltages of 

each stage to zero. If the difference is not equal to zero, the excess of energy will be dissipated 

through the resistance. The control algorithm of the clamping bridge given as follows [51]-[56]: 

 
{
∆𝑉12 > 0 ⇒ 𝐼𝑟1 = 0&𝐼𝑟2 ≠ 0(𝑇1 = 0&𝑇2 = 1)
∆𝑉12 > 0 ⇒ 𝐼𝑟1 ≠ 0&𝐼𝑟2 = 0(𝑇1 = 1&𝑇2 = 0)

 (15) 

 𝐴𝑣𝑒𝑐 ∶  ∆𝑉12 = 𝑉𝑑𝑐1 − 𝑉𝑑𝑐2 (16) 

3.3. Control the DC Chopper  

Fig. 5 shows the configuration of the DC chopper connected to the SMES device. The circuit 

operates in charging or discharging modes by adjusting the duty cycle of the chopper to regulate the 

DC bus voltage in response to various operating conditions of the PV system [57], [43], [58], [59]. 

The goal in controlling the SMES current is to control the required power. 

 

Fig. 5. Configuration of the DC chopper 
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In steady-state, the DC voltage and the SMES voltage are related as follows: 

 
𝑉𝑑𝑐 = (

𝐷

1 − 𝐷
) . 𝑉𝑠𝑚 (17) 

There are three modes of operation for the SMES: the state of charge, state of expectation and 

the discharge state. Fig. 6 shows the operation of the DC chopper in these three modes. When SMES 

is charging (discharging), the 𝐷 is more than 0.5 (𝐷 is less than 0.5) is on and the converter operates 

in boost (buck) mode. Furthermore, if the 𝐷 is 0 the DC-DC chopper operation will be in standby 

mode. 

 

Fig. 6. Operating modes of the DC chopper 

3.4. Control of the Injected Powers  

There are several strategies for controlling active and reactive power (P, and Q), among which 

the instantaneous power method is generally used in production systems to control the P, and Q 

injected into the power grid [22], [60]. The P, and Q in the Concordia coordinate system are expressed 

by the following two equations: 

 

{
𝑃 =

3

2
(𝑉𝛼𝐼𝛼 + 𝑉𝛽𝐼𝛽)

𝑄 =
3

2
(𝑉𝛽𝐼𝛼 − 𝑉𝛼𝐼𝛽)

 (18) 

The reference currents are calculated according to the following equation system: 

 

{
 
 

 
 𝑖𝑎

∗ =
2

3
(
𝑃. 𝑉𝛼 + 𝑄. 𝑉𝛽

𝑉𝛼
2 + 𝑉𝛽

2 )

𝑖𝛽
∗ =

2

3
(
𝑃. 𝑉𝛽 − 𝑄. 𝑉𝛼

𝑉𝛼
2 + 𝑉𝛽

2 )

 (19) 

By injecting only, the P generated by the PV generator for the purpose of ensuring a unit power 

factor. It is imposed that the Q injected is equal to zero (𝑄∗ = 0). Equation (18) becomes: 

 

{
 
 

 
 𝑖𝑎

∗ =
2

3
(
𝑃. 𝑉𝛼

𝑉𝛼
2 + 𝑉𝛽

2)

𝑖𝛽
∗ =

2

3
(
𝑃. 𝑉𝛽

𝑉𝛼
2 + 𝑉𝛽

2)

 (20) 

The power control scheme is seen in Fig. 7. The PWM technique is used to control the 3-level 

inverter.  

4. Simulation Results and Discussion  

MATLAB/SIMULINK is employed to implement the model of the proposed system of Fig. 1 

and test the performance of the controllers. The overall model and control scheme have been 
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simulated for two diverse scenarios described in the following sub-sections. Parameter values used 

in the overall model are shown in Table 2, Table 3, Table 4, and Table 5. 

For the two scenarios, we consider the following meteorological data: 

• Insolation  𝐺 = 1000 [𝑊/𝑚2]. 

• Temperature 𝑇 = 293 [K]. 

 

Fig. 7. Control block diagram of the injection process 

Table 2.  Parameters of the PV cell (Model KC200GT) 

𝑃𝑃𝑉 W 200.143 

𝑉𝑜𝑐,𝑛 V 32.9 

𝐼𝑠𝑐,𝑛 A 8.21 

𝐼0,𝑛 A 9.825.10-8 

𝑅𝑝 𝛺 415.405 

𝑅𝑠 𝛺 0.221 

𝐾𝑉  V/K -0.123 

𝐾𝐼 A/K 0.0032 

𝑎 - 1.3 

𝑁𝑠 - 54 

𝐾  J/K 1.381.10-23 

𝑞  C 1.602.10-19 

Table 3.  DC/DC boost converter parameters 

𝐿1 µH 11 

𝐶𝐵 mF 1 

Table 4.  Inverter parameters 

𝑉𝑑𝑐 V 500 

𝐶 µF 2200 

Table 5.  Inductive filter value 

𝐿𝑓 mH 1 

4.1. A Step-Change in Load 

This scenario is assumed to simulate a variable load. The load is set to 5 𝑘𝑊 initially. At 𝑡 =
0.5 𝑠 it is suddenly changed to 7 𝑘𝑊 and then decreased to 6 𝑘𝑊 again at 𝑡 = 1 𝑠.  Fig. 8 shows the 

active power of the load, grid, and GPV. According to the meteorological data, the GPV generates 

constant power throughout this simulation. The grid must respond quickly to provide the difference 

between the power demanded by the load and that available in the PV system for the purpose of 

ensuring energy stability between the production system and the power demanded. 
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Fig. 9 (a), (b) and (c) show the waveforms of the load, grid and GPV currents, respectively. In 

these figures, it is noted that the waveforms of the currents are sinusoidal and that the frequency is 

maintained at 50 Hz. 

 

Fig. 8. Active power of the Load, Grid and GPV 

  

 

Fig. 9. Currents waveforms of  Load, Grid and GPV 

Fig. 10 shows the RMS current of load, grid and GPV. that are observed under simulated load 

variations. The direction of currents adopted in these simulations is based on the following equation: 

 𝑖𝐿𝑜𝑎𝑑 = 𝑖𝐺𝑟𝑖𝑑 + 𝑖𝑃𝑉 (21) 

Fig. 11 show the analysis of the THD of GPV current. We can clearly see that the THD for this 

current has a value of less than 5%. We conclude that integrating the inverter at three-levels improves 

the quality of energy produced by the PV system. 

Fig. 12 shows the shape of the DC voltage. In order to better present the contribution of this 

article, we made a comparison between two PV systems with or without SMES to test the 

performance of balance and stability in the DC voltage. After this figure, it is clearly seen that the 

DC voltage follows its reference successfully. It is clear that the measured voltage follows its 



ISSN 2775-2658 
International Journal of Robotics and Control Systems 

999 
Vol. 5, No. 2, 2025, pp. 990-1005 

  

 

Samira Heroual (Enhancement of Transient Stability and Power Quality in Grid-Connected PV Systems Using SMES) 

 

reference successfully, it does not affect the variation of the load. But, with the use of SMES the 

stability of DC voltage is very efficient compared with a system without SMES. 

 

Fig. 10. RMS current of the Load, Grid and GPV 

 

Fig. 11. THD of GPV current 

 

Fig. 12. DC voltage 

Fig. 13 shows a duty cycle for the SMES. For this simulation test, we proposed that the SMES 

be fully loaded. During this simulation, it can be seen that the SMES is in discharge mode with a 

duty cycle which is less than 0.5. Fig. 14 shows the waveform of the voltage of the three-level 

inverter. We note that this voltage has the same image of the sinusoidal waveform and it has three 

voltage levels that indicate the uses of the three-level inverter. 
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Fig. 13. Duty cycle 

 

Fig. 14. Voltage of the three-level 

4.2. Short Circuit of Three-Phase  

This scenario is simulated with a Three-Phase Short-Circuit (TPSC) fault at 𝑡 = 0.78 𝑠 and 

cleared 20 𝑚𝑠 later. Fig. 15 shows the grid and GPV output powers and the load demand. Clearly, 

the grid was able to balance the between the power required by the load and PV system. At 𝑡 =
0.78 𝑠, when the TPSC is applied, the system exhibits a transient power unbalance. But, after the 

TPSC is cleared, the grid responds rapidly to provide the power demanded by the load. Fig. 16 shows 

the response of the DC voltage under this TPSC fault condition. With the SMES, the DC voltage has 

a superior performance as compared to the PV system without storage. This test confirms the 

importance of using the SMES in the PV system to ensure complete stability of the DC voltage. 

 

Fig. 15. Active power of the Load, Grid and GPV 
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Fig. 16. DC voltage 

5. Conclusions 

The design and assessment of a control scheme for a hybrid (PV-SMES) system connected to 

the grid via a three-level NPC inverter is the main topic of this paper. The design of a clamping 

bridge control, the regulation of the DC voltage, and a storage system based on SMES to stabilize 

the DC bus voltage of the grid-connected PV system are some of the control strategies that have been 

suggested in this study to improve the system's performance. A number of simulation situations, such 

as load variation and TPSC failure, have been used to assess the suggested control strategy. The 

findings of a comparison simulation analysis between the suggested PV with and without SMES for 

DC voltage stability show that the SMES performs better. To further test the robustness of the system, 

future research could investigate the integration of additional energy storage systems or different 

failure circumstances. Further understanding of the control scheme's useful applications would also 

be possible by putting real-time experimental validation into practice and taking larger systems' 

scalability into account. 
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Nomenclature 

𝐼𝑝ℎ Light-Generated Current 

𝐼𝑑 Current of the diode 

𝐼𝑝 Current flowing through the parallel resistor 𝑅𝑝 

𝐼𝑃𝑉  Net current of the PV cell 

𝑉𝑃𝑉 Cell voltage 

𝑉𝑑 Diode voltage 

𝑅𝑝, 𝑅𝑠 parallel and series resistances of the cell respectively 

𝑃𝑃𝑉  Photovoltaic system output power  

𝑃𝐿𝑜𝑎𝑑  Load power  
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𝐿 Inductor of DC-DC boost converter 

𝐶 Capacitor of DC-DC boost converter 

𝐿𝑓 Inductive filter 

𝐶1, 𝐶2 Capacitors of inverter 

𝑉𝑑𝑐 DC-link voltage 

𝑉𝑑𝑐
∗  Reference of DC-link voltage. 
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