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1. Introduction  

The rapid advancements in autonomous systems and Unmanned Aerial Vehicles (UAVs) have 

positioned them as indispensable tools in modern industries such as logistics, agriculture, disaster 

management, and surveillance [1]-[3]. One of the most critical challenges in UAV operations, 

particularly in complex three-dimensional (3D) environments, is effective path planning [4]-[6]. These 
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 Unmanned Aerial Vehicles (UAVs) have emerged as vital tools in diverse 

applications, including disaster response, surveillance, and logistics. 

However, navigating complex, obstacle-rich 3D environments with 

dynamic elements remains a significant challenge. This study presents an 

Enhanced Advanced Multi-Objective Path Planning (EAMOPP) model 

designed to address these challenges by improving feasibility, collision 

avoidance, and path smoothness while maintaining computational 

efficiency. The proposed enhancement introduces a hybrid sampling 

strategy that combines random sampling with gradient-based adjustments 

and a refined cost function that prioritizes obstacle avoidance and path 

smoothness while balancing path length and energy efficiency. The 

EAMOPP was evaluated in a series of experiments involving dynamic 

environments with high obstacle density and compared against baseline 

algorithms, including A*, RRT*, Artificial Potential Field (APF), Particle 

Swarm Optimization (PSO), and Genetic Algorithm (GA). Results 

demonstrate that the EAMOPP achieves a feasibility score of 0.9800, 

eliminates collision violations, and generates highly smooth paths with an 

average smoothness score of 9.3456. These improvements come with an 

efficient average execution time of 6.6410 seconds, outperforming both 

traditional and heuristic-based methods. Visual analyses further illustrate 

the model's ability to navigate effectively through dynamic obstacle 

configurations, ensuring reliable UAV operation. Future research will 

explore optimizations to further enhance the model's applicability in real-

world UAV missions. 
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environments, characterized by dynamic obstacles, uneven terrains, and stringent operational 

constraints, necessitate the development of robust algorithms that can ensure safe, efficient, and 

collision-free navigation [7]-[9]. While numerous algorithms, including traditional and metaheuristic 

approaches, have been proposed for UAV path planning, their efficacy in addressing the unique 

challenges posed by such environments remains a subject of ongoing research [10]-[12]. Among the 

existing approaches, Reinforcement Learning (RL), Genetic Algorithms (GA), Particle Swarm 

Optimization (PSO), and Artificial Potential Fields (APF) have gained significant attention due to 

their potential in solving high-dimensional and nonlinear optimization problems [13]-[15]. However, 

these methods often suffer from limitations such as computational inefficiency, lack of scalability, 

and inadequate handling of dynamic obstacles [16]-[18]. Furthermore, although algorithms like RRT* 

and A* have demonstrated success in structured settings, their performance deteriorates when applied 

to real-time, dynamic 3D environments with multiple UAVs [19]-[21]. 

This study introduces an Enhanced Advanced Multi-Objective Path Planning (AMOPP) model, 

which builds upon the strengths of traditional path planning algorithms while addressing their 

limitations. Unlike its predecessors [22], the proposed AMOPP integrates hybrid sampling techniques 

with gradient-based adjustments, a refined cost function emphasizing smoothness and energy 

efficiency, and enhanced collision avoidance mechanisms. These innovations are designed to optimize 

path length, smoothness, and energy consumption while maintaining high feasibility rates in dynamic 

environments. The novelty of this research lies in its holistic approach to 3D path planning, 

incorporating both static and dynamic obstacles, intermediate goals, and multi-UAV coordination. 

The EAMOPP is evaluated against established algorithms such as RL, GA, PSO, APF, RRT*, and 

A*, using a standardized 3D environment model. The experiments focus on metrics such as path 

length, smoothness, collision violations, and computational efficiency, providing a comprehensive 

performance comparison. This paper is structured as follows. The next section reviews the state of the 

art in UAV path planning, highlighting the strengths and limitations of existing approaches. Following 

this, the methodology section details the design and implementation of the EAMOPP model, including 

the experimental setup and evaluation metrics. The results and discussion section presents the 

comparative analysis of the proposed model against benchmark algorithms, emphasizing its 

contributions and practical implications. Finally, the conclusion summarizes the findings and outlines 

future research directions in UAV path planning. 

2. Related Work 

Path planning has been a central focus in UAV research due to its critical role in ensuring safe, 

efficient, and collision-free navigation, particularly in complex three-dimensional environments [23]-

[25]. Over the years, a variety of algorithms have been developed, each tailored to address specific 

challenges associated with UAV operations. These algorithms can be broadly categorized into 

classical, heuristic, and learning-based methods, each with distinct advantages and limitations [15], 

[26], [27]. 

2.1. Classical Algorithms  

Classical algorithms such as A* and Dijkstra's have been widely used for UAV path planning 

due to their deterministic nature and optimality in grid-based search spaces [13], [28]. A* integrates 

cost-to-go and heuristic functions to find the shortest path efficiently, while Dijkstra's algorithm offers 

robustness in unweighted graph traversal [29]-[31]. However, both algorithms struggle with 

scalability in high-dimensional and dynamic environments [7], [32], [33]. Specifically, the 

computational complexity of these methods becomes a bottleneck when applied to real-time scenarios 

involving multiple UAVs and dynamic obstacles [34]-[36]. 

2.2. Sampling Based Methods 

The Sampling-based algorithms, including Rapidly exploring Random Trees (RRT) and RRT*, 

have significantly advanced UAV path planning by addressing the limitations of classical grid-based 

methods [5], [37], [38]. RRT incrementally builds paths by random sampling, while RRT* enhances 
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this approach by ensuring asymptotic optimality [39]-[41]. Despite their efficiency in exploring 

complex spaces, these methods often fail to handle dynamic obstacles effectively, requiring frequent 

re-planning [42]-[44]. Moreover, the inherent randomness in sampling can lead to suboptimal 

solutions when constrained by time-critical operations [40], [45], [46]. 

2.3. Heuristic and Metaheuristic Approaches 

Heuristic algorithms, such as Genetic Algorithms (GA) and Particle Swarm Optimization (PSO), 

have been employed for solving multi-objective path planning problems [47]-[49]. These approaches 

are advantageous in non-convex and discontinuous search spaces [50]-[52]. GAs use evolutionary 

principles like crossover and mutation to iteratively improve solutions, while PSO leverages swarm 

intelligence for global optimization [53]-[55]. However, these methods often require extensive 

computational resources and are sensitive to parameter tuning, limiting their applicability in real-time 

UAV operations [56]-[58]. The potential for premature convergence further reduces their reliability 

in dynamic 3D environments. 

2.4. Artificial Potential Fields 

The Artificial Potential Field (APF) approach has gained traction for its simplicity and real-time 

capabilities. In this method, UAVs are guided by attractive forces from the goal and repulsive forces 

from obstacles [59]-[61]. However, the method suffers from significant limitations, such as being 

prone to local minimum and lacking robustness in dynamic environments [62]. These shortcomings 

make APF unsuitable for navigating highly complex terrains or for applications requiring adaptability 

to moving obstacles. 

2.5. Learning-Based Methods 

Reinforcement Learning (RL) has emerged as a prominent technique for UAV path planning, 

particularly in environments characterized by high uncertainty [4], [63], [64]. RL-based approaches 

learn optimal navigation policies through interactions with the environment, enabling UAVs to adapt 

to dynamic changes [64]-[66]. Recent advancements in deep reinforcement learning have extended 

the applicability of these methods to high-dimensional spaces [67]-[70]. However, the significant 

computational demands during the training phase and the potential for poor generalization to unseen 

scenarios present challenges for practical deployment. 

2.6. Original AMOPP 

In previous work, the Advanced Multi-Objective Path Planning (AMOPP) model was introduced 

to address some of the limitations inherent in existing algorithms [22], the original AMOPP 

demonstrated its efficacy in balancing multiple objectives, including path length, smoothness, and 

collision avoidance, through a hybrid optimization strategy. The model integrated elements of 

deterministic and heuristic planning, allowing it to navigate complex 3D environments with greater 

efficiency and robustness than traditional methods. However, while the original AMOPP addressed 

several challenges, opportunities for further enhancement were identified, particularly in terms of 

dynamic obstacle handling, energy efficiency, and computational scalability. 

The limitations of existing approaches and the foundational contributions of the original AMOPP 

form the basis for this study's proposed enhancements. While the original AMOPP introduced a multi-

objective framework, its reliance on fixed sampling strategies and basic cost functions limited its 

adaptability in highly dynamic environments. Moreover, the computational overhead associated with 

handling multiple UAVs simultaneously posed challenges for real-time applications. These gaps 

underscore the necessity for a more refined version of the AMOPP model that integrates advanced 

features to overcome these challenges. 

This study builds on the original AMOPP by introducing several key enhancements, including 

hybrid sampling with gradient adjustments, dynamic obstacle adaptation, and an improved cost 

function that prioritizes smoothness, collision avoidance, and energy efficiency. By addressing the 

limitations of the original model and leveraging insights from existing methods, the EAMOPP aims 
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to establish a new benchmark in UAV path planning. The proposed model is evaluated against state-

of-the-art algorithms, including RL, GA, PSO, APF, RRT*, and A*, to demonstrate its effectiveness 

and contributions. 

3. Method  

The Enhanced Advanced Multi-Objective Path Planning (EAMOPP) model introduces a novel 

framework for UAV path planning in complex three-dimensional environments. Its methodology 

incorporates a hybrid sampling strategy and a robust cost function to optimize path length, 

smoothness, collision avoidance, and energy efficiency. This section elaborates on the key 

components of the methodology with comprehensive explanations and mathematical formalism. 

3.1. Hybrid Sampling Strategy 

The hybrid sampling strategy in the EAMOPP is designed to improve both exploration of the 

search space and exploitation of promising regions. The strategy achieves this by combining random 

perturbations with gradient-based adjustments to iteratively refine the candidate path. Consider a path 

𝑃 consisting of 𝑛 + 2 points, 𝑃 = {𝑝0, 𝑝1, … , 𝑝𝑛+1}, where 𝑝0 represents the start position, 𝑝𝑛+1 is 

the goal position, and 𝑝𝑖 for 1 ≤ 𝑖 ≤ 𝑛 are intermediate points. At each iteration, the position of each 

intermediate point 𝑝𝑖 is updated based on a combination of two components: a random offset Δ𝑝𝑖 and 

a gradient-based adjustment 𝐺𝑖. The random offset is drawn from a uniform distribution: Δ𝑝𝑖 ∼
𝒰(−α, α), where α defines the magnitude of the perturbation. 

This component ensures adequate exploration of the environment by introducing randomness 

into the sampling process. The gradient-based adjustment is computed as: 𝐺𝑖 = β ⋅ sign(𝑝𝑛+1 − 𝑝𝑖), 

where β is a scaling factor that controls the influence of the gradient, and sign(⋅) denotes the element-

wise sign function. This adjustment steers the intermediate point 𝑝𝑖 towards the goal 𝑝𝑛+1, ensuring 

a systematic convergence of the path. The candidate positions 𝑝𝑖
new for the next iteration is then 

computed as 𝑝𝑖
new = clip(𝑝𝑖 + Δ𝑝𝑖 + 𝐺𝑖,bounds), where the clip operation restricts the position to 

lie within the predefined bounds of the environment. The combination of these components enables 

the hybrid sampling strategy to dynamically balance global exploration and local exploitation. 

3.2. Cost Function Design 

The cost function evaluates candidate paths based on multiple objectives, including path length, 

smoothness, collision avoidance, and energy efficiency. The design of the cost function ensures that 

paths are not only efficient but also feasible and safe. The total path length 𝐿(𝑃) is calculated as the 

sum of Euclidean distances between consecutive points: 𝐿(𝑃) = ∑ |𝑝𝑖+1
𝑛
𝑖=0 − 𝑝𝑖|, where |  ⋅ | denotes 

the Euclidean norm. This term ensures that the algorithm prioritizes shorter paths, which are often 

more efficient. 

Path smoothness 𝑆(𝑃) is quantified by the angular changes between consecutive segments of the 

path. The angle 𝜃𝑖 at each intermediate point 𝑝𝑖 is defined as: 𝜃𝑖 = arctan (
|𝑝𝑖+1−𝑝𝑖|

|𝑝𝑖−𝑝𝑖−1|
). The smoothness 

is then computed as the sum of the absolute angular changes: 𝑆(𝑃) = ∑ |θ𝑖|𝑛
𝑖=1 . 

This term minimizes abrupt changes in direction, promoting smoother trajectories that are more 

suitable for UAV navigation. Collision avoidance is incorporated into the cost function through a 

penalty term that accounts for the proximity of the path to obstacles. Let 𝑂𝑘 represent an obstacle with 

position 𝑜𝑘 and radius 𝑟𝑘. The penalty for a point $p$ near the obstacle is given by: 𝐶𝑘(𝑝) =

max (0,1 −
|𝑝−𝑜𝑘|

𝑟𝑘
). The total collision penalty 𝐶(𝑃) for the path is the sum of penalties over all 

obstacles and path points: 𝐶(𝑃) = ∑ ∑ 𝐶𝑘(𝑝)𝑝∈𝑃𝑘 . This component penalizes paths that come too 

close to obstacles, ensuring safety. 

Energy efficiency 𝐸(𝑃) is modeled as a product of path length and smoothness, reflecting the 

increased energy consumption associated with longer and less smooth paths: 𝐸(𝑃) = 𝛾 ⋅ 𝐿(𝑃) ⋅ 𝑆(𝑃), 
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where 𝛾 is a scaling factor. This term accounts for the UAV's energy requirements, which are critical 

in operational scenarios. The total cost of a path 𝑃 is expressed as a weighted sum of these 

components:  Cost(𝑃) = 𝑤𝐿𝐿(𝑃) + 𝑤𝑆𝑆(𝑃) + 𝑤𝐶𝐶(𝑃) + 𝑤𝐸𝐸(𝑃), where 𝑤𝐿, 𝑤𝑆, 𝑤𝐶 , and 𝑤𝐸 are 

the weights assigned to the respective objectives, allowing for customization based on specific 

operational priorities. 

3.3. Iterative Optimization Process 

The optimization process begins with an initial path 𝑃(0), which is generated by linearly 

interpolating between the start and goal points. This initial path provides a baseline for iterative 

refinement. At each iteration, the algorithm first updates the positions of dynamic obstacles. These 

obstacles are modeled as entities with random velocities, and their positions are updated as: 𝑜𝑘
new =

clip(𝑜𝑘 + 𝑣𝑘 ⋅ 𝑡,bounds), where 𝑣𝑘 is the velocity of obstacle 𝑂𝑘, 𝑡 is the time step, and the clip 

operation ensures the obstacle remains within the environment. 

The intermediate points 𝑝𝑖 of the path are then updated using the hybrid sampling strategy. The 

candidate path 𝑃new is evaluated using the cost function. If the cost of the candidate path is lower than 

that of the current path 𝑃current, the update is accepted: 𝑃current = Cost(𝑃new) <
Cost(𝑃current)? 𝑃new: 𝑃current. The optimization continues iteratively until a convergence criterion is 

met, which may be defined in terms of a cost threshold or a maximum number of iterations. This 

iterative process ensures that the EAMOPP progressively refines the path to minimizing the cost 

function while adapting to dynamic environmental changes. EAMOPP leverages a hybrid sampling 

strategy and a multi-objective cost function to provide an advanced solution for real-time UAV path 

planning in dynamic 3D environments. Its ability to balance multiple objectives and handle dynamic 

obstacles makes it a significant improvement over traditional algorithm. 

4. Experiment Setup 

As presented in Fig. 1, the experimental setup for evaluating the EAMOPP model is designed to 

rigorously assess its performance in dynamic three-dimensional environments. This section details the 

model parameters, evaluation metrics, and environmental configurations used to conduct the 

experiments. 

4.1. Model Parameters 

The EAMOPP model relies on several key parameters to control its sampling strategy and 

optimization process. These parameters are tuned to balance exploration, exploitation, and 

computational efficiency, ensuring that the algorithm adapts effectively to the complexities of the 

environment. The path length parameter 𝑛 determines the number of intermediate points in the path, 

which is set to 𝑛 =  15 to ensure sufficient resolution for smooth path generation. The random 

sampling range α and gradient scaling factor β control the hybrid sampling strategy, with α =  1.0 

and β =  0.1. These values are selected to provide a balance between random exploration and 

gradient-based goal steering. 

The weights for the cost function components are crucial in determining the relative importance 

of path length, smoothness, collision avoidance, and energy efficiency. The weight values used in the 

experiments are 𝑤𝐿 = 1.0, 𝑤𝑆 = 0.5, 𝑤𝐶 = 200, and 𝑤𝐸 = 0.1. These weights emphasize collision 

avoidance and path length while moderately prioritizing smoothness and energy efficiency. The 

dynamic obstacle parameters include the velocity range 𝑣𝑘 ∼ 𝒰(0.1,0.5), which governs the motion 

of obstacles. This ensures a realistic representation of dynamic environments while maintaining 

computational tractability. 

4.2. Evaluation Metrics 

The performance of the EAMOPP model is evaluated using a comprehensive set of metrics, 

capturing the essential aspects of path planning. Path length 𝐿 is measured as the total Euclidean 

distance of the planned path. This metric quantifies the efficiency of the path, with shorter paths being 
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preferable: 𝐿(𝑃) = ∑ |𝑝𝑖+1
𝑛
𝑖=0 − 𝑝𝑖|, where |  ⋅ | denotes the Euclidean norm. Path smoothness 𝑆 is 

computed based on the angular changes between consecutive segments. Let θ𝑖 be the angle between 

the segments 𝑝𝑖−1 → 𝑝𝑖 and 𝑝𝑖 → 𝑝𝑖+1. The smoothness is defined as: 𝑆(𝑃) =

∑ |arctan (
|𝑝𝑖+1−𝑝𝑖|

|𝑝𝑖−𝑝𝑖−1|
)|𝑛

𝑖=1 . 

Collision avoidance is assessed by the collision penalty 𝐶, which quantifies the proximity of the 

path to obstacles. For an obstacle 𝑂𝑘 located at 𝑜𝑘 with radius 𝑟𝑘, the penalty for a path point 𝑝 is: 

𝐶𝑘(𝑝) = max (0,1 −
|𝑝−𝑜𝑘|

𝑟𝑘
). The total collision penalty for the path is: 𝐶(𝑃) = ∑ ∑ 𝐶𝑘(𝑝)𝑝∈𝑃𝑘 . 

Furthermore, energy consumption 𝐸 is modeled as a function of path length and smoothness: 𝐸(𝑃) =
γ ⋅ 𝐿(𝑃) ⋅ 𝑆(𝑃), where γ is a scaling factor. This term accounts for the UAV's energy requirements. 

The overall cost of a path $P$ is expressed as: Cost(𝑃) = 𝑤𝐿𝐿(𝑃) + 𝑤𝑆𝑆(𝑃) + 𝑤𝐶𝐶(𝑃) + 𝑤𝐸𝐸(𝑃), 

where 𝑤𝐿 , 𝑤𝑆, 𝑤𝐶 , and 𝑤𝐸 are weights assigned to the respective objectives. 

 

Fig. 1. Experiment setup 

4.3. Environmental Configurations 

The environment is a 3D space with dimensions defined by [xmin,  xmax], [ymin,  ymax], and 
[zmin,  zmax], where  xmin  =  ymin  =  zmin  =  0 and xmax  =  ymax  =  zmax  =  50. This 
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configuration provides a sufficiently large and challenging search space for UAV navigation. 

Obstacles are modeled as spheres with randomly assigned positions 𝑜𝑘 and radii 𝑟𝑘. The obstacle 

positions are uniformly distributed within the bounds of the environment, while the radii are drawn 

from 𝑟𝑘 ∼ 𝒰(2,5). Dynamic obstacles are included to simulate realistic operating conditions, with 

their positions updated iteratively during the optimization process. 

The start and goal positions for each UAV are generated randomly within predefined regions. 

Start positions are initialized in a region near 𝑥 =  0, 𝑦 =  0, and 𝑧 =  0, while goal positions are 

set near 𝑥 =  50, 𝑦 =  50, and 𝑧 =  50. This setup ensures diverse and nontrivial navigation 

scenarios. For experiments involving multiple UAVs, each UAV is assigned a unique start and goal 

pair, with paths optimized independently to prevent collisions. The evaluation considers both 

individual UAV performance and aggregated metrics across multiple UAVs. 

4.4. Dynamic Obstacle Behavior 

Dynamic obstacles play a crucial role in testing the adaptability of the EAMOPP model. Each 

obstacle moves with a velocity vector 𝑣𝑘 that is randomly assigned within the range [0.1,0.5]. At each 

iteration, the position of an obstacle 𝑜𝑘 is updated as 𝑜𝑘
new = clip(𝑜𝑘 + 𝑣𝑘 ⋅ 𝑡,bounds), where 𝑡 is the 

time step. The clip function ensures that obstacles remain within the environment. Dynamic behavior 

creates a non-static planning problem, requiring the EAMOPP to adapt paths in real time to avoid 

potential collisions. 

4.5. Evaluation Metrics 

To comprehensively assess the performance of the EAMOPP model, multiple evaluation metrics 

are used. These include metrics for path quality, computational performance, and overall feasibility. 

The path length 𝐿 is computed as the sum of Euclidean distances between consecutive points along 

the path: 𝐿(𝑃) = ∑ |𝑝𝑖+1
𝑛
𝑖=0 − 𝑝𝑖|, where |  ⋅ | denotes the Euclidean norm. This metric measures the 

efficiency of the planned trajectory, with shorter paths being preferred. Path smoothness 𝑆 quantifies 

the continuity of the trajectory by summing angular changes between segments: 𝑆(𝑃) =

∑ |θ𝑖|𝑛
𝑖=1 ,  θ𝑖 = arctan (

|𝑝𝑖+1−𝑝𝑖|

|𝑝𝑖−𝑝𝑖−1|
). Lower values of 𝑆 indicate smoother paths that are more 

desirable for UAV operation. Next, Collision avoidance is measured using the collision penalty 𝐶, 

calculated as: 𝐶(𝑃) = ∑ ∑𝑝∈𝑃 max (0,1 −
|𝑝−𝑜𝑘|

𝑟𝑘
)𝑘 . This metric ensures that the UAV maintains 

safe distances from obstacles. Furthermore, energy consumption 𝐸 is modeled as: 𝐸(𝑃) = γ ⋅ 𝐿(𝑃) ⋅
𝑆(𝑃), where γ is a scaling factor reflecting the energy required for navigation. Lower energy values 

are preferred. Computational efficiency is evaluated through execution time 𝑇, which measures the 

time taken to generate a path. This metric is critical for real-time applications. Finally, feasibility is a 

binary metric that indicates whether the path avoids obstacles and reaches the goal. A feasible path 

has 𝐶(𝑃) = 0. 

4.6. Validation Procedure 

To ensure robustness and statistical significance, the EAMOPP model is evaluated using a 𝑘-fold 

validation approach. The environment and obstacle configurations are divided into 𝑘 =  10 folds, 

where each fold serves as a test set while the remaining folds are used for training. This process ensures 

that the results are not biased by specific configurations. For each fold, the evaluation metrics such as 

path length, smoothness, collision penalty, energy consumption, execution time, and feasibility are 

computed and recorded. The average and standard deviation of these metrics across all folds are 

reported to summarize the model's overall performance. Mathematically, the average value of a metric 

𝑀 is given as 𝑀 =
1

𝑘
∑ 𝑀𝑖

𝑘
𝑖=1 , where 𝑀𝑖 is the value of the metric for the 𝑖-th fold. The standard 

deviation is calculated as σ_𝑀 =  √{
1

𝑘
∑ (𝑀𝑖 − 𝑀)

2𝑘
𝑖=1 . The 𝑘-fold validation process ensures that the 

evaluation is comprehensive and accounts for variations in the environment, obstacle configurations, 

and UAV trajectories. 
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4.7. Experimental Procedure 

The experimental procedure involves conducting multiple trials with varying configurations of 

obstacles and start-goal pairs. Each trial evaluates the EAMOPP model and compares its performance 

against benchmark algorithms, including A*, RRT*, Genetic Algorithms (GA), Artificial Potential 

Field (APF), Particle Swarm Optimization (PSO) and original AMOPP (Advanced Multi Objective 

Path Planning). The experiments are repeated under consistent conditions to ensure statistical 

reliability, and results are aggregated to compute average performance metrics. Dynamic obstacle 

scenarios are used to test the adaptability of the EAMOPP. Obstacles are moved iteratively during 

path optimization, requiring the model to adapt its planned path dynamically.  

5. Results and Discussion 

This section presents the results obtained from the experiments and evaluates the performance of 

the EAMOPP model in comparison to several baseline algorithms as presented in Table 1. The 

discussion focuses on analyzing key performance metrics, including path length, path smoothness, 

collision avoidance, feasibility, execution time, and UAV computation times. Insights derived from 

these metrics are further supported by visual representations of UAV trajectories. The findings 

emphasize the practicality, robustness, and computational efficiency of the EAMOPP model for UAV 

navigation in complex 3D environments. 

5.1. Performance of the EAMOPP 

The EAMOPP demonstrated substantial improvements over the Original AMOPP in terms of 

feasibility, collision avoidance, and path smoothness. The feasibility metric for the EAMOPP reached 

an average of 0.9800 with a standard deviation of 0.0600, indicating its consistent ability to generate 

collision-free paths that successfully navigate to the goal. In contrast, the Original AMOPP achieved 

an average feasibility of 0.6200, reflecting occasional failures to navigate through the complex 

obstacle configurations. This result highlights the impact of the enhanced cost function and hybrid 

sampling strategy in improving the model’s reliability. Another critical improvement in the EAMOPP 

is the complete elimination of collision violations, with an average collision metric of 0.0000 

compared to 0.0075 for the Original AMOPP. This outcome underscores the effectiveness of the 

enhanced cost function, which prioritizes obstacle avoidance by assigning a high penalty to paths that 

approach or intersect obstacle boundaries. By doing so, the EAMOPP ensures that UAVs maintain 

safe distances from obstacles, even in highly dynamic environments. 

Although the EAMOPP produced slightly longer paths with an average path length of 8.8745 

compared to 7.8496 for the Original AMOPP, this increase is justified by the model’s prioritization 

of feasibility and safety. Furthermore, the EAMOPP significantly outperformed the Original AMOPP 

in terms of path smoothness, achieving an average score of 9.3456 with a standard deviation of 0.6197. 

The Original AMOPP, by comparison, recorded a smooth score of 3.4545. This enhancement ensures 

that the generated paths are smoother and more practical for UAV operation, reducing abrupt 

directional changes and improving flight stability. EAMOPP also exhibited greater computational 

efficiency, achieving an average execution time of 6.6410 seconds compared to 7.2395 seconds for 

the Original AMOPP. This reduction in execution time demonstrates the efficiency of the hybrid 

sampling strategy, which effectively balances exploration and exploitation during path planning. The 

improved performance metrics of the EAMOPP confirm its superiority in navigating complex and 

dynamic environments. 

5.2. Comparison with Traditional Algorithms 

The EAMOPP was evaluated against traditional algorithms, including A*, Artificial Potential 

Field (APF), and RRT*. The results reveal significant differences in their ability to handle dynamic 

and obstacle-rich environments. The A* algorithm achieved relatively high feasibility, with an 

average score of 0.8000, and demonstrated strong collision avoidance, with an average collision 

metric of 0.0012. However, the paths generated by A* were less smooth than those of the EAMOPP, 
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with an average smoothness score of 6.9436. Additionally, the computational performance of A* was 

significantly inferior, with an average execution time of 24.6948 seconds and UAV computation times 

of 4.9390 seconds per UAV. While A* is reliable in static environments, its high computational 

demands and suboptimal smoothness limit its applicability in real-time UAV path planning. 

The APF algorithm excelled in computational efficiency, with an average execution time of 

0.3352 seconds and UAV computation times of 0.0670 seconds per UAV. It also produced minimal 

path lengths, averaging 6.9240, and achieved high path smoothness with a score of 0.1131. However, 

the feasibility of APF was 0.0000, indicating a complete inability to navigate safely through obstacles. 

The average collision metric of 0.0341 further highlights its failure to avoid obstacles effectively. 

These results suggest that while APF is computationally efficient, its reliance on potential fields leads 

to erratic and unreliable behavior in dynamic environments. The RRT* algorithm struggled to produce 

meaningful results under the given experimental conditions. Most metrics were undefined due to 

frequent failures in reaching the goal, and its feasibility was extremely low. With an average execution 

time of 37.9999 seconds, RRT* was the least efficient among the evaluated algorithms. These findings 

confirm that RRT* is unsuitable for environments with high obstacle density and dynamic elements. 

5.3. Comparison with Heuristic-Based Approaches 

Heuristic-based approaches, such as Particle Swarm Optimization (PSO) and Genetic Algorithm 

(GA), were also evaluated as baseline methods. The PSO algorithm demonstrated moderate 

performance, with an average path length of 17.9849 and a smoothness score of 4.6473. However, its 

feasibility was extremely low, averaging 0.0750, and collision violations were relatively high, with an 

average metric of 0.0083. Although PSO was computationally efficient, with an average execution 

time of 1.1411 seconds, its inability to reliably navigate obstacles undermines its practical utility. The 

GA failed to produce viable paths in most scenarios, resulting in undefined metrics for path length, 

smoothness, and feasibility. Its computational demands were prohibitively high, with an average 

execution time of 200.6747 seconds and UAV computation times of 40.1349 seconds per UAV. These 

results highlight GA’s limitations in adapting to dynamic environments, making it unsuitable for real-

time UAV path planning. 

5.4. Visual Analysis of UAV Paths 

The visualizations of UAV trajectories provide additional insights into the performance of 

EAMOPP compared to other algorithms as presented in Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7, 

Fig. 8. The EAMOPP consistently generated smooth, feasible paths that effectively avoided obstacles 

while maintaining a direct route to the goal. These paths demonstrated the model’s ability to balance 

safety, smoothness, and computational efficiency, even in the presence of dynamic obstacles. In 

contrast, the paths generated by APF and PSO exhibited frequent collisions and erratic trajectories, 

reflecting their poor performance in collision avoidance and feasibility. The A* algorithm produced 

paths that, while feasible, were less smooth, with abrupt directional changes that could compromise 

UAV stability. The RRT* and GA algorithms failed to generate meaningful paths, as evidenced by 

their poor metrics and chaotic visual representations. These visual analyses align with the quantitative 

findings, further validating the superiority of the EAMOPP. 

5.5. Discussion 

The EAMOPP emerged as the most robust and efficient solution for UAV path planning in this 

experiment. Its ability to generate smooth, collision-free, and highly feasible paths with reasonable 

computational times makes it a practical choice for real-world applications. The comparison with 

baseline methods highlighted the limitations of traditional algorithms like A*, APF, and RRT*, as 

well as heuristic approaches like PSO and GA. EAMOPP’s hybrid sampling strategy and advanced 

cost function were instrumental in addressing these limitations, ensuring safe and reliable UAV 

navigation in complex scenarios. These findings demonstrate the effectiveness of the EAMOPP and 

provide a solid foundation for further research.  
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Fig. 2. EAMOPP simulation results 

 

Fig. 3. Original AMOPP simulation results 

 

Fig. 4. A* algorithm simulation results 
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Fig. 5. RRT* algorithm simulation results 

 

Fig. 6. Artificial potential field (APF) simulation results 

 

Fig. 7. Particle swarm optimization (PSO) simulation results 
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Fig. 8. Genetic algorithm (GA) simulation results 

Table 1.  Table of path planner performance 

Algorithm 

Path 

Lengths 

(Avg ± 

Std) 

Path 

Smoothness 

(Avg ± Std) 

Collision 

Violations 

(Avg ± Std) 

Feasibility 

(Avg ± Std) 

Execution 

Times (Avg 

± Std) 

UAV 

Computation 

Times (Avg) 

PSO 
17.9849 ± 

0.5187 

4.6473 ± 

0.3131 

0.0083 ± 

0.0025 

0.0750 ± 

0.1601 

1.1411s ± 

0.7654s 
0.2282s 

APF 
6.9240 ± 

0.0000 

0.1131 ± 

0.0000 

0.0341 ± 

0.0000 

0.0000 ± 

0.0000 

0.3352s ± 

0.0911s 
0.0670s 

RRT* nan nan nan nan 
37.9999s ± 

2.9653s 
7.6000s 

A* 
7.4625 ± 

0.0000 

6.9436 ± 

0.0000 

0.0012 ± 

0.0000 

0.8000 ± 

0.0000 

24.6948s ± 

1.8057s 
4.9390s 

Original 

AMOPP 

7.8496 ± 

0.0697 

3.4545 ± 

0.4692 

0.0075 ± 

0.0067 

0.6200 ± 

0.2750 

7.2395s ± 

2.1691s 
1.4479s 

Enhanced 

AMOPP 

8.8745 ± 

0.1718 

9.3456 ± 

0.6197 

0.0000 ± 

0.0000 

0.9800 ± 

0.0600 

6.6410s ± 

0.6676s 
1.3282s 

GA nan nan nan nan 
200.6747s ± 

7.1089s 
40.1349s 

6. Conclusion 

This study proposed and evaluated the Enhanced Advanced Multi-Objective Path Planning 

(EAMOPP) model for UAV navigation in complex and dynamic 3D environments. The EAMOPP 

builds upon the Original AMOPP by introducing a hybrid sampling strategy and an advanced cost 

function, which prioritize feasibility, collision avoidance, and path smoothness. Through extensive 

experimentation and comparisons with baseline methods, including traditional algorithms (A*, RRT*, 

APF) and heuristic-based approaches (PSO, GA), EAMOPP demonstrated significant advancements 

in UAV path planning. The results revealed that the EAMOPP consistently outperformed the Original 

AMOPP and baseline methods across key performance metrics. The model achieved near-perfect 

feasibility with an average score of 0.9800, eliminated collision violations, and generated paths with 

exceptional smoothness, averaging 9.3456. While the EAMOPP produced slightly longer paths than 

the Original AMOPP, this trade-off was justified by its enhanced safety and reliability. Furthermore, 

the computational efficiency of the EAMOPP, with an average execution time of 6.6410 seconds, 

makes it a viable solution for real-time UAV operations. 

Comparative analysis with baseline methods further emphasized the robustness of the EAMOPP. 

Traditional algorithms like A* and heuristic approaches like PSO struggled with either computational 
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efficiency or feasibility in obstacle-rich environments. The EAMOPP successfully addressed these 

limitations, demonstrating its ability to adapt to dynamic obstacles while maintaining smooth and 

collision-free trajectories. The visual analyses supported the quantitative findings, highlighting the 

EAMOPP's capacity to produce reliable and navigable paths that ensure safe UAV operation. These 

trajectories were particularly effective in balancing path optimality with the complexities of real-world 

constraints, including dynamic obstacles and high-density environments. In conclusion, the EAMOPP 

offers a robust, efficient, and practical framework for UAV navigation in complex 3D environments. 

Its hybrid sampling strategy and advanced cost function set a new benchmark for multi-objective path 

planning, addressing critical challenges associated with collision avoidance, feasibility, and 

computational demands. The findings of this study provide a strong foundation for future research, 

which could explore further optimizations to enhance path optimality, reduce computational overhead, 

and extend the applicability of the model to diverse UAV missions, including disaster response, 

surveillance, and logistics in challenging terrains. 
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