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1. Introduction  

Path planning plays a pivotal role in robotics, autonomous systems, and unmanned aerial vehicles 

(UAVs), enabling these systems to navigate complex environments efficiently and safely [1]-[3]. The 

objective is to determine an optimal route from a start to a destination while considering constraints 

such as obstacles, terrain features, and energy consumption [4]-[6]. Among the classical methods, the 

A* algorithm stands out due to its computational efficiency and heuristic-driven approach [7]-[9]. 

Despite its widespread adoption, A* and other traditional algorithms often struggle with dynamic 

environments and complex, high-dimensional constraints, necessitating innovative approaches to path 

planning [5], [10], [11]. Recent advances in machine learning, particularly neural networks, have 

revolutionized optimization and decision-making tasks across various domains [12]-[14]. Neural 

networks offer the ability to learn from data and generalize across different scenarios, providing a 

promising alternative to heuristic-based methods [15]-[17]. By leveraging supervised and 
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reinforcement learning techniques, neural networks have shown potential to overcome the limitations 

of classical methods [18]-[20]. However, a comprehensive understanding of their applicability and 

performance in path planning tasks remains underexplored, especially when benchmarked against 

datasets generated by robust algorithms like A* [11], [21], [22]. Previous studies have predominantly 

focused on enhancing A* with heuristic modifications or hybridizing it with metaheuristic techniques 

such as genetic algorithms or particle swarm optimization [23]-[25]. While these methods improve 

performance under specific conditions, their scalability and adaptability to diverse scenarios remain 

limited [26]-[28]. Concurrently, research on neural networks for path planning has often been 

restricted to specific architectures or problem settings, leaving a gap in the comparative evaluation of 

various neural network models in terms of accuracy, computational efficiency, and robustness [29]-

[31]. 

Addressing this gap, the present study aims to evaluate the performance of multiple neural 

network architectures for path planning tasks using datasets generated by the A* algorithm. By 

systematically analyzing the capabilities of different architectures, including feedforward neural 

networks, convolutional neural networks, and recurrent neural networks, this research seeks to identify 

the optimal model for specific path planning challenges. The dataset used in this study retains the 

inherent complexity of A*-based solutions, providing a robust baseline for evaluating neural network 

performance. The key contributions of this research are threefold. First, it introduces a novel 

experimental framework for benchmarking neural networks on datasets generated by A*, ensuring 

consistency and comparability of results. Second, it provides an in-depth analysis of model 

performance across critical metrics such as path smoothness, computational cost, and adaptability to 

unseen scenarios. Third, this study contributes to the growing body of knowledge on integrating 

machine learning and classical optimization techniques for autonomous navigation. The remainder of 

this article is structured as follows. Section 2 reviews the related work on path planning and neural 

network-based optimization. Section 3 details the methodology, including dataset generation, neural 

network architecture, and evaluation metrics. Section 4 presents and discusses the experimental 

results, highlighting the strengths and limitations of each model. Finally, Section 5 concludes the 

study, offering insights and directions for future research. 

2. Related Work 

Path planning has been a central topic in robotics, autonomous systems, and transportation, with 

methods ranging from classical deterministic approaches to modern machine learning-based solutions. 

This section reviews the key advancements in the field, focusing on traditional path planning 

techniques, neural network applications in optimization, and the intersection of these methodologies. 

2.1. Traditional Path Planning Methods 

Classical path planning algorithms, such as Dijkstra’s algorithm, A*, and Rapidly exploring 

Random Trees (RRT), have long been the backbone of navigation systems [32]-[34]. Among these, 

the A* algorithm has gained significant attention due to its balance of computational efficiency and 

optimality when combined with an admissible heuristic [35]-[37]. A* operates by iteratively exploring 

nodes with the lowest cumulative cost, guided by a heuristic function that estimates the cost to the 

goal [38]-[40]. Despite its effectiveness, A* faces challenges in real-time applications, particularly in 

dynamic or large-scale environments, due to its high computational overhead and reliance on heuristic 

tuning [26], [41], [42].  

Variations of A*, such as D* and Anytime A*, have attempted to address these limitations [43]-

[45]. D* optimizes the algorithm for dynamic environments by allowing re-evaluation of paths when 

the environment changes [46]-[48]. Anytime A*, on the other hand, offers a trade-off between 

computational time and path optimality by generating suboptimal paths early and refining them over 

time [49]. However, these adaptations often involve significant algorithmic complexity and may not 

generalize well across diverse scenarios [50]. Metaheuristic approaches, including genetic algorithms 

(GA), particle swarm optimization (PSO), and ant colony optimization (ACO), have been explored to 
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overcome the deterministic limitations of classical algorithms [51]-[54]. These methods rely on 

stochastic processes to explore the solution space, offering better scalability and adaptability in high-

dimensional and dynamic environments [55]. However, their reliance on extensive parameter tuning 

and convergence time constraints poses practical challenges [56]. 

2.2. Neural Networks in Path Planning 

The advent of deep learning has opened new avenues for path planning by enabling data-driven 

approaches that can learn complex patterns and generalize across varying scenarios [20], [57], [58]. 

Neural networks (NNs), particularly deep neural networks (DNNs), have been utilized to model and 

solve optimization problems in navigation tasks [59]-[61]. These models leverage large datasets to 

capture intricate relationships between input features and output paths, providing an alternative to 

heuristic and rule-based methods [62]. Feedforward neural networks (FNNs) have been employed in 

path planning tasks, typically for learning static navigation maps or predicting costs associated with 

specific routes [63]. While FNNs are computationally efficient, their inability to model spatial 

dependencies limits their performance in complex environments [64]. 

Convolutional neural networks (CNNs), originally developed for image processing, have 

demonstrated significant promise in path planning, particularly for grid-based and map-based 

representations [65]. CNNs excel in capturing spatial hierarchies and local patterns, making them 

suitable for tasks such as obstacle detection, cost map generation, and route optimization. Studies 

integrating CNNs with reinforcement learning have shown enhanced performance in dynamic 

environments, enabling real-time adaptability [66]. Recurrent neural networks (RNNs) and their 

variants, such as Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU), have been 

explored for sequential decision-making tasks in navigation [67]. These models are particularly 

effective in scenarios requiring memory of past states, such as multi-step planning in partially 

observable environments [68]. However, their training complexity and susceptibility to vanishing 

gradient issues remain barriers to widespread adoption [69]. Hybrid models combining neural 

networks with classical algorithms or metaheuristics have also emerged as a promising research 

direction [70], [71]. For instance, CNNs and RNNs have been used to learn heuristic functions for A*, 

enhancing its efficiency and robustness [24]. Similarly, neural networks have been integrated with 

PSO and GA to optimize parameter selection and accelerate convergence [72]. 

2.3. Comparative Studies and Performance Evaluation 

While individual applications of neural networks in path planning have been extensively 

explored, comparative studies evaluating the relative performance of different neural architectures are 

limited. Existing research often focuses on specific architecture or scenarios, providing fragmented 

insights into the broader applicability of neural networks for path planning tasks. For instance, studies 

evaluating CNNs have highlighted their superiority in tasks requiring spatial pattern recognition but 

noted their limitations in sequential decision-making [73]-[75]. Conversely, RNNs have shown strong 

performance in temporal planning tasks but struggle with spatial complexity [76]. This disparity 

underscores the need for systematic benchmarking to identify the strengths and weaknesses of each 

model type. Furthermore, the use of datasets generated by classical algorithms, such as A*, for training 

and evaluating neural networks remains underexplored [22]. Such datasets provide a structured and 

consistent baseline, enabling fair and reproducible comparisons across models. Research leveraging 

these datasets has demonstrated the potential for neural networks to approximate or even surpass 

classical methods under certain conditions, but these findings are often limited to specific problem 

settings. 

2.4. Integration of Neural Networks and Classical Methods 

The integration of neural networks with classical path planning algorithms represents a growing 

trend aimed at combining the strengths of both approaches [19]. Neural networks can serve as heuristic 

predictors, cost estimators, or path optimizers, augmenting the capabilities of classical algorithms [24]. 

For example, deep learning models have been employed to predict heuristic values for A*, reducing 

the algorithm’s computational overhead in large-scale environments [77]. Similarly, hybrid 
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frameworks combining RNNs with RRT have shown improved efficiency in dynamic and partially 

observable settings [78]. Despite these advancements, challenges remain in achieving seamless 

integration. Issues such as model interpretability, scalability to high-dimensional spaces, and the 

robustness of neural networks in adversarial environments require further investigation. Moreover, 

the lack of standardized benchmarks and evaluation metrics hinders the ability to compare and 

generalize findings across studies. 

2.5. Research Gap  

While significant progress has been made in both classical and neural network-based path 

planning methods, critical gaps persist in the comparative evaluation of neural architectures, the 

integration of machine learning with classical techniques, and the scalability of these methods to 

diverse scenarios. This study addresses these gaps by systematically benchmarking multiple neural 

network architectures using datasets generated by the A* algorithm. By providing a comprehensive 

analysis of model performance across key metrics, this research aims to advance the understanding 

and application of neural networks in path planning. 

3. Methodology 

This section outlines the methodology employed in this research. As presented in the Fig. 1, this 

phase includes the generation of a dataset for training and testing, the design of multiple neural 

network architectures tailored for path planning, and the evaluation metrics used to comprehensively 

assess the performance of each model.  

 

Fig. 1. Research Methodology 
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3.1. Dataset Generation 

The dataset for this study was generated using synthetic grid-based maps, where each map 

represents a bounded two-dimensional space divided into discrete cells. Each cell could either be 

navigable or represent an obstacle. These maps simulate real-world scenarios of UAV navigation 

under varying levels of complexity, enabling the evaluation of path-planning models in diverse 

environments. The grid sizes varied, including 10 × 10, 50 × 50, and 100 × 100, to provide 

different spatial resolutions for the path-planning task. Each grid cell is associated with a state: free 

cells (value 0), obstacle cells (1), the start node (2), and the goal node (3). Obstacle densities of 10%, 

30%, and 50% were introduced to create scenarios of varying navigational difficulty. To generate 

optimal paths, the A* algorithm was employed. This algorithm calculates paths by minimizing the 

cost function 𝑓(𝑛), defined as: 𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛), where 𝑔(𝑛) is the actual cost is from the start 

node to node 𝑛, and ℎ(𝑛) is the heuristic cost estimate from 𝑛 to the goal node. For this study, the 

heuristic function was selected as the Manhattan distance ℎ(𝑛) = |𝑥goal − 𝑥𝑛| + |𝑦goal − 𝑦𝑛| where 

(𝑥goal, 𝑦goal) and (𝑥𝑛, 𝑦𝑛) denote the coordinates of the goal and the current node, respectively. The 

A* algorithm outputs an optimal path as a sequence of waypoints from the start to the goal. Each 

waypoint corresponds to a cell in the grid. The generated dataset contains input features such as grid 

encoding, obstacle locations, and heuristic values, while the outputs represent the optimal path 

generated by the algorithm. Each grid was flattened into a one-dimensional array to be used as input 

to the neural networks. Feature normalization was applied to scale the data between [0,1]: 𝑥𝑖
′ =

𝑥𝑖−min(𝑥)

max(𝑥)−min(𝑥)
. This preprocessing step ensures that features are uniformly represented, facilitating 

faster convergence during model training. The dataset was split into training (80%), validation (10%), 

and test (10%) subsets. Stratified sampling was applied to ensure that obstacle densities and grid sizes 

were uniformly distributed across the splits, preventing bias. 

3.2. Neural Network Architectures 

To evaluate the suitability of neural networks for path planning, multiple architectures were 

implemented. These models were carefully selected to address various challenges of the path-planning 

task, such as spatial feature extraction, sequential dependencies, and global relationships. 

3.2.1. UNET-3D 

The UNET-3D architecture is designed for volumetric data and grid-based representations. It 

employs an encoder-decoder structure with symmetric skip connections. The encoder extracts 

hierarchical spatial features by progressively down-sampling the input grid, while the decoder 

reconstructs the output path by up-sampling the encoded features. The convolution operation in 

UNET-3D is defined as 𝑂(𝑖, 𝑗, 𝑘) = ∑ ∑ ∑ 𝐾(𝑚, 𝑛, 𝑝)𝑃−1
𝑝=0

𝑁−1
𝑛=0

𝑀−1
𝑚=0 ⋅ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛, 𝑘 + 𝑝) + 𝑏, 

where 𝐾 is the kernel, 𝐼 is the input feature map, and 𝑏 is the bias term. The encoder and decoder are 

connected via skip connections, which preserve spatial details by transferring feature maps directly 

from the encoder to the decoder. 

3.2.2. Transformer Model 

Transformer architecture leverages a self-attention mechanism to capture global relationships in 

the input data. The self-attention mechanism is mathematically expressed as Attention(𝑄, 𝐾, 𝑉) =

softmax (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉 Here, 𝑄, 𝐾, and 𝑉 represent the query, key, and value matrices, respectively, and 

𝑑𝑘 is the dimensionality of the key vector. This architecture is particularly effective in handling long-

range dependencies, making it suitable for path-planning tasks that require a global understanding of 

the grid. 

3.2.3. MLP and LSTM 

The Multi-Layer Perceptron (MLP) was implemented as a baseline model. It consists of multiple 

fully connected layers, with ReLU activation functions. The forward propagation in an MLP is defined 

as: 𝑧𝑙 = 𝑊𝑙𝑎𝑙−1 + 𝑏𝑙 ,  𝑎𝑙 = σ(𝑧𝑙) where 𝑧𝑙 is the pre-activation output at layer 𝑙, 𝑊𝑙 and 𝑏𝑙 are 
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the weights and biases, and σ is the activation function. The LSTM model captures temporal 

dependencies in the sequence of waypoints. It uses gating mechanisms, defined as (1)-(5). 

𝑖𝑡 = σ(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (1) 

𝑓𝑡 = σ(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (2) 

𝑜𝑡 = σ(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (3) 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡  (4) 

tanh(𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (5) 

where the hidden state ℎ𝑡 is given by ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡). 

3.3. Evaluation Metrics 

The performance of each model was evaluated using several metrics. Path length (𝐿) was 

computed as  𝐿 = ∑ √(𝑥𝑖+1 − 𝑥𝑖)2 + (𝑦𝑖+1 − 𝑦𝑖)2𝑛−1
𝑖=1  .Collisions were counted as the number of 

instances where the path intersected with obstacles. Clearance was measured as the average and 

minimum distance from the path to the nearest obstacle 𝐶min = min
𝑜∈𝑂

√(𝑥 − 𝑥𝑜)2 + (𝑦 − 𝑦𝑜)2. Next, 

smoothness quantified the angular deviation between consecutive path segments: 𝑆 =

∑𝑛
𝑖=2 arccos (

𝑣𝑖−1⋅𝑣𝑖

|𝑣𝑖−1||𝑣𝑖|
). Travel time was directly proportional to path length and inversely 

proportional to UAV speed. Finally, the waypoint count measured the number of discrete waypoints 

in the planned path, reflecting the resolution of the solution.  

4. Results and Discussion 

This section presents the results of evaluating multiple neural network architectures on the 

multi-UAV path planning task as presented in Fig. 1 and Table 1, Table 2, Table 3, Table 4, Table 

5, Table 6, Table 7, Table 8, Table 9, Table 10. The models analyzed include UNET 3D, Transformer 

Model, MLP-LSTM, CNN-GRU, CNN-LSTM, Residual CNN, MLP Model, Simple CNN, CNN-

BiLSTM, and Hybrid CNN-MHA. The performance of each model was assessed based on key 

metrics, including path length, collisions, average clearance, minimum clearance, smoothness, travel 

time, and waypoint count. Across all UAVs, the model produced a path length of zero and recorded 

no collisions or travel time, suggesting that it failed to construct actionable trajectories. Despite these 

shortcomings, UNET-3D demonstrated moderate performance in maintaining average clearance, 

with UAV 2 achieving the highest value of 1.100, followed by UAV 3 at 0.934. This indicates that 

the model prioritized obstacle avoidance but lacked the structural capability to generate meaningful 

paths. The waypoint counts for all UAVs remained fixed at 10, which suggests that the model 

defaulted to a baseline output, further evidencing its inability to adaptively generate paths based on 

spatial configurations. 

The Transformer model exhibited similar limitations to UNET-3D, as it also generated zero path 

lengths, collisions, and travel times for all UAVs. However, the model showed slightly improved 

average clearance values, particularly for UAV 2, which achieved the highest value of 1.143. This 

performance suggests that the Transformer model, leveraging its global attention mechanisms, was 

more effective in identifying safe regions within the grid. Nevertheless, the low clearance values for 

UAV 1 (0.442) and UAV 3 (0.652) reflect inconsistencies in its ability to uniformly handle obstacle-

laden environments. The model's reliance on attention mechanisms, while beneficial for global 

obstacle recognition, appears insufficient for integrating local spatial features to construct usable 

paths. The MLP-LSTM model demonstrated a significant improvement in generating feasible paths 

compared to both UNET-3D and Transformer models. For UAV 1, the model produced a path length 

of 6.783, with no collisions and an average clearance of 2.034. The smoothness score of 1.394 for 
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UAV 1 was notably higher than the other models, indicating that the MLP-LSTM could generate 

relatively smooth paths. However, for UAV 2 and UAV 3, the model recorded one collision each, 

with minimum clearance values dropping to -0.022 and -0.123, respectively. These negative values 

indicate intersections with obstacles, suggesting that the model's obstacle avoidance capabilities were 

inconsistent across UAVs. While the MLP-LSTM excelled in smoothness and clearance metrics for 

UAV 1, the performance decline for UAV 2 and UAV 3 underscores the challenges of adapting to 

varying spatial configurations. 

Table 1.  UNET-3D Model 

UAV 
Path 

Length 
Collisions 

Avg 

Clearance 

Min 

Clearance 
Smoothness 

Travel 

Time 

Waypoint 

Count 

UAV 1 0.0 0.0 0.634 0.634 0.0 0.0 10.0 

UAV 2 0.0 0.0 1.1 1.1 0.0 0.0 10.0 

UAV 3 0.0 0.0 0.934 0.934 0.0 0.0 10.0 

Table 2.  Transformer Model 

UAV 
Path 

Length 
Collisions 

Avg 

Clearance 

Min 

Clearance 
Smoothness 

Travel 

Time 

Waypoint 

Count 
UAV 1 0.0 0.0 0.442 0.442 0.0 0.0 10.0 

UAV 2 0.0 0.0 1.143 1.143 0.0 0.0 10.0 

UAV 3 0.0 0.0 0.652 0.652 0.0 0.0 10.0 

Table 3.  MLP-LSTM Model 

UAV 
Path 

Length 
Collisions 

Avg 

Clearance 

Min 

Clearance 
Smoothness 

Travel 

Time 

Waypoint 

Count 
UAV 1 6.783 0.0 2.034 0.045 1.394 6.783 50.0 

UAV 2 6.729 1.0 2.075 -0.022 1.189 6.729 50.0 

UAV 3 6.644 1.0 2.015 -0.123 1.165 6.644 50.0 

Table 4.  CNN-GRU Model 

UAV 
Path 

Length 
Collisions 

Avg 

Clearance 

Min 

Clearance 
Smoothness 

Travel 

Time 

Waypoint 

Count 

UAV 1 6.314 2.0 0.575 -0.549 0.194 6.314 10.0 

UAV 2 6.689 1.0 0.645 -0.118 0.334 6.689 10.0 

UAV 3 6.324 0.0 1.025 0.556 0.703 6.324 10.0 

Table 5.  CNN-LSTM Model 

UAV 
Path 

Length 
Collisions 

Avg 

Clearance 

Min 

Clearance 
Smoothness 

Travel 

Time 

Waypoint 

Count 
UAV 1 6.354 2.0 0.55 -0.553 0.693 6.354 10.0 

UAV 2 6.583 1.0 0.615 -0.135 0.61 6.583 10.0 

UAV 3 6.509 0.0 1.033 0.6 0.963 6.509 10.0 

Table 6.  Residual-CNN Model 

UAV 
Path 

Length 
Collisions 

Avg 

Clearance 

Min 

Clearance 
Smoothness 

Travel 

Time 

Waypoint 

Count 
UAV 1 0.0 0.0 0.675 0.675 0.0 0.0 10.0 

UAV 2 0.0 0.0 1.032 1.032 0.0 0.0 10.0 

UAV 3 0.0 0.0 0.565 0.565 0.0 0.0 10.0 

 

The CNN-GRU model also demonstrated the ability to generate feasible paths but showed 

limitations in avoiding collisions. For UAV 1, the model produced a path length of 6.314 with two 

collisions, an average clearance of 0.575, and a smoothness score of 0.194. UAV 2 showed slightly 

better performance, with a path length of 6.689, one collision, and an average clearance of 0.645. 
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UAV 3 achieved the best clearance among the three UAVs, with an average value of 1.025 and no 

collisions. However, the relatively low smoothness scores across all UAVs indicate that the CNN-

GRU struggled to balance path feasibility and trajectory consistency. The integration of convolutional 

layers for spatial feature extraction and GRU layers for sequential modeling proved moderately 

effective but insufficient for ensuring high-quality paths. The CNN-LSTM model exhibited a similar 

trend to CNN-GRU, with feasible paths generated for all UAVs but with persistent collision rates. For 

UAV 1, the path length was 6.354 with two collisions and an average clearance of 0.550. UAV 2 and 

UAV 3 showed slight improvements in obstacle avoidance, with average clearance values of 0.615 

and 1.033, respectively. The smoothness scores for CNN-LSTM were higher than those of CNN-

GRU, particularly for UAV 3, which achieved a smoothness score of 0.963. This suggests that the 

LSTM layers contributed positively to the sequential modeling of trajectories. However, the persistent 

collision rates and the model's struggle to consistently maintain high clearance values highlight its 

limitations in effectively integrating spatial and temporal dependencies. The Residual CNN model 

exhibited similar deficiencies to the UNET-3D and Transformer models, producing zero path lengths, 

collisions, smoothness, and travel times for all UAVs. The average clearance values were moderate, 

with UAV 2 achieving the highest value of 1.032, followed by UAV 1 at 0.675. These results suggest 

that the residual connections in the model preserved spatial features but failed to translate these 

features into actionable trajectories. The zero values for key metrics such as path length and travel 

time indicate that the model was unable to generate paths, rendering it ineffective for the path-planning 

task. Path planning results using neural network + A* shown in Fig. 2. 

Table 7.  MLP Model 

UAV 
Path 

Length 
Collisions 

Avg 

Clearance 

Min 

Clearance 
Smoothness 

Travel 

Time 

Waypoint 

Count 
UAV 1 0.0 0.0 0.739 0.739 0.0 0.0 10.0 

UAV 2 0.0 0.0 0.862 0.862 0.0 0.0 10.0 

UAV 3 0.0 0.0 0.614 0.614 0.0 0.0 10.0 

Table 8.  Simple CNN Model 

UAV 
Path 

Length 
Collisions 

Avg 

Clearance 

Min 

Clearance 
Smoothness 

Travel 

Time 

Waypoint 

Count 
UAV 1 0.0 0.0 0.816 0.816 0.0 0.0 10.0 

UAV 2 0.0 0.0 1.038 1.038 0.0 0.0 10.0 

UAV 3 0.0 0.0 0.632 0.632 0.0 0.0 10.0 

Table 9.  CNN-BiLSTM Model 

UAV 
Path 

Length 
Collisions 

Avg 

Clearance 

Min 

Clearance 
Smoothness 

Travel 

Time 

Waypoint 

Count 
UAV 1 7.132 3.0 0.626 -0.685 0.407 7.132 10.0 

UAV 2 6.594 1.0 0.633 -0.124 0.581 6.594 10.0 

UAV 3 6.038 0.0 1.104 0.684 1.271 6.038 10.0 

Table 10.  Hybrid CNN-MSA Model 

UAV 
Path 

Length 
Collisions 

Avg 

Clearance 

Min 

Clearance 
Smoothness 

Travel 

Time 

Waypoint 

Count 

UAV 1 0.0 0.0 0.498 0.498 0.0 0.0 10.0 

UAV 2 0.0 0.0 1.01 1.01 0.0 0.0 10.0 

UAV 3 0.0 0.0 0.696 0.696 0.0 0.0 10.0 

 

The MLP Model, like the Residual CNN, failed to generate feasible paths, producing zero path 

lengths, collisions, smoothness, and travel times for all UAVs. The average clearance values were 

slightly higher than those of the Residual CNN, with UAV 2 achieving a value of 0.862. However, 

the model's inability to generate paths highlights the limitations of fully connected layers in capturing 

the complex spatial dependencies required for path planning. The Simple CNN model performed 
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similarly to the MLP and Residual CNN models, producing zero path lengths and travel times for all 

UAVs. The average clearance values were moderate, with UAV 2 achieving the highest value of 

1.038. While the convolutional layers allowed the model to identify obstacle-free areas, the lack of 

sequential modeling capabilities prevented it from generating feasible paths. The CNN-BiLSTM 

model demonstrated substantial improvements in path feasibility compared to other models. For UAV 

1, the model produced a path length of 7.132 with three collisions and an average clearance of 0.626. 

UAV 2 and UAV 3 showed better obstacle avoidance, with average clearance values of 0.633 and 

1.104, respectively. The smoothness scores for UAV 2 and UAV 3, at 0.581 and 1.271, respectively, 

were among the highest recorded, indicating that the BiLSTM layers effectively modeled the temporal 

dependencies in the trajectories. Despite these advancements, the collision rate for UAV 1 highlights 

the challenges in integrating spatial and sequential dependencies consistently across all UAVs. 

    
Unet-3D Transformer MLP-LSTM CNN-GRU 

    
CNN-LSTM Residual CNN MLP Simple - CNN 

 

  

 

 CNN-BiLSTM CNN-MHA  

Fig. 2. Path planning results using neural network + A* 

The Hybrid CNN-MHA model exhibited performance trends like the UNET-3D and Transformer 

models, producing zero path lengths, collisions, and travel times for all UAVs. The average clearance 

values were moderate, with UAV 2 achieving 1.010, but the model's inability to generate paths 

underscores the limitations of combining convolutional layers with attention mechanisms in this 

context. Overall, the results reveal that while some models, such as MLP-LSTM and CNN-BiLSTM, 

could generate feasible paths with relatively high smoothness and clearance, others, like UNET-3D, 

Transformer, and Hybrid CNN-MHA, struggled to construct usable trajectories. The findings 

emphasize the need for hybrid architectures that balance spatial feature extraction, temporal modeling, 

and global attention mechanisms to address the challenges of multi-UAV path planning effectively. 

5. Conclusion 

This study evaluated the performance of various neural network architectures for multi-UAV 

path planning, including UNET-3D, Transformer, MLP-LSTM, CNN-GRU, CNN-LSTM, Residual 
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CNN, MLP, Simple CNN, CNN-BiLSTM, and Hybrid CNN-MHA. The results revealed significant 

differences in the capabilities of these models, with certain architectures excelling in specific metrics 

while others struggled to generate feasible paths. The MLP-LSTM and CNN-BiLSTM models 

demonstrated the most promise, producing feasible paths with reasonable smoothness and clearance 

values. However, both models exhibited challenges in maintaining consistent obstacle avoidance, as 

evidenced by occasional collisions. Their ability to handle spatial and sequential dependencies made 

them more effective than simpler models such as MLP and Simple CNN, which failed to generate any 

meaningful paths. Despite their improved performance, these models still require enhancements to 

achieve robust path-planning capabilities across diverse scenarios. 

On the other hand, models like UNET-3D, Transformer, and Hybrid CNN-MHA were able to 

maintain moderate clearance values, reflecting an emphasis on obstacle avoidance. However, these 

models consistently failed to generate traversable paths, resulting in zero path lengths and travel times 

across all UAVs. Their reliance on either global attention mechanisms or convolutional operations, 

without adequate integration of sequential dependencies, appears to limit their effectiveness in path 

generation. The CNN-GRU and CNN-LSTM models performed moderately, producing feasible paths 

but struggling with smoothness and collision avoidance. The Residual CNN model preserved spatial 

information effectively through skip connections but failed to utilize this information to construct 

actionable trajectories. 

Overall, the findings highlight the need for hybrid architectures that combine the strengths of 

convolutional, recurrent, and attention-based mechanisms. Future research should focus on 

developing models that integrate spatial feature extraction, temporal dependency modeling, and global 

attention to address the limitations observed in this study. Additionally, improving model 

generalization to handle diverse grid sizes, obstacle densities, and complex navigation scenarios is 

essential for advancing UAV path-planning capabilities. This study underscores the potential of neural 

networks in solving path-planning problems while identifying critical areas for improvement. The 

insights gained from this research provide a foundation for the development of more robust and 

efficient path-planning solutions for multi-UAV systems. 
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