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1. Introduction  

Face recognition technology allows the verification of identity based on unique facial features. 

[1]-[5]. This technology uses algorithms and software to collect, analyze, and compare facial features 

stored in a database, and then determines the similarity level between two faces. By identifying facial 

characteristics such as the distance between the eyes, the shape of the nose, or the contours of the face, 

this technology can provide accurate results in the process of face recognition or matching [6]-[8]. 

Applications of this technology can be found in various fields, including security, biometric 

authentication, and forensic investigations, as well as in the development of more advanced AI-based 

systems [9]. Currently, the population census data has implemented identity verification for 

individuals based on their identity card data. This is useful for ensuring the validity of identity data 

based on facial verification that has been stored during registration. 
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 Cross-age face verification is a complex problem in biometric recognition 

in terms of aging, a naturally changing face structure, and face landmark 

configuration changes over time. In this paper, a new cross-age face 

verification method is proposed with a Generative Adversarial Network 

(GAN) and a mix of landmark-based features. Realistic aging of a face with 

identity-specific landmarks, such as eyes, nose, and mouth, is generated for 

effective face recognition in a range of age groups. Performance testing 

with an in-house collected face dataset of 200 face images exhibited 

effectiveness in changing face configuration and face shape 

transformations, such as a fuller face thinning and thin face becoming 

fuller. Comparison with direct face verification showed increased values of 

similarity, such as 32.57% to 63.80%, reduced values of feature distance, 

such as 0.6743 to 0.3620, and improvement in accuracy for the ArcFace, 

VGG-Face, and Facenet architectures. ArcFace exhibited an improvement 

in accuracy with an increase in value from 82.64% to 86.02%, VGG-Face 

with an improvement in value from 76.23% to 80.57%, and Facenet with 

an improvement in value from 67.54% to 74.48%. These observations 

validate the effectiveness of the proposed method in overcoming age-

related complications and improving cross-age face verification 

performance. In future work, we plan to investigate a larger dataset and 

model refinement to realize performance improvement and real-life 

biometric suitability. 

 

Keywords 

Cross-Age; 

Face-Verification; 

GAN; 

Landmark; 

Synthesis 

This is an open-access article under the CC–BY-SA license. 

 

http://pubs2.ascee.org/index.php/ijrcs
http://dx.doi.org/10.31763/ijrcs.v5i2.1755
mailto:ijrcs@ascee.org
mailto:fahmisy@uniqhba.ac.id
mailto:yuan@uniqhba.ac.id
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


ISSN 2775-2658 
International Journal of Robotics and Control Systems 

863 
Vol. 5, No. 2, 2025, pp. 862-880 

  

 

Fahmi Syuhada (Cross-Age Face Verification Using Generative Adversarial Networks (GAN) with Landmark 

Feature) 

 

While this technology has achieved remarkable accuracy in various applications, its performance 

deteriorates significantly when verifying faces across different age periods. This challenge, known as 

cross-age face verification, arises because of natural facial aging and changes in physical landmarks 

over time [10], [11]. These changes pose critical issues for applications like identity verification 

systems that rely on historical facial data, such as identity card photos that are often taken decades 

apart [12].  This paper focuses on addressing the cross-age face verification problem, where significant 

differences in facial features over time hinder accurate identification. The inability of existing models 

to adapt to both age-related changes and landmark transformations often results in suboptimal 

verification performance [13], [14]. 

Face verification studies have identified factors that affect the sensitivity evaluation outcomes of 

the verification process [15]-[17]. The issue is whether the current face can be verified if the data used 

were registered long ago or during youth. This issue occurs frequently in identity card photo 

verification. Typically, individuals register when they are young. Since identity cards are valid for 

life, they do not update their facial data [18], [19]. Facial changes are bound to occur over time. The 

challenge is to determine how a model can verify the face in such cases. 

Cross-age face verification is an intriguing research challenge. Ramanathan and Chellappa [20] 

conducted a study on age-based facial development by modeling Bayesian classification. 

Subsequently, cross-age face verification was performed using a discriminative approach. A critical 

aspect of this study is the facial feature vector, which comprises gradient orientation parameters [21]. 

Other research has developed models such as the Hierarchical Local Binary Pattern, a set of linear 

equations for craniofacial growth parameters, the Bacteria Foraging Fusion Algorithm, the Alternating 

Greedy Coordinate Descent Algorithm, and the K-means Algorithm with features including eyes, 

nose, chin, ears, and lips [22]-[26].  

Although quite a few prior studies reported significant achievements in cross-age face 

verification, most of them did not consider the crucial limitations of conventional approaches. Most 

traditional approaches rely on a type of Bayesian classification model or an approach based on 

handcrafted features, which fail to adapt well to complex variations due to aging and changes in facial 

landmarks. For example, features based on gradient orientation [20] and hierarchical local binary 

patterns [21] are quite successful in the representation of texture; however, they are weakly capable 

of modeling nonlinear facial aging over decades. In the same vein, methods that rely on a craniofacial 

growth model [22] rely heavily on predefined growth parameters and thus can hardly generalize to 

different populations. 

Direct approaches based on facial image synthesis represent a state-of-the-art cross-age 

verification method [27], [28]. Test facial images are synthesized to reflect specific ages, resulting in 

the creation of new faces [29], [30]. Subsequently, verification can be conducted within the same age 

group. Duong et al. [31] developed a generative probabilistic model to simulate the process of facial 

aging. Generative Adversarial Networks (GANs) synthesize facial images to create new faces. GANs 

are an unsupervised learning technique in deep learning that automatically learns patterns from the 

input facial data and is then used to synthesize new facial images. 

To facilitate GAN training, a previous study [32] proposed the Deep Convolutional GAN 

framework, which has promoted the application of GANs in various tasks, such as video prediction 

and cross-domain image generation [33], [34]. Arjovsky et al. [35] performed a rigorous analysis of 

the GAN objective and its instability during the training phase,  which led to the development of 

Wasserstein GANs. Shortly after WGAN, an improved version of WGAN was proposed. The study 

[36] modeled Conditional GANs, which use prior information in image generation. Reed et al. 

demonstrated the ability to generate realistic images from text descriptions [37]. CycleGAN was also 

successfully applied to image-to-image translation tasks, achieving good performance. The proposed 

method significantly improves the performance of GANs in image generation [38]. Wang et al. 

designed the Identity-Preserved Conditional Generative Adversarial Networks (IPCGANs) 

framework. The Conditional Generative Adversarial Networks module functions as a realistic face 

synthesis that aligns with the target. The Identity-Preserved module retains identity information, and 
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the age classifier enforces the generated face to match the target age [39]. Despite these advances, 

current GAN-based methods focus primarily on age progression or regression without specifically 

addressing transformations in facial landmarks induced by aging, such as changes in facial fullness or 

shifts in the structure of jawlines and cheekbones. 

The specific problem proposed in this paper is that past facial data or historical facial images may 

exhibit different characteristics than contemporary facial images. For example, there may be 

differences in facial landmarks; for example, older faces have chubby landmarks, whereas current 

faces are slim, and vice versa. Research into facial development, particularly GAN methods, that 

addresses this issue has not yet been conducted. This condition affects the verification results if facial 

aging is performed without considering the current facial conditions. In this paper, we propose a GAN 

model to verify cross-age faces by combining the landmark characteristics of past and current faces. 

The proposed GAN was developed not only to perform aging based on age and to consider the 

differences in landmark changes between the two faces being verified. The proposed initial 

methodology is divided into several processes. These include determining and capturing age and 

landmark data from the current facial image. Then, a test face image is developed based on the 

obtained features. Finally, verification was conducted between the current face and the synthesized 

test face image. 

2. Method  

This section provides a comprehensive explanation of the research methods employed in the 

proposed design for Cross-Age Face Verification. Fig. 1 illustrates the step-by-step progression of the 

process. The process starts with Data Collection, Cross-Age Face Synthesis, Landmark Detection, 

Face-Landmark Synthesis, and concludes with the Verification Process. 

2.1. Data Collection 

At this stage, the processing of the required data for this study is initiated. The acquisition and 

preprocessing of the data required for this study are initiated at this stage. The dataset used in this 

study comprises cross-age facial images that were curated to facilitate an in-depth analysis of age-

related variations. The data requirements are identified to determine the types of data used, considering 

crucial factors such as age progression, ethnicity, facial expressions, lighting conditions, and camera 

angles to ensure a diverse and representative dataset.  

The dataset used in this study comprised face photos acquired through various sources, public 

databases, social networks, and explicit searches through search engines, such as Google. The dataset 

was compiled with care in a manner such that each individual had a minimum of two photos: a past-

face and a current-face, with a well-established age interval between them. The used dataset 

effectively portrays significant variations in face structures over a period, particularly face landmark 

configuration changes, allowing for a thorough analysis of cross-age face verification. 

To enhance the usability and quality of the dataset, preprocessing for face alignment, face 

normalization, and facial landmark detection was conducted. The preprocessing phase played a 

significant role in minimizing variations in factors not age-related, including the head pose and 

variations in illuminating conditions. In addition, filtering out low-quality face images helped preserve 

the sharpness and uniformity of face landmark positioning in the dataset. The proposed dataset 

constitutes a basis for testing the proposed cross-age face verification scheme for robustness and 

accuracy and provides useful information about the impact of age-related face transformations on face 

recognition performance. 

2.2. Cross-Age Face Synthesis 

The next stage of the proposed method, referred to as Cross-Age Face Synthesis, harmonizes the 

perceived age between a past face and current face representations. The direct approaches involving 

facial image synthesis are methods for cross-age verification. Past face images are synthesized to align 

with current face ages, effectively generating new face representations at the desired age stages. 
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Subsequently, verification was performed within the same age group, ensuring more accurate 

comparisons [31]. The Generative Adversarial Network (GAN) is a method developed to perform 

facial aging, enabling the synthesis of realistic age-progressed or age-regressed face images while 

maintaining the individual's identity [39]-[43]. Generative adversarial networks (GANs) consist of 

two main components: the Generator and the Discriminator. GANs operate based on a competitive 

principle, where the Generator produces synthetic images, and the Discriminator evaluates these 

images by comparing them with real images [44]. The fundamental equation of GANs is a minimax 

problem between the generator and discriminator, which is expressed as follows: 

 𝑚𝑖𝑛
𝐺

 
𝑚𝑎𝑥

𝐷
 𝑉(𝐷, 𝐺) =  𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥)]  + 𝔼𝑧~𝑃𝑧(𝑧) [𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))] (1) 

𝐷(𝑥) represents the probability predicted by the Discriminator that a sample 𝑥 is a real image. 

𝐺(𝑧) denotes the synthetic image generated by the Generator, where 𝑍 is a noise input sampled from 

a prior distribution 𝑃𝑧(𝑧).  𝑃𝑧(𝑧) serves as the noise distribution, while  𝑃𝑑𝑎𝑡𝑎(𝑥) represents the target 

data distribution (𝔼). 𝐷 aims to maximize𝑙𝑜𝑔𝐷(𝑥) for real data and 𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧))) for synthetic 

data, enabling it to distinguish between the two. 𝐺 the Generator seeks to minimize 𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧))) 

so that its synthetic data 𝐺(𝑧) is accepted by the Discriminator as real data (𝐷(𝐺(𝑧)) → 1). The 

proposed method for cross-age face verification based on facial development process and landmark 

feature shown in Fig. 1. 

 

Fig. 1. The proposed method for cross-age face verification based on facial development process and 

landmark feature 

The utilization of GANs in modeling new data has emerged as an innovative approach in cross-

age face synthesis research. Cross-age face synthesis focuses on generating realistic facial 

transformations that simulate natural aging while maintaining the unique identity of the individual. 
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GANs are designed to map input facial images to target age domains, ensuring that the identity of the 

individual is preserved throughout the transformation process. The Identity-Preserved Conditional 

Generative Adversarial Networks framework (Equation (2)) was developed to generate realistic facial 

transformations for a given target age. This framework ensures that identity features from the original 

face are retained while the generated face accurately represents the desired age [39]. 

 𝑚𝑖𝑛
𝐺

 
𝑚𝑎𝑥

𝐷
  𝔼𝑥~𝑃𝑥(𝑥)[𝑙𝑜𝑔𝐷(𝑥|𝐶𝑡)]  + 𝔼𝑦~𝑃𝑦(𝑦) [𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑦|𝐶𝑡)))] (2) 

In this framework, 𝑦 represents real faces within the target age group, and 𝑥 denotes synthetic 

faces generated by the generator. 𝑃𝑥(𝑥) and 𝑃𝑦(𝑦) are the distributions of synthetic and real faces, 

respectively. The discriminator 𝐷(𝑥|𝐶𝑡) ensures that real faces yyy are classified correctly as 

belonging to the target age group. Additionally, 𝐷 verifies that the generated synthetic faces 𝑥 align 

with the target age and appear realistic. The objective function encapsulates the competition between 

the generator and the discriminator in synthesizing faces. The term  𝔼𝑥~𝑃𝑥(𝑥)[𝑙𝑜𝑔𝐷(𝑥|𝐶𝑡)] ensures 

that real faces 𝑥 are accurately classified by 𝐷. Meanwhile, 𝔼𝑦~𝑃𝑦(𝑦) [𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑦|𝐶𝑡)))] 

ensures that the synthetic faces produced by 𝐺 are not easily identified as synthetic by 𝐷. The generator 

𝐺 aims to create synthetic faces 𝐺(𝑦|𝐶𝑡)) that cannot be distinguished from real faces by 𝐷. 

Conversely, the discriminator 𝐷 strives to differentiate between real faces 𝑥 and synthetic faces 

𝐺(𝑦|𝐶𝑡)), while verifying that the faces conform to the target age 𝐶𝑡. 

In many cases, obtaining paired young and old facial images of the same individual is 

challenging. CycleGAN offers a significant advantage for cross-age face synthesis as it eliminates the 

need for paired data, enabling facial transformations across age groups using unpaired datasets [38], 

[45]-[47]. The CycleGAN framework employs a cycle-consistency loss, as shown in Equation (3), to 

ensure that transformations between young and old faces, and vice versa, preserve the individual’s 

identity. This loss enforces consistency in the bidirectional mapping, maintaining the structural and 

identity features of the original face throughout the transformation process. 

 ℒ𝑐𝑦𝑐𝑙𝑒 =  𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[‖𝐺𝐵(𝐺𝐹(𝑥)) − 𝑥‖1] + 𝔼𝑦~𝑃𝑑𝑎𝑡𝑎(𝑦)[‖𝐺𝐹(𝐺𝐵(𝑦)) − 𝑦‖1] (3) 

𝐺𝐹 represents the generator that transforms a face from a younger to an older age, while 𝐺𝐵 

transforms it back from an older to a younger age. Cycle-consistency ensures that the facial identity 

remains intact during the bidirectional translation process, preserving the unique features of the 

individual. The adversarial loss is employed to guarantee that the generated faces align with the 

desired target age domain. The adversarial loss for CycleGAN can be expressed as follows: 

 ℒ𝐺𝐴𝑁(𝐺𝐹 , 𝐷𝑌, 𝑋, 𝑌) =  𝔼𝑦~𝑃𝑑𝑎𝑡𝑎(𝑦)[𝑙𝑜𝑔𝐷𝑌(𝑦)]  + 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔(1 − 𝐷𝑌(𝐺𝐹(𝑥)))] (4) 

𝐷𝑌 is the discriminator that ensures the faces generated by 𝐺𝐹 resemble those within the older 

age domain. The total loss in cross-age face synthesis combines both the adversarial loss and the cycle-

consistency loss to achieve realistic and identity-preserving transformations. The total loss can be 

expressed as follows: 

 ℒ𝑇𝑜𝑡𝑎𝑙  =  ℒ𝐺𝐴𝑁 + 𝜆ℒ𝐶𝑦𝑐𝑙𝑒 (5) 

With λ as a hyperparameter controlling the contribution of the cycle-consistency loss, the model 

ensures that the final output is not only realistic but also preserves the facial identity. The balance 

provided by λ is crucial in achieving a trade-off between generating plausible transformations and 

maintaining individual identity. 

Recent literature has integrated attention modules into GAN architectures to focus on facial 

regions that are particularly sensitive to aging. Liu dkk. (2019) proposed AttentionGAN, which 

enhances the accuracy of synthesized images by adaptively weighting critical facial features [48]. 

Additionally, Progressive GANs refine face synthesis by generating images at progressively higher 
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resolutions. Yang et al. (2020) demonstrated that multi-scale GANs can significantly improve the 

realism and age accuracy of synthesized faces [49]-[51]. 

StyleGAN (Style-Based Generator Architecture for Generative Adversarial Networks), which 

was introduced by Karras et al. revolutionized GAN capabilities by enabling the generation of high-

quality images with enhanced style control. Age transformation methods based on StyleGAN leverage 

the rich latent space of a pretrained unconditional GAN to encode real facial images, facilitating 

significant modifications to facial features and head shapes while preserving the input identity  [52]-

[56]. Building on this, Alaluf et al. employed a pretrained age regression network to model the aging 

process continuously as a regression task between the initial and target ages, offering fine-grained and 

precise control. Furthermore, the method learns through a more disentangled non-linear pathway, 

enabling advanced editing of the generated images. This approach is superior to state-of-the-art 

qualitative and quantitative evaluation methods [57]. 

2.3. Landmark Detection 

The cross-age face synthesis for face verification is the primary objective of this study. Face 

recognition across different age groups is challenging because of significant changes in facial features 

and structures over time. The verification of the identity of a subject across varying time spans often 

results in lower accuracy [58]. This challenge becomes even more pronounced with the morphological 

changes in facial landmarks, which is a key contribution of this research. A robust landmark detection 

model is essential to initiate this process. Ensemble regression tree models are among the most 

efficient approaches currently available for landmark detection [59], [60]. The initial shape of the 

landmarks (𝑆0) is defined as the mean landmark configuration derived from the training dataset. The 

model is trained using a loss function that calculates the mean squared error between the predicted 

landmarks and the ground truth landmarks, ensuring accurate alignment and representation of facial 

features for subsequent processing. 

 

ℒ =  
1

𝑁
∑‖𝑆𝑖

𝑝𝑟𝑒𝑑
−  𝑆𝑖

𝑡𝑟𝑢𝑒‖
2

𝑁

𝑖=1

 (6) 

Here, 𝑁 represents the total number of image samples in the training dataset. This function 

ensures that the model minimizes the prediction error of landmark positions during the training 

process. 

2.4. Face-Landmark Synthesis 

The final step in the face synthesis method focuses on implementing landmark adjustments after 

completing the cross-age face synthesis process. Various techniques have been developed in this 

context. Methods such as face alignment, including affine transformation, Procrustes Analysis, and 

Helmert Transformation, emphasize rotation, scaling, translation, and shear operations on facial 

images [61]. However, face-to-face synthesis using techniques like GANnotation offers a more 

realistic outcome (Sanchez & Valstar, n.d.). These approaches highlight the evolution of facial 

landmark synthesis methods, which form a critical component of the proposed framework in this 

research [62].  

The method employs a Triple Consistency Loss mechanism to ensure that the synthesized face 

remains consistent with the input identity, target attributes, and latent space representation. The Image 

Consistency (ℒ𝑖𝑚𝑎𝑔𝑒) measures the consistency of the synthesized face in terms of identity features 

and visual elements. The Image Consistency can be expressed using the following equation: 

 ℒ𝑖𝑚𝑎𝑔𝑒  = ‖𝐼 − 𝐺(𝐼, 𝐴)‖2 (7) 

𝐼 represents the input image,  𝐺(𝐼, 𝐴) denotes the synthesized image with the target attribute 𝐴, 

and ‖∙‖2 is the error function, such as the Mean Squared Error (MSE). 
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Next, Attribute Consistency(ℒ𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒)  is applied to ensure that the synthesized face accurately 

reflects the desired target attributes, such as changes in age, expression, or style. (ℒ𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒)  can be 

expressed with the following equation: 

 ℒ𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒  = ‖𝐶(𝐺(𝐼, 𝐴)) − 𝐴‖
2
 (8) 

𝐶  the attribute predictor model, and A is the target attribute. The third consistency loss, Latent 

Consistency (ℒ𝑙𝑎𝑡𝑒𝑛𝑡) ensures that the latent space representation remains consistent between the 

input face and the synthesized face. The equation for (ℒ𝑙𝑎𝑡𝑒𝑛𝑡) can be represented as follows: 

 ℒ𝑙𝑎𝑡𝑒𝑛𝑡  = ‖𝑍 − 𝐸(𝐺(𝐼, 𝐴))‖
2
 (9) 

Here, 𝑍 is the latent representation of the input, and 𝐸 is the encoder that extracts the latent 

representation from the synthesized face. The Triple Consistency Loss is computed as a combination 

of the three consistency terms and can be represented by the following equation: 

 ℒ𝑡𝑟𝑖𝑝𝑙𝑒  =  𝜆1ℒ𝑖𝑚𝑎𝑔𝑒 + 𝜆2ℒ𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 + 𝜆3ℒ𝑙𝑎𝑡𝑒𝑛𝑡 (10) 

where 𝜆1, 𝜆2, 𝜆3 are weights that determine the relative importance of each component in the overall 

loss function. 

2.5. Verification Process 

Face recognition is a technology that allows for the verification of an individual's identity based 

on distinctive facial features (Syuhada et al., 2018). Currently, advancements in technology and 

research on face verification have been extensively conducted, achieving nearly perfect accuracy 

levels. This progress is strongly attributed to the implementation of deep learning methods [63], [64]. 

OpenCV, an open-source library, has enabled face verification processes with promising accuracy, 

making it suitable for implementation in specific application projects [65], [66]. This model is also 

employed to carry out the verification process in this paper. During the evaluation, we compare the 

verification accuracy of subjects between the proposed method and direct verification. This paper 

specifically utilizes advanced face verification models to evaluate the performance of the model 

developed in this study. The models used are ArcFace [67], VGG-Face [68], and Facenet [69]. 

2.6. Performance Evaluation Metrics 

To determine the performance of the proposed method, several standard performance metrics 

were employed. These metrics provide a general indication of the predictive power of the model 

according to various aspects, such as verification accuracy, precision, recall, and overall 

discriminative power. The performance metrics employed in this study are accuracy, precision, recall, 

F1-score, and AUC-ROC, with each providing distinct information about the model’s performance 

[70], [71]. 

Accuracy is a fundamental metric that measures the proportion of correctly classified samples 

relative to the total number of samples. It is computed as follows: 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (11) 

where 𝑇𝑃 (True Positive) and 𝑇𝑁 (True Negative) represent the number of correctly identified positive 

and negative samples, respectively, and 𝐹𝑃 (False Positive) and 𝐹𝑁 (False Negative) denote 

misclassified instances. Although accuracy is widely used in model evaluation, it can be misleading 

in scenarios with class imbalance because high accuracy may not necessarily reflect a model’s ability 

to correctly classify minority class instances [72]. To mitigate accuracy limitations, both recall and 

precision were considered. In contrast, is measured in terms of a positive identified value, and 

expresses the proportion of positive instances identified out of all identified positive instances. Then, 

it can be calculated as follows: 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (12) 

A high-precision value indicates a lower false positive rate, which is particularly crucial in 

applications in which false alarms must be minimized [73]. 

On the other hand, recall, also known as sensitivity, measures the model’s ability to correctly 

identify all relevant instances within the dataset [74]. It is computed as follows: 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (13) 

A high recall indicates that the model detects most positive examples, which is an important 

characteristic in high-stakes applications like disease testing, where a missed positive case (a false 

negative) can be disastrous [75]. 

As precision and recall have a trade-off, a balanced measure is provided using the F1 score, taking 

both of them together into consideration. It is a harmonic mean between precision and recall. 

 
𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  2 ∙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (14) 

A higher F1 score indicates a well-balanced model that performs well in terms of both precision 

and recall, particularly in cases where class imbalance exists [76]. 

3. Results and Discussion 

The implementation of our cross-age face verification model was performed using the Google 

Colaboratory, leveraging its computational resources. The specifications provided include an Intel(R) 

Xeon(R) CPU @ 2.00 GHz, a T4 GPU, and 13 GB of RAM. The entire process was conducted 

virtually using the Chrome browser, ensuring efficient and seamless execution. 

3.1. Synthesis Process Experiment 

Table 1 presents a visualization of the results for each step of the process. Columns A and B show 

the two models of facial images representing the past and current faces used to verify their similarity. 

To facilitate the study, we independently collected a dataset of 200 facial images representing subjects 

with varying degrees of facial changes due to aging. These variations not only reflect changes in age 

and significant transformations in facial landmarks, such as transitions from a fuller face to a slimmer 

face, or vice versa. The proposed dataset provides a comprehensive foundation for evaluating the 

model's ability to adapt to diverse facial transformations while maintaining verification accuracy. The 

collected data ensure that the model captures the essential identity-preserving features despite the 

changes in age and facial structure, which is critical for validating the effectiveness of the proposed 

method. 

In the proposed method, the initial step is Cross-Face Synthesis, which involves generating 

transformations between facial images. The current age was estimated as a prerequisite for 

determining the target age for synthesis. Column C in Table 1 represents the age values derived from 

each row of current faces (Column B). Age was estimated using the DeepFace Python library. This 

approach was initiated with the command from deepfake import DeepFace, enabling direct access to 

pre-trained deep learning models for facial analysis. The DeepFace library provides a range of 

pretrained models capable of detecting and analyzing facial features, including accurate age 

prediction. Overall, the implementation of age estimation using DeepFace was both effective and 

efficient. By leveraging its capabilities, age estimation integrates seamlessly into the Cross-Face 

Synthesis system, where age parameters are critical for guiding the transformation process. This 

integration ensures that the synthesized faces align accurately with the target age, thereby enhancing 

the realism and utility of the model in cross-age applications. 
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Table 1.  Visualization of the results at each stage of the proposed method  
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Cross-Face 

Synthesis 
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Landmark 
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Synthesis 

(H) 

Past 
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Landmark 

Synthesis 

1. 
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30 

     

3. 

  

28 

     

4. 

  

24 

     

5. 

  

22 

     

6. 

  

47 

     

7. 

  

35 

     

8. 

  

32 

     

9. 

  

25 

     

 

Column D shows the results of past Cross-Face Synthesis using the GAN method. The GAN 

synthesizes facial aging from the input image to the estimated age. To enhance the testing scheme, we 

synthesized the current face (Column B). The assumption here is that a GAN model trained for facial 

synthesis cannot produce an exact replica of a real face. Thus, both past and current faces must undergo 

a synthesis under the same conditions. In this context, the current face is synthesized based on the 

estimated current age derived during the process. This resulted in two synthesized faces, as shown in 

Columns D and E of Table 1. These two synthesized faces were then used in the testing scheme to 
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compare the outcomes of direct synthesis-based verification with those of the proposed method, which 

incorporates landmark adjustments. The synthesized faces from Columns D and E are subsequently 

used in the next phase to align the landmarks according to the objectives of this study. This ensures 

that both synthesized faces adhere to the methodology proposed in this paper, which emphasizes the 

significance of landmark-based adjustments to enhance the accuracy and robustness of cross-age face 

verification. 

Face-landmark synthesis was then performed according to the proposed method to adjust the 

landmark structure of the past-face to accommodate the landmark changes observed in the current-

face. This process was applied to the synthesized facial data obtained in Columns D and E of Table 1. 

The first step involved extracting the landmarks of the current synthesis face (Column E). In this study, 

facial landmark detection was performed to analyze the geometric structure of the synthesized faces. 

The landmark prediction method using a model trained on a standard facial dataset. The model 

identified 68 reference points on the face, representing key features such as the face contour, eyes, 

nose, and lips. The landmark extraction process begins with facial region detection using a feature-

based detection algorithm. After identifying the facial area, the landmark prediction model estimated 

66 coordinate points based on the geometric patterns learned during training.  

This step ensures accurate representation of facial features and provides a foundation for further 

landmark alignment adjustments, as per the study objectives. Column F presents the landmark 

detection results, which highlight the key points obtained on the current synthesis face. Visual 

validation of these landmarks demonstrates alignment with the original facial structure, which serves 

as the basis for the final synthesis of the proposed method. This indicates that the prediction model 

effectively adapts to the complex features present in the synthesized faces. The detected landmarks 

are then used to align the landmark structure of the Past-Synthesis Face (Column D) with that of the 

Current-Synthesis Face (Column E). To realize this, we employed a GANnotation model that can 

generate highly realistic facial representations. Ultimately, the synthesis process results in the Past-

Landmark Synthesized Face (Column H) and the Current-Landmark Synthesized Face, both forming 

the final synthesized faces. These were then verified for similarity, demonstrating the efficacy of our 

proposed method for cross-age face synthesis and verification. 

3.2. Distance Verification Rate of Experiment 

The results of each step are presented in Table 1. To evaluate the impact of the proposed method 

on cross-age face verification, quantitative testing was conducted. The quantitative evaluation was 

performed by analyzing the changes in the Distance Verification Rate (DVR) across the synthesized 

face outputs generated by the proposed cross-age verification method. Table 2 provides a detailed 

description of the quantitative testing conducted, illustrating the comparative results and the 

effectiveness of the proposed approach. 

The results of each step are presented in Table 1. To evaluate the impact of the proposed method 

on cross-age face verification, quantitative testing was conducted. The quantitative evaluation was 

performed by analyzing the changes in the Distance Verification Rate (DVR) across the synthesized 

face outputs generated by the proposed cross-age verification method. Table 2 provides a detailed 

description of the quantitative testing conducted, illustrating the comparative results and the 

effectiveness of the proposed approach. 

We conducted a series of experiments to evaluate the impact of the Distance Verification Rate 

(DVR) at each stage of the proposed method. The first scheme, A → B, involved verifying the original 

images of each subject (Column A and B in Table 1) to establish the baseline verification rate before 

applying the proposed method. Next, D → E was conducted to assess the DVR between the Past-

Synthesis Face and the Current-Synthesis Face, both generated based on the estimated age. The third 

scheme, B → G, evaluates the verification rate between the Original Current Face (Column B) and 

the Past-Landmark Synthesis Face (Column G), providing insight into how well the proposed method 

aligns the synthesized past face with the original current face. Similarly, E → G was performed to 

verify the Current-Synthesis Face (Column E) with the Current-Landmark Synthesis Face (Column 
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G), measuring the consistency of the synthesis process. Lastly, G → H represents the outcome of the 

proposed method, where verification was conducted between the detected landmarks from the 

Current-Synthesis Face (Column F) and the final Current-Landmark Synthesis Face (Column G). 

These schemes collectively provide a comprehensive evaluation of the proposed method’s 

effectiveness in improving cross-age face verification by analyzing DVR changes at various stages. 

Table 2.  Distance verification rate from the conducted experiments 

Sample 

Subject 

Distance Verification Rate of Experiment Model 

A→B D→E B→G E→G G→H 
1 0.5511 0.5660 0.6940 0.7475 0.4452 

2 0.5130 0.5013 0.7217 0.6986 0.4685 

3 0.4607 0.5491 0.7267 0.7275 0.3777 

4 0.4496 0.5199 0.6393 0.6525 0.3713 

5 0.5617 0.5528 0.7162 0.7232 0.3106 

6 0.5925 0.5821 0.5538 0.6376 0.3125 

7 0.5355 0.5955 0.7359 0.7491 0.5041 

8 0.5621 0.5375 0.7972 0.7568 0.4816 

9 0.6476 0.6657 0.6269 0.6949 0.4089 

10 0.6109 0.5456 0.6621 0.6890 0.4211 

11 0.5057 0.5248 0.5953 0.5929 0.3729 

12 0.6761 0.5607 0.5708 0.5788 0.3794 

13 0.5487 0.5123 0.7404 0.7413 0.4110 

14 0.5846 0.5853 0.6778 0.6818 0.4127 

15 0.4477 0.5461 0.8051 0.7513 0.4147 

16 0.5228 0.5458 0.5574 0.5378 0.3927 

17 0.5854 0.5965 0.6139 0.6539 0.3620 

18 0.6743 0.8499 0.7282 0.6594 0.4510 

19 0.4976 0.5570 0.7774 0.6813 0.4177 

20 0.5457 0.6684 0.6152 0.6076 0.4061 

21 0.5625 0.5275 0.6125 0.6250 0.3475 

22 0.5436 0.6325 0.8215 0.7493 0.4941 

23 0.4995 0.5461 0.7559 0.6519 0.4386 

24 0.4752 0.6128 0.6556 0.6619 0.3999 

25 0.4909 0.5237 0.5553 0.5818 0.3977 

26 0.5994 0.6658 0.5657 0.6112 0.5731 

27 0.5855 0.5098 0.6764 0.6615 0.3657 

28 0.5819 0.6930 0.7571 0.7451 0.3795 

29 0.5144 0.6631 0.7448 0.5979 0.4530 

30 0.5199 0.5301 0.5961 0.6279 0.4940 

31 0.4711 0.5512 0.7167 0.6859 0.4693 

32 0.5937 0.7124 0.7698 0.8410 0.4692 

33 0.5612 0.5323 0.6919 0.6930 0.4992 

34 0.5566 0.4343 0.7457 0.6451 0.5160 

35 0.6225 0.7582 0.7250 0.6897 0.5162 

36 0.6092 0.6333 0.7196 0.6983 0.4122 

37 0.5563 0.6394 0.6587 0.6434 0.5457 

38 0.5423 0.6368 0.6326 0.6312 0.4881 

39 0.3619 0.4997 0.5613 0.5496 0.2925 

40 0.5288 0.4728 0.7009 0.6267 0.3096 

41 0.5355 0.5955 0.7359 0.7491 0.5041 

42 0.5621 0.5375 0.7972 0.7568 0.4816 

43 0.6476 0.6657 0.6269 0.6949 0.4089 

44 0.6666 0.6541 0.7802 0.7090 0.6180 

45 0.5032 0.6123 0.6541 0.6357 0.4508 

 

The Distance Verification Rate (DVR) results presented in Table 1 demonstrate the effectiveness 

of the proposed method in addressing cross-age face verification challenges. Baseline verification 

between original past and current faces (A → B) exhibits relatively high DVR values, such as 0.5511 

for Sample 1 and 0.6476 for Sample 9, reflecting the inherent difficulty of verifying faces across 

significant age-related changes. In contrast, the synthesized face comparison (D → E), with DVR 
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values of 0.5660 (Sample 1) and 0.6657 (Sample 9), shows moderate improvement, indicating the 

ability of the synthesis process to reduce age discrepancies. Verification between the original current 

face and the past-landmark synthesis face (B → G), as evidenced by values like 0.6940 (Sample 1) 

and 0.6269 (Sample 9), further underscores the alignment achieved through landmark adjustments. 

Similarly, the comparison between synthesized current faces (E → G) yielded DVR values of 0.7475 

(Sample 1) and 0.6949 (Sample 9), demonstrating consistency in the synthesis process. Notably, the 

proposed method (G → H) achieved the lowest DVR values, including 0.4452 for Sample 1 and 

0.4089 for Sample 9, confirming its ability to effectively align past and current faces while preserving 

identity. These findings validate the proposed approach as a robust solution for improving cross-age 

face verification accuracy. 

3.3. Verification Rate of Experiment 

In the evaluation stage presented in Table 3, we focused on analyzing additional pairs of cross-

age facial images using both direct verification and the proposed method. The direct verification 

approach failed to verify several pairs due to low similarity percentages and high feature distances. 

For instance, pair 6 achieved only a 32.57% similarity rate with a feature distance of 0.6743, resulting 

in a "not verified" status. However, the proposed method improved the similarity percentage to 

54.90% and reduced the feature distance to 0.4510, thereby successfully verifying the pair. These 

results highlight the limitations of direct verification, particularly when dealing with significant 

variations caused by aging. 

The proposed method consistently outperformed the limitations of direct verification. For pair 5, 

the similarity percentage increased from 41.46% to 63.80%, and the feature distance significantly 

decreased from 0.5854 to 0.3620. Similar trends were observed in other pairs, such as pair 7, where 

the similarity percentage improved from 35.24% to 59.11%, thereby enabling successful verification. 

This demonstrates that the proposed method can address the dynamic changes in facial features and 

produce more reliable results. 

This stage of evaluation further confirms the reliability of the proposed cross-age face verification 

method. By effectively addressing the challenges posed by aging and structural transformations in 

facial features, the proposed method provides a robust solution to verify previously unverifiable facial 

image pairs using direct methods. The success of the proposed method across a variety of scenarios 

underscores its potential for implementation in practical applications, particularly in security, forensic 

analysis, and other areas requiring accurate facial recognition over time. 

3.4. Performance Evaluation of Cross-Age Face Verification Model 

In this section, we discuss the performance of various face verification models in terms of cross-

age face verification. The performance is divided into two categories: direct verification and the 

proposed cross-age verification scheme. In both cases, the comparative performance values of the 

ArcFace, VGG-Face, and Facenet models are presented in Table 4.  

The direct verification performance shows the baseline performance of the model without 

utilizing the proposed cross-age verification scheme. ArcFace obtained the best accuracy 82.64 and 

F1-score 79.64 compared to VGG-Face and Facenet. However, Facenet demonstrated relatively poor 

recall 37.88 with high precision 92.59, indicating failure in effectively distinguishing between true 

positive cases. 

When the new cross-age verification method is implemented, all of the models' performance is 

boosted. ArcFace still holds its position with a performance of 86.02 accuracy and 81.23 F1-score. 

VGG-Face takes a close second with 80.57 accuracy and 79.68 F1-score. Facenet, which had the 

poorest performance, showed a significant improvement in recall, ranging from 37.88 to 57.93, 

indicating the efficacy of the new technique. 

The results demonstrate that the proposed cross-age verification scheme effectively enhances 

face verification model performance in terms of all performance metrics and recall improvements. In 

particular, for Facenet, we validated that the difficulty of identifying correct positive cases in cross-
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age cases is reduced with the proposed scheme. ArcFace consistently outperforms all other models 

and is therefore most reliable for cross-age face verification. In summary, the proposed method 

significantly improves cross-age face verification and offers a real-world solution for age-related face 

variation challenges. There is potential for future work to generalize the proposed technique to other 

demographics and settings. 

Table 3.  Direct verification and proposed method verification experiment 

No 

(A) 

Past 

Face 

(B) 

Current 

Face 

Direct Verification 
Proposed Method 

Verification 

Percent 

Rate 
Distance Status 

Percent 

Rate 
Distance Status 

1 

  

44.89 0.5511 Verified 55.48 0.4452 Verified 

2 

  

40.75 0.5925 Verified 68.75 0.3125 Verified 

3 

  

55.04 0.4496 Verified 62.87 0.3713 Verified 

4 

  

32.39 0.6761 
Not 

Verified 
62.06 0.3794 Verified 

5 

  

41.46 0.5854 
Not 

Verified 
63.80 0.3620 Verified 

6 

  

32.57 0.6743 
Not 

Verified 
54.90 0.4510 Verified 

7 

  

35.24 0.6476 
Not 

Verified 
59.11 0.4089 Verified 

8 

  

35.11 0.6489 
Not 

Verified 
40.42 0.5958 Verified 

9 

  

29.69 0.7031 
Not 

Verified 
48.19 0.5181 Verified 
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Table 4.  Direct verification and proposed method verification experiment 

Direct Verification 

Model Accuracy F1-score Precision Recall AUC 
ArcFace 0.826415 0.79646 0.957447 0.681818 0.825871 

VGG-Face 0.762264 0.704225 0.925926 0.568182 0.761535 

Facenet 0.675472 0.537634 0.925926 0.378788 0.674356 

Proposed Method Cross-Age Verification 
ArcFace 0.860215 0.812345 0.86258 0.720512 0.843789 

VGG-Face 0.805732 0.796843 0.810512 0.790658 0.802147 

Facenet 0.744828 0.694215 0.865979 0.57931 0.744828 

4. Conclusion 

Cross-age face verification is an emerging research challenge that has gained significant 

attention. The primary challenge lies in determining whether a current facial image can be recognized 

or verified compared to facial data collected over a specific time interval. This paper proposes a Cross-

Age Face Verification Method Based on the Facial Development Process, integrating a Deep Learning 

Approach Using Generative Adversarial Networks (GAN) with Landmark Features. The proposed 

method overcomes limitations, such as difficulties in handling facial regions affected by accessories, 

and achieves consistent aging effects in specific facial areas. GAN is the primary development 

framework to synthesize facial images using age and landmark parameters. The goal of this study is 

to design a facial development model that combines GAN with advanced facial landmark detection 

modules. Once past facial images are synthesized into new facial data models, these synthesized 

models are then verified against the current facial images to assess their similarity levels. The dataset 

used in this study comprised cross-age facial images. Each subject’s facial data is collected based on 

photographs taken at specific age intervals, such as adolescence, adulthood, and old age. The facial 

data were gathered via online searches using resources such as Google or social media platforms. 

Public figures, officials, and celebrities provide readily available sources of facial data, making them 

suitable candidates for inclusion in the dataset used in this research. 

The experiments involved verifying the original facial data and synthesized data generated using 

the proposed method. The experimental process was conducted in several stages, beginning with age-

based face synthesis using the GAN method, followed by applying GANnotation to refine the 

synthesized faces by aligning them with the updated landmark structure of the current face. To 

evaluate the impact of the proposed method, multiple verification schemes were performed, including 

direct verification between the original past and current faces and verification of synthesized faces 

before and after incorporating landmark adjustments.   

The results demonstrate that the proposed cross-age synthesis method, combined with landmark 

features, significantly reduces the Distance Verification Rate (DVR) between two faces with 

substantial age gaps and landmark variations. In cases where direct verification resulted in invalid 

outcomes due to distances exceeding the defined threshold, the proposed method successfully verified 

these subjects. Generally, the proposed method effectively achieves its intended objective of verifying 

two facial images of a subject with varying age ranges and landmark structures. Further research is 

required to expand the dataset and increase the model complexity, with the aim of improving the 

evaluation metrics and preparing the model for real-world applications. 

The cross-age face verification model evaluation demonstrated that the proposed performance 

was significantly improved in all tested models, i.e., ArcFace, VGG-Face, and Facenet. The proposed 

performance is maximized for essential metrics like accuracy, F1-score, precision, recall, and AUC, 

by overcoming age-related face variation. ArcFace consistently performs better than all other models, 

with its high performance in both direct and cross-age conditions indicating its efficacy in both 

scenarios. These findings validate the effectiveness of the proposed face verification technology and 

thus its potential in mitigating age-related face variation in biometric systems. 
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