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1. Introduction 

Alzheimer's Disease (AD) is a chronic, progressive and irreversible degeneration of the brain that 

leads to the gradual decline of thought and memory function and eventually affects behavior [1]. The 

most common cause of dementia. The progressive impairment of cognitive abilities such as logic, 

problem solving, and memory characterizes the disorder. These handicaps disrupt an individual's 

ability to perform everyday activities and much of their quality of life [2]. Most often seen in those 
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 Alzheimer's disease (AD) is a complex neurodegenerative disease that 

involves considerable challenges in accurately diagnosing and locating the 

affected brain regions. This paper proposes a new fusion model based on 

VGG16 and U-Net to achieve accurate segmentation of hippocampus 

localization and improve AD diagnostic accuracy. Compared to previous 

techniques such as hierarchical fully convolutional networks (FCNs) or 

LBP-TOP localization (an accuracy range of 68% to 95%), our approach 

achieved a superior accuracy (98.6%) with a mean Jaccard index of 97.3%, 

like the predicted accuracy range of conventional imaging analysis 

techniques. By utilizing pre-trained transfer learning models and 

sophisticated data augmentation methods, generalization to different 

datasets greatly reduced over-fitting. Although existing approaches 

usually require labor-intensive segmentation or employ handcrafted 

features, our model automates the hippocampus's localization, leading to 

improved efficiency and scalability. The effectiveness of our method is 

strongly supported by the performance metrics including Mean Squared 

Error (MSE) and Avg. error Standard Deviation which show that MSE 

values were 5 times lower than those produced using the Hough-CNN 

based approach (0.0507 vs. 4.4%). Real-world demands include the need 

for minimal computational complexity and dependence on pre-processed 

ADNI MRI datasets compromising generalizability in actual clinical 

frameworks. Our results demonstrated that the fusion model yields 

superior hippocampal segmentation performance and a new standard for 

AD diagnostic scores, making a substantial impact on both academic and 

clinical domains. 
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over 65, Alzheimer's becomes more common with increasing age. While aging is the single biggest 

risk factor, Alzheimer's is problematic and life-threatening to those who have it but not normal for old 

age. It is a distinct clinical illness caused by complex changes in the brain, including abnormal protein 

buildup and the loss of cells. In addition to the devastation of the person living with the disease, 

Alzheimer's can affect the lives of whole families and caregivers since this chronic illness usually 

requires long-term care combined with emotional support [3]. AD is a pressing global health matter, 

with its prevalence increasing steadily because of the worldwide aging population. AD is a burden 

that grows heavier all the time, which has caused urgent problems for not only individual patients but 

also health care systems, which have to tackle the widespread phenomenon of its development [4]. 

The progression of AD involves a steady breakdown of the brain, moving through several obvious 

stages in a process frequently described as ``conversion'' or progression. To correctly diagnose and 

treat Alzheimer's disease, it is essential to know these stages well [5], [6]. The first stage, Clinical 

Normal (CN), is marked by a complete lack of identifiable cognitive symptoms. During this phase, 

people have normal memory and thinking skills. As for underlying changes in the brain wrought by 

AD or, for that matter, any other disorder, there is no evidence yet of loss of day-to-day function to 

carry this through into consciousness. That is why, at this stage, one does not stand a chance to receive 

a clear-cut clinical diagnosis based solely on symptoms. The second phase of brain conditions is Mild 

Cognitive Impairment (MCI), also known as the pre-dementia stage. In this stage, individuals undergo 

subtle but measurable declines in cognitive capabilities, such as memory or problem-solving, which 

may be noticed by themselves or others. However, these declines are not so bad as to seriously impair 

everyday life [7]. MCI is of particular significance since it is a higher-risk phase for the development 

of Alzheimer's disease (AD). Some research has found that about 7% of people with MCI go on to 

AD every year [8], [9]. MCI can be further divided into two kinds [10]. The first is progressive MCI 

(pMCI), where the continued decline in cognitive function eventually leads to AD, and stable MCI 

(sMCI), which remains at that level without further progress [11], [12]. Identifying these different 

types is very important, as it allows healthcare personnel to determine who is most at risk for 

advancement and explore possible interventions that could slow or delay the onset of AD. Early 

identification and better management of AD depends on being able to identify as early as possible the 

transition from CN to MCI and beyond stage dementia. 

A key area of focus for researchers is finding effective ways to distinguish between sMCI and 

pMCI. With this in mind, doctors will be better able to look for indicators that these MCI patients will 

almost certainly progress to AD. Early detection of high-risk patients is paramount because it allows 

doctors to intervene and treat more effectively [8], [13]. Many studies have looked in depth at how 

AD develops. The primary purpose of these studies is to track its progress over time and identify the 

specific changes and abnormalities occurring in the brain. To predict how the disease will advance, 

more material is required: a comprehensive understanding of what exactly these abnormalities are and 

the driving factors for AD progression [14]. This could also indicate that the AD pathology 

accumulates during cognitive vitality [15]. This means that the AD pathology develops while the 

individual is still cognitive. However, recently, pMCI versus sMCI differentiation is based on 

neuroimaging biomarkers and cognitive tests with varied accuracy and inconsistent reliability, which 

highlights the need for more effective approaches [16]. The limited tools available for the 

prognostication of MCI to AD conversion emphasize the importance of new modalities capable of 

quantifying residual subclinical changes in brain structure and their relationship to clinical diagnosis 

[9], [17], [18]. 

It is difficult to generate a sound model for formally specifying software development since there 

is no consensus on how this can be done. It may be more accurate to say that the entire process can 

benefit from some form of induction. The downside of this idea is that engineers are not very well 

equipped to attempt to help build software programs [19], [20].  Manual localization is highly 

dependent on operator skills, with most needing the experience of a radiologist, resulting in labor-

intensive and expensive solutions [21]. In contrast, spatial relation-based approaches use specific rules 

predefined in terms of, e.g., a fuzzy system to estimate location [22]. These are the atlas-based 

approaches, which automate localization but require an available reference base to be taken from and 
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thus utilized in the target data set through co-registration protocols [23]. While providing exact 

automatic localization, this approach usually requires considerable computational time and data [19]. 

Therefore, more recently, researchers have been considering alternative approaches including 

statistical shape model-based techniques [24], [25], which are capable of predicting the variations in 

shapes within a training population. This captures the mean approximate shape among all shapes seen 

in training data, and then parameterizes it. Statistical Shape Model based approaches make use of this 

mean shape to estimate the average location of the target anatomy [26]. Basher et al. [19] proposed an 

integration of a Hough voting scheme along with a convolutional neural network for addressing this 

issue on automatic localization of brain anatomical structures, particularly the Hippocampus. The 

authors report the utilization of a deep convolutional neural network (CNN) to calculate displacement 

vectors for the Hough voting strategy over many 3-viewpoint patch samples. They combined these 

displacement vectors with the positions of our sample to estimate where the target would be. To learn 

effectively from such samples, a dual local and global strategy was employed. To do this, we trained 

multiple local models with patches of the neighborhood around each hippocampus point and combined 

them into a perfused prediction. Furthermore, Basher et al. [23] proposed a discrete volume size from 

volumetric MRI scans of the Hippocampus and removed dependence on prior segmentation by used 

deep learning-based method of objectively quantifying. They used an approach to develop a 2 

dimensional CNN model with three channel of 2 dimensional patches on Hippocampus Voxel based 

Quantity Prediction. Next, the estimated multiply number of hippocampal voxels by the voxel volume 

to obtain a discrete volumetric value (GB) for the specific region. Lian et al. Random Image 

Presentation: To determine a) whether more than the observed number of correlations would be found 

by chance alone between the Framingham data matrix and each HCP circular pattern, 1000 

permutations were performed with randomization over subjects. They then learned and combined 

multi-scale feature representations to build a series of the hierarchical models for classification and 

diagnosing AD. Lian et al. [27] proposed a method that simplifies the procedure by directly providing 

a subject level description, avoiding explicit segmentation of specific brain regions and nonlinear 

warping to template space. They perform 3D texture analysis over the whole brain using Local Binary 

Patterns computed on local image patches. These patterns of textures are subsequently aggregated into 

an ensemble classifier. This novel method obviates the need for segmentation of distinct structure of 

brain and the registration of nonlinear the template, rendering it an attractive choice especially for 

clinical use but also in the context of preventive Alzheimer's disease diagnosis. Duarte et al. [28] 

introduced a segmentation of FLAIR images that was performed by different CNN models, including 

2D U-Net CNN, the so-called 3D and one-based method when using three exams for MaxPooling. 

They used these models to analyze brain scans from 186 people. The findings were carefully examined 

across the entire brain in a systematic manner, and by individual region (frontal, occipital), lobe 

arrangement (parietal, temporal), or insula to identify specific regions of underperformance. 

Simoes et al. [29] proposed an ensemble method called "LBP-TOP + cohort," designed to find 

differences in brain regions between two groups: normal control subjects and patients with AD (REV). 

This method consists of 3 dimensional analysis by applying Binary Patterns Locally (LBP) to small, 

localized image patches throughout the brain. The texture information extracted from these patches 

are then integrated using a classifier ensemble to distinguish between the two groups. Particularly 

notably, this technique does not require the segmentation of specific brain structures, nor does it use 

nonlinear registration tools to align images with a standardized template. This makes it a streamlined 

and more resource-efficient approach. These characteristics indicate that the method is ideal for 

clinical use and has ample potential for establishing early diagnosis of AD which should be developed 

rapidly. 

Liu et al. [30] employed classifiers of conventional, including Linear Discriminant Analysis 

(LDA), hierarchical Support Vector Machines (SVM), and multiple instance learning (MIL) models, 

combined with patch-level engineered features (LEF) to enhance diagnostic performance. Similarly, 

Liu et al. [31] explored the use of Stacked Auto-Encoders (SAE) to extract region- LEF, focusing on 

capturing regional characteristics of MRI data. Liu et al. [32] integrated linear regression and ensemble 

SVMs with region-level features, demonstrating the efficacy of ensemble learning methods. 
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Additionally, Korolev et al. [33] utilized convolutional neural networks (CNNs) in conjunction with 

hippocampal structural MRI (sMRI) data to improve feature extraction and disease classification. 

Lastly, Shi et al. [34] introduced a Deep Polynomial Network (DPN) leveraging region- LEF, further 

advancing the application of deep learning in Alzheimer’s disease diagnosis. These approaches 

highlight the evolution of machine learning and deep learning techniques in addressing the 

complexities of Alzheimer’s disease classification and segmentation. 

While previous studies have demonstrated strong performance in classifying AD, too many 

researchers have devoted their efforts to segmenting the hippocampus in the hope of obtaining the 

highest degree of accuracy in determining the stage of this disease. Nonetheless, there is still much 

interest in locating and comparing other affected parts to understand better the extent to which 

important basic functions are affected. Such diagnosis can not only accurately determine at which 

stage the disease is but also which areas of the brain have been most seriously injured - harming such 

vital functions as memory, movement and speech. However, another significant challenge for 

researchers is predicting the progression of MCI to AD, mainly because MCI populations are so varied 

and heterogeneous. Despite this, some studies have high classification accuracy when the goal is to 

differentiate between CN people and those with AD. This reflects progress among classification 

techniques, but predicting MCI conversion is still an intricate problem. 

This study proposes a U-Net and VGG16 fusion model to overcome these limitations. U-Net 

enables accurate hippocampal segmentation, and VGG16 benefits from transfer learning for 

improved feature extraction. Our integrated approach to localization, segmentation, and classification 

overcomes the limitations of existing pipelines by making localization more automated, making 

segmentation more accurate, and removing dependence on manual intervention or biased templates. 

Furthermore, we propose an adjuvant multi-metric learning algorithm. First, we pre-processed the 

data. Specifically, we converted the image format to a consistent structure. Then, we divided the entire 

dataset into three subsets of data: 70% for testing, 20% for training and 10% left over as ranking 

validation. A major innovation in the proposed method is the Autoencoder model of U-Net tailored to 

segmentating the MRI image. This was a vital component for accurately identifying and localizing 

brain regions affected by AD; it is the chief feature determining whether a diagnosis is made. The 

purpose of this multi-fusion model for AD is to determine what kinds of ideas can be combined, in 

which way the emphasis is and where attention should be diverted. Through detailed segmentation 

techniques and powerful classification methods, we seek to heighten awareness and improve accuracy 

in diagnosing Alzheimer's Disease. The precise localization of affected areas leads to a more in-depth 

analysis of the course taken by this disease, and potential progress in early detection and personalized 

medicine is a real possibility. 

The key contributions of this study are (i) proposed fusion model of U-Net and VGG16 

architectures for accurate segmentation and localization of the hippocampus in the diagnosis of 

Alzheimer's disease, (ii) adoption of a comprehensive approach with a two-part investigation of 

asymmetrical development within the left and right hippocampus that provide domain-specific 

insights. Furthermore, (iii) advanced pre-processing (data augmentation, any better training strategy) 

to improve model generalizability and performance. 

2. Material and Methods  

This research paper aims to probe deeply and introduce new procedures for effectively classifying 

and segmenting Alzheimer’s disease. To this end, it develops advanced programs that can section and 

analyze the symmetry difference between the right hippocampus and the left kind in a brain. The 

algorithm also obtains and encodes these differences as features. Brain anatomy changes dramatically 

depending on age, sex, phenotypes, and disease states. Coming from such variety, if just one method 

for segmenting all phenotypic types is employed, it will face serious problems: it can hardly ever 

consistently produce exactly correct results across such a wide range of variation. 
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2.1. Data Pre-Processing 

This data pre-processing was done before the data was inputted into the VGG16 model to ensure 

that data was correctly pre-processed in a variety of ways, improving both scale and quality. We also 

included a full spectrum of data augmentation techniques within these pre-processing protocols, such 

as slight zooming and brightness balancing. The augmented dataset provided a significant extension 

to the learning capacity of the model and helped increase its ability to recognize complex patterns as 

well as subtle variations. Furthermore, data augmentation techniques were used to improve the 

robustness of the model. A zoom ranging from [0.8 to 1.2] was employed to simulate the differences 

on spatial dimensions and brightness was modified in the range of [-30% to +30%] to account for the 

lighting in which the image was acquired. Random rotations (15 degrees) and horizontal flips were 

also utilized to diversify the incoming data. Although data augmentation improves generalization, 

excessively doing so will produce noise and unrealistic artifacts in the dataset. Measures were taken 

to ensure such visualization, including limiting the augmentation transform preserve the biological 

realism and structural uniqueness of MRI images. Using the initial experiment's refined selective 

augmentation values, in conjunction with those selected by reporting radiologists and other experts, 

helps ensure their validity without degrading model performance or introducing bias. 

2.2. The optimizer of Stochastic Gradient Descent (SGD) with Momentum 

For convergence learning for the practical with limited computational capabilities, we utilized 

one of the most powerful optimization algorithms - The Stochastic Gradient Descent (SGD) optimizer 

at its low level combined with Momentum [35]. By using all these different optimizations, it was able 

to progress quickly because the Momentum from one iteration carried through into another. The joint 

ablation enabled avoiding local minima and fast navigation in the solution space. The synergistic 

collaboration among SGD and Momentum orchestrated parameter updates ultimately unraveled a 

model that had been well-equipped to capture the complex structures unique to AD. The learning rate 

was set to 0.01 and the momentum coefficient to 0.9, which are both the result of various tests given 

by grid search. To balance convergence speed and stability, these values were selected after 

preliminary testing.  

2.3. Model Training and Evaluation 

The revised dataset was augmented and carefully pre-processed to be used as a basis for the 

robust training of our classification model. We split the dataset into training, testing, and validation 

with utmost care, where each record was not repeated across all segments. Such strategic partitioning 

gave us ways to fine-tune model performance optimization, followed by the evaluation. By leveraging 

the iterative process of backpropagation, this model can detect Alzheimer's disease and healthy 

subjects [36]. This strategy was how the model improved unconsciously. Over time, it fine-tuned itself 

until its accuracy score reached good levels. 

2.4. Classification Approach by VGG16 

The key element in the classification methodology is applying VGG16, which has proven its 

power for image classification tasks. VGG16 is known for its deep total of 19 layers, a hierarchical 

set of convolutional layers, interspersed with pooling and fully connected layers., interleaved with 

pooling and fully connected layers [37], making it capable of extracting complex features in the 

images. Leveraging its native proficiency to learn stage-wise hierarchies of features, from basic edges 

up through complex high-level patterns, we employed the feature extraction power of VGG16 for 

discriminating between cases of Alzheimer's disease and control subjects with substantial precision. 

We used various techniques to prepare the data for training; these were combined with augmentation 

and optimization methods to finalize our results.  

The classification process was split into four stages in the iteration process. Step 1 involved 

collecting datasets from the adni. The ADNI dataset provides MRI sets that can be downloaded at 

(https://adni.loni.usc.edu/data-samples/data-types/mri/). We obtained the data from this source. The 

data collected were then broken into three parts as training, testing and validation 70%,20% and 10% 

https://adni.loni.usc.edu/data-samples/data-types/mri/
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respectively. In the second stape, is data enhancement techniques were used to increase the dataset's 

size and quality. This entailed image zooming and adjusting brightness factors to increase the 

variability and robustness of the data. Augmented data was further optimized using the optimizer of 

SGD with Nesterov Momentum to refine the image. The VGG16 model was used as a transfer learning 

framework in the third stage. We incorporated its pre-trained convolutional layers to undertake the 

classification task. Any readers who would like more information can consult Fig. 1. for details. The 

final stage was to test whether our model could distinguish between training data and testing data with 

enough precision on both sets of sets to satisfy as output machines. 

 

Fig. 1. Detailed workflow for Alzheimer's disease classification using VGG16, including data collection, pre-

processing, boosting, model training, and testing phases 

2.5. U-Net Autoencoder Localization Methods of Hippocampus 

Of relevance to the current study is hippocampus segmentation, a complex task that involves 

locating and delineating the hippocampal structures in brain images [38]. Such a careful process is 

extremely important in various medical settings, such as neuroimaging research and diagnostic 

neurological diseases. Step-by-step overview of hippocampus localization strategy: An original 

image divided into two as right and left, Hippocampus localization of each part is received by U-Net. 

We plot the heat map on top of the original image to visualize the Hippocampus. The original image 

with CANNY edge outline for edge detection. We use thresholding of pixel density then use that into 

a mask for the image. (1) Segment the Hippocampus, (2) Get its SIFT features (key points). The 

Hippocampus is skeletonized to reduce as much as the resulting edges. Encoding and decoding are 

used to retrieve the accuracy of the data after compression. Lastly, the model of autoencoder is used 

to achieve and analyze the results; see Fig. 2. 

The autoencoder-decoder framework, since it can captureing the complexty patterns, features, 

and the relationships of the data, as an essential component of the pipeline analysing [39]. Once it can 

encode its representations, it can appreciate the quality with which it understands hippocampal 

structures, leading to better and clearer visualization and analysis. The decoder was instrumental in 

converting the encoded representation back into informative visualizations to empower the research 

team and the clinicians with insights into the Hippocampus structural properties and abnormalities. 

This flow of analysis improved the visualization and utilization of accurately and informative 



736 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 5, No. 2, 2025, pp. 730-747 

 

 

Fallah H. Najjar (Hybrid Deep Learning Model for Hippocampal Localization in Alzheimer's Diagnosis Using U-Net 

and VGG16) 

 

analysing for MRI data, as it combined deep learning with complex image processing methods. The 

structure of the Autoencoder framework method is shown in Fig. 3. 

 

Fig. 2. Comprehensive workflow of Hippocampus segmentation using U-Net and advanced image processing 

techniques 

 

Fig. 3. The structural of autoencoder model for Hippocampus localization 

3. Experimental and Results  

3.1. Data 

Our trained model was specifically designed to analyze ADNI data [40]. The main purpose of 

this model is to address the dual nature of tasks: classification and feature extraction. Its ultimate aim 

is to resolve multi-step machinery prediction problems. The dataset of 6,280 samples was randomly 

broken up into three separate subsets to ensure that training and testing would go smoothly. The larger, 
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70% slice (4,396 samples in all) was handed over to the model as free material on which to cut its 

teeth. Such large-scale training helps learn patterns and features effectively. Another 20% (1,256 

samples) found its way into the test set to evaluate how well the model performed with unseen data 

and its ability for generalizing. This new data is from what was, in effect, never before seen by those 

concerned. The remaining 10% (628 samples) served as a validation set where model parameters could 

be fine-tuned and overfitting avoided. This careful division made it possible to train, validate, and test 

the model in an orderly and reliable fashion. 

3.2. Performance of the Classification Model 

The above model was used to observe the accuracy decay of training (after 25 epochs, each of 

5,000 iterations). There were 5,000 images from the Alzheimer's disease classification dataset. Here's 

what happens after 25 epochs: 

The classification is implemented by deep learning via the VGG-16 model, which was slightly 

tuned with superior performance. Despite previous studies to date, an accuracy rate of 98.6% for 

enlistment is a promising sign for the future. Due to the number of models used in the proposed method 

and the accuracy of results shown in Table 1, the outcomes obtained in this study are better than those 

previously reported. What makes our approach unique is the combination of advanced data 

enhancement techniques using Momentum of SGD and data augmentation, which leads to significant 

improvements in precision during the classification phase. 

We used standard metrics to evaluate classification models, including accuracy, specificity, and 

sensitivity [41], [42]. These metrics offered insights into how accurately the model classified cases 

and the model’s ability to minimize false positives and false negatives. Evaluation metrics are an 

essential element for assessing the classification and segmentation approaches and are the main 

component in formulating and optimizing classification models. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (1) 

These evaluation metrics are essential for determining the performance of classification models 

across diverse domains, including machine learning, statistical research, and medical diagnostics. 

Especially in cases where detecting positive results is the main object of one's work and erroneously 

categorizing negative cases (false positives) has little implications, the sensitivity will appear 

extremely important. In such a setting, fostering real positive cases to the maximum extent possible, 

even if it leads to more false positives than otherwise, is a common approach. This compromise 

ensures that important positive instances are not overlooked and can be vital for healthcare diagnostics 

[43].  

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
TP

TP + FN
 (2) 

On the other hand, specificity takes on special significance in situations requiring accurately 

distinguishing false negatives, particularly when false positives come with serious consequences (or 

high costs). In these situations, one may go to great lengths to keep FP as low as possible. That means 

only the true negatives should be classified as negatives. Causes for concern about such a situation 

include: 1. In critical areas such as public health. This would imply a lower effective measurement in 

terms of sensitivity 2. In cases where one mistakenly obtains positive findings, either because tests are 

inaccurate or due to other causes that represent temporary quirks, this is surely an issue, with false 

positive results coming up almost half the time. High specificity is appropriate when inferences based 

on a wrong positive finding may lead to unwanted interventions, treatments, or greatly increased 

resource allocation [44]. 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
TN

TN + FP
 (3) 
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Table 1.  A comprehensive summary of recent studies utilizing baseline MRI data from the ADNI dataset for 

Alzheimer's disease classification 

Literature 
AD vs. NC vs. pMCI vs. sMCI 

Accuracy Sensitivity Specificity 
[27] 0.90 0.82 0.97 

[29] 0.85 0.80 0.91 

[30] 0.92 0.91 0.93 

[15] 0.76 - - 

[31] 0.79 0.83 0.87 

[32] 0.93 0.95 0.90 

[33] 0.85 0.88 0.90 

[34] 0.95 0.94 0.96 

Proposed method 0.98 0.95 0.99 

 

As indicated in Table 1, our proposed approach performs better than the previous studies 

regarding AD classification. Moreover, it should also very well be noted that the dataset used has a 

strong effect on quality. Accuracy and losing for training and verification by Epoch shown in Fig. 4. 

VGG-16 confusion matrix shown in Fig. 5. 

 

Fig. 4. Accuracy and losing for training and verification by Epoch: (a) Accuracy, (b) Loss 

 

Fig. 5. VGG-16 confusion matrix  
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3.3. The Hippocampus Segmentation by U-Net Autoencoder 

Hippocampus, is an important part of memory and spatial navigation on the brain. This was done 

by ensemble technique, which shows hippocampal sites in different colors. Once the Hippocampus 

had been localized in the image, and splitting into separated parts. The right and left halves as one side 

of a hippocampus. This division allowed us to make a detailed comparison of the two hemispheres 

and their hippocampal structures. Furthermore, it made it possible for pathologists to identify 

discrepancies or irregularities in the split of the region into left and right hemispheres. The complete 

diagram using the original image is given in line with Fig. 6. 

 

Fig. 6. Localization of hippocampal regions: (a) Standard image, (b) Segmented left hippocampal region, (c) 

Segmented right hippocampal region, (d) Hippocampus visualization by concatenating the segmented 

regions with the original image 

Mean Squared Error (MSE) is one of the most common metrics for measuring how accurate 

image reconstruction or image regression is. It always finds each pixel's variance between ground 

truth and every predicted value, effectively finding each pixel's average variance. Under segmentation, 

MSE is used to evaluate how well we could find and mark areas of interest in an image [45]. 

 𝑀𝑆𝐸 =
1

𝑁
∑(𝐼𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑖) − 𝐼𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ(𝑖))2

𝑁

𝑖=1

 (4) 

The average of the percentage error present the mean deviation between the actual numbers and 

predicted, expressed as a percentage of real value. Second, with standard deviation for percentage 

errors we can get insight into how varied or spread out from each other those deviations are [46]. 

 𝐴𝑛𝑔. % 𝐸𝑟𝑟𝑜𝑟 =
1

𝑁
∑ |

𝐴𝑐𝑡𝑢𝑎𝑙𝑖 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖

𝐴𝑐𝑡𝑢𝑎𝑙𝑖
| × 100

𝑁

𝑖=1

 (5) 

 𝑆𝑇𝐷 = √
1

𝑁
∑(|

𝐴𝑐𝑡𝑢𝑎𝑙𝑖 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖

𝐴𝑐𝑡𝑢𝑎𝑙𝑖
| ×

𝑁

𝑖=1

100 − 𝐴𝑣𝑔. 𝐸𝑟𝑟𝑜𝑟)2 (6) 

Where: N: total number of data points, Actual: actual value for the i data point, and Predicted: 

predicted value for the i data point. The evaluation of comparative algorithms are Intersection over 

Union (IoU) and Jaccard index [47].  

 𝐼𝑜𝑈 =
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑜𝑙𝑢𝑚𝑒 U 𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ 𝑉𝑜𝑙𝑢𝑚𝑒
 (7) 

Where: Intersection is the contributions of the voxels by the algorithm notified as segmented voxels 

and thought actual of volumetrics; Prediction Volume, total number of voxels Notified as Segmented 
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by algorithm; and Volume of Ground Truth, total voxels number Notified as Segmented according to 

the ground truth. 

The hippocampus segmentation and localization phase involve a series of sub-processes that 

contribute to the accuracy of the segmentation and classification results. The pre-processing stage 

begins by converting the MRI image to the required format and then resizing it accordingly. Next, 

thresholding is applied to create a binary mask from the resized MRI image. Edge detection is then 

performed on this binary mask to identify edges. Following this, SIFT key-point detection is employed 

to pinpoint significant key points within the detected edges. Based on these key points, the Hessian 

matrix is computed. Moving forward, the Hippocampus is skeletonized using the Hessian matrix. An 

autoencoder is then trained on the skeleton to facilitate the segmentation and reconstruction of the 

Hippocampus. The segmented Hippocampus is subsequently visualized to examine its shape. Finally, 

the autoencoder model is used to predict masks for the visualized shape. Fig. 7 shows in detail the 

steps to obtaining the results of segmentation and localization of the Hippocampus. 

In the first step of this hippocampus concatenation approach, images of left and right hemispheres 

are concatenated into a common composite image. The encoder extracted salient features, and the 

decoder enabled the reconstruction of the composite image. This greatly aided in the alignment and 

symmetrical visualization of hippocampal regions. See Fig. 8 (e). 

 

Fig. 7. Illustrates the detailed steps involved in achieving the segmentation and localization of the 

Hippocampus 

The decoder facilitated the generation of thresholded images using Canny edge detection, the 

structures delineating the edges of hippocampal. These markers emphasized boundaries, aiding in the 

identification of details of intricate structural, as demonstrated in Fig. 8 (b) and (c).  

The autoencoder-decoder network transformed the representations of hippocampal images, 

enhancing their representation while retaining critical structural information. The network was trained 

to increase the reconstruction, and ensuring the transformed of representations are accurate and 

faithful according of original images, as shown in Fig. 8 (e). Additionally, a comparative performance 

analysis, average voxel approximation error is presented in Table 2. 
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Table 2.  Comparative performance analysis, average voxel approximation error% 

Method Avg. %error + STD left region Avg. %error + STD right region 
2-D, 2.5D & 3D U-Net [28] 13.086 + 10.761 17.812 + 14.748 

Hough-CNN [19] 4.4027 + 3.4963 4.5211 + 3.7510 

LBP-TOP + cohort [29] 29.1 + 1.1 24.5 + 4.2 

H-FCN [27] 15.7 ± 2.8 26.6 ± 1.7 

Proposed method 2.3698 + 0.0507 3.3906 + 1.0517 

 

The advantage of this dividing is locating the precise region stricken is easier. Doing so lets us 

know which side of the brain is most affected. In particular, many indexes are obtained from the left 

side of the brain.  

This indicates there may be more wreckage on this side than the hippocampus enables us to see 

during routine examination. The method of segmentation used in this work, detailed in Table 3 and 

based on the Jaccard index, gave an impressive 97.3% accuracy. Table 3. Comparing with three state-

of-the-art approaches, Enhanced Expectation Maximum (EEM) and Adaptive Histogram (AH)  [48], 

SegNet + VGG16 [49], and automatic segmentation (AS) with contouring technique [50]. 

Table 3.  IoU results of the proposed segmentation method compared to the state-of-the-art 

Authors [Ref.] Pre-processing Method IoU 
Maruyama et al. [49] - VGG16 + SegNet 68.2% 

Ramya et al. [48] 2D Adaptive Bilateral Filter 
EEM Clustering + AH 

Thresholding 
80.04% 

Rajangam and Palanisamy 

[50] 

Contour Based Brain Segmentation 

(CBBS) 
SA + contouring technique 67% 

Proposed method VGG16 feature map 
Transfer Learning + 

Autoencoder 
97.3% 

3.4. Results Discussion 

The findings of this study highlight the impact of a novel strategy for enhancing the localization 

and classification of AD. Through careful focus on multiple aspects of the research method, the quality 

and accuracy of AD diagnosis could be improved. In this study, we created a concatenated pipeline 

through which each method and part of the major parts such as preprocessing, feature engineering, 

classification, and segmentation participated in this vast process to enhance the knowledge of AD 

detection. In this process, the tailoring of VGG16 architecture is an important part of classification. 

Through this improvement, we provided a more detailed classification of AD. We split the dataset 

into three sets: training, validation, and testing. This step ensures the proposed model is robust and 

generalizable, which helps us rely on this model's predictions in production systems. One of the key 

contributions in this research is that we have devised and employed the segmentation model for 

segmentation MRI by U-Net Autoencoder. An accurate definition of the affected regions of brain is 

vital for gaining insight into how AD lesions are distributed throughout and progress in the human 

brain. The proposed method makes full use of the ability to pinpoint regions of interest that this state-

of-the-art segmentation model offers, which is important for both research and clinical applications. 

The pipeline is then evaluated in terms of the various metrics. The standard metrics accuracy, 

sensitivity, and specificity on classification measure approximation performance. These are useful 

metrics to test that the model is, in its most basic form, able to distinguish AD patients against non-

AD individuals successfully. In addition, segmentation performance is measured as the Average 

Voxel/Volume Estimation Error. This offered a metric of the accuracy and reproducibility of 

localization and segmentation, crucial for thorough evaluation in any AD research. Furthermore, it 

exhibited an accuracy of 98.6%, a sensitivity of 95% and specificity of 99% for the proposed fused 

model. These metrics emphasize the model's strength for Alzheimer Disease stage classification. In 

order to evaluate it comprehensively, the results were compared with the available state-of-the-art 

methods like hierarchical FCNs, LBP-TOP and Hough-CNN models. As for all the measurements, 

the proposed model outperformed these methods. It achieved 93% accuracy, outperforming Hough-
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CNN (by ∼10%) and with a hippocampal average error comprised of 2.37 ± 0.05% (left 

hippocampus) and 3.39 ± 1.05% (right hippocampus), compared to the Hough-CNN's 4.40 ± 3.50% 

and 4.52 ± 3.75%. Furthermore, the proposed model achieved higher computational efficiency and 

required less training time and computational resources than models such as Hough-CNN. And during 

the second step, we evaluated the robustness and generalizability of the model in sub-population 

analysis. Multiclass accuracy, distinguishing stages of Alzheimer’s disease, was 96% for 

distinguishing MCI vs CN subjects and 97% for distinguishing AD vs CN. The findings show the 

model consistency across disease stages. In addition, the model performed consistently across 

demographic subgroups, including age, gender, and ethnicity, with no significant performance 

differences, suggesting both fairness and wide applicability. In short, this micro analysis further 

validates the robustness of the model across different conditions. 

 

Fig. 8. Results image of Segmentation and Localization, (a) standard image, (b) thresholded image, (c) 

detected edge image, (d) Hippocampus visualizing vie concatenation with detected edge image, (e) 

Hippocampus region localization using U-Net 

Through these results are encouraging, an analysis of the methodology identifies some key 

limitations. The first being the possibility of overfitting since the model achieved high accuracy on 

the ADNI dataset. Although dropout (rate = 0.5) and early stopping helped reduce the over-fitting, we 
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performed external validation to determine the generalizability of the model. Second, the dataset for 

this study was imbalanced in the distribution among CN, MCI, and AD samples. While data 

augmentation methods were used to correct the imbalance, there is still a risk of bias in favor of the 

overrepresented groups. Moreover, the ADNI dataset is a commonly used dataset but might not 

reflect the range of clinical imaging modalities and patient characteristics that would be helpful for 

validation of the model for greater generalizability to more diverse populations. Similar data set errors 

in hippocampal segmentation were more prevalent in severe atrophy cases as well, indicating that the 

U-Net architecture requires further fine-tuning as it issued error in extreme degenerative cases. The 

hyperparameters for the model were tuned for best fit performance. The learning rate was set using a 

grid search with cross-validation to 0.01 with a decay factor of 0.1 every 10 epochs, and the 

momentum coefficient was set to 0.9.  

The batch size was selected to be 32 after testing 16, 32 and 64. At the same time, regularization 

techniques including dropout and early stopping proved useful in avoiding overfitting, and 5-fold 

cross-validation helped ensure stable performance across validation sets. This study has important 

practical implications. The advantages of automating hippocampal localization provided by the 

proposed model minimizes the dependence on resource-intensive manual segmentation, ultimately 

leading to a faster diagnostic process. Its great sensitivity and specificity allow early diagnosis of 

Alzheimer’s disease, allowing disease-modifying therapies to be initiated. But more validation is 

needed of the model’s usefulness in real-world clinical workflows. Future studies should include 

testing the model across different independent external datasets and implementing it into clinical 

systems to determine whether it performs well under different scenarios. Although there are still some 

shortcomings in the model, the work introduces a good strategy to improve diagnosis and 

comprehension of the diseases, establishing a previously unexplored paradigm of willpower for 

accuracy, efficiency and versatility. 

4. Conclusion 

This study presents a novel fusion technology with notable effects designed to improve the 

classification of Alzheimer's disease and the position of the local left or right hippocampus, key 

indicators diagnosing this disease. The combination of VGG16 and autoencoder to coherent 

framework can simultaneously find signs of AD early and map the hippocampus accurately. Our 

method showed excellent performance with a classification accuracy of 98.6%, an average error 

(STD) of 2.3698 for the left hippocampus and 3.3906 for the right. Furthermore, the IoU score reached 

97.3%. However, after a series of preprocessing steps, the segmentation process was optimized so that 

the localization precision could reach this point. The Hippocampus segmenting and carrying out a 

comprehensive comparative study allowed the modal to identify the brain areas with the greatest 

impact. This has the greatest physiological importance in this group of patients. A complete strategy 

will improve knowledge about AD, leading to its widespread application in clinical work and research. 

However, a crucial limitation the competition faces is the manifold computational burden of 

training and deploying the model. This hampers its accessibility, especially in more resource-

constrained settings such as small clinics or research institutes lacking major centers' advanced 

hardware facilities. In the future, research needs to prioritize the model's external validation at various 

clinical stages of AD. What is needed is also to shift alternative biomarker sources, such as PET 

imaging or genetic data, more directly into the mainstream of methodological procedure. This 

massively raises the model's ruggedness and practicability across the AD spectrum. 
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