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1. Introduction  

Physical disability refers to limitations in bodily functions that affect a person's ability to 

perform daily activities.  It is divided into two main types: lower limb disability [1] and upper limb 

disability [2]. Lower limb disability includes conditions such as leg amputation [3], paraplegia [4], 

cerebral palsy [5], [6], and muscular dystrophy [7], which may require assistive devices [8] such as 

wheelchairs [9] or crutches [10], thus affecting one's gait. 

The gait of a normal person has distinctive characteristics [11]. One of them is the upright body 

position [11]. In this position, the body stands upright and straight [12], maintaining its balance well 

[13]. This makes the steps taken balanced, with the weight of the body evenly distributed on both 

feet. In addition, the movements of the arms while walking also look natural. The arms swing freely 
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 This research aims to develop an example of gait pattern segmentation 

between normal and disabled individuals. Walking is the movement of 

moving from one place to another, where individuals with physical 

limitations on the legs have different walking patterns compared to 

individuals without physical limitations. This study classifies gait into three 

categories, namely individuals with assistive devices (crutches), 

individuals without assistive devices, and normal individuals. The study 

involved 10 subjects, consisting of 2 individuals with assistive devices, 3 

individuals without assistive devices, and 5 normal individuals. The 

research process was conducted through three main stages, namely: image 

database creation, data annotation, and model training and segmentation 

using YOLOv8. YOLOv8-seg is the platform used to segment the data. The 

test results showed that the YOLOv8L-seg model achieved convergence 

value at the 23rd epoch with the 4th scenario in recognizing the walking 

patterns of the three categories. However, research on walking patterns of 
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confidence or emotion of the subject during the data collection process, 

which is conducted at the location of the subject's choice. In addition, 

YOLOv8-seg showed consistent performance across the five models used, 

obtaining a maximum mAP50 value of 0.995 for mAP50 box and mAP50 

mask. 

 

Keywords 

Disabilities; 

Gait; 

Pattern Recognition; 

Yolov8 

This is an open-access article under the CC–BY-SA license. 

 

http://pubs2.ascee.org/index.php/ijrcs
http://dx.doi.org/10.31763/ijrcs.v5i1.1731
mailto:ijrcs@ascee.org
mailto:resty.wulanningrum.2305349@students.um.ac.id
mailto:aniknur.ft@um.ac.id
mailto:heru_wh@um.ac.id
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


ISSN 2775-2658 
International Journal of Robotics and Control Systems 

517 
Vol. 5, No. 1, 2025, pp. 516-529 

  

 

Resty Wulanningrum (Comparative Analysis of Yolov-8 Segmentation for Gait Performance in Individuals with 

Lower Limb Disabilities) 

 

with the body movement and help maintain balance. All these factors help in producing an efficient 

and stable gait. 

Abnormal gait includes an upright body position, unbalanced stride, unnatural arm movements, 

and impairments or injuries [14] that affect gait [15]. G The gait of people with disabilities varies 

depending on the type and level of disability they experience. They use assistive devices such as 

canes or wheelchairs to help them walk [16]-[20]. A person with a physical disability in the foot area 

can also walk without the use of assistive devices. The gait of normal people and people with 

disabilities can be detected by technology, namely computer vision. 

Computer Vision is a subdomain of artificial intelligence that is widely used for image 

processing [21]-[23]. Cameras and sensors enable computer vision applications. Images and videos 

are taken, processed, and then analyzed to produce data that is relevant to the application [24]. 

Computer vision technology in style recognition runs in real-time on normal people [25], [26] by 

using video recording for detection [27]. Automatic intelligence systems are built by Artificial 

intelligence (AI), one of which is pattern recognition [28], [29]. Pattern recognition for people's gait 

[30] aims to identify individuals with different psychological and behavioral characteristics in 

walking videos [31]. There have been several studies on the gait of normal people, including by 

Harris [32], Ghersi [33], Taha [34], Alvarez- Aparicio [35], and research on the gait of normal people 

based on gender [32]. The gait of normal individuals was analyzed using traditional segmentation 

algorithms, such as edge detection and Convolutional Neural Network (CNN) [33], [34], as well as 

Otsu threshold-based segmentation [35]. For the segmentation of human objects with background, 

the Mixture of Gaussian (MOG) method was used [36]. Meanwhile, gait detection of individuals 

with special conditions was analyzed using YOLO, which generates ankle, knee, and hip kinematic 

data [37].  

The Yolov8 framework developed in 2023 has undergone substantial improvements compared 

to Yolov7 and Yolov5, resulting in more efficient and accurate performance [38]-[41].  YOLOv8 is 

the latest object detection model that is more accurate than previous versions by adopting new 

techniques and optimizations [42], [43]. The YOLO family of object detection [44], [45], and 

segmentation instances has grown rapidly over the past few years, with each new iteration introducing 

improvements in accuracy and/or speed [46]. Instance segmentation is a powerful computer vision 

technique that combines the advantages of object detection and semantic segmentation [47], [48]. The 

contribution of this research is the application of the Yolov8 algorithm, for instance, segmentation, 

which is an extension of the segmentation method on the gait patterns of people with disabilities who 

use assistance, do not use assistance, and are normal. 

2. Method  

As illustrated in Fig. 1, the detection and segmentation process with Yolov8 consists of three 

stages: Step 1 involves image creation, Step 2 involves annotation, and Step 3 involves Yolov8.  

2.1. Image Base Creation 

The first step is Image Base Creation, which is the process of forming the dataset that will be 

used. This step contains the process of data acquisition from a Readmi Note 5 smartphone device. The 

video shooting process did not have any special arrangements, considering that the object of research 

was an individual with a disability. Therefore, extra effort was required to get a suitable video. 

Individuals with disabilities often have low self-confidence, so when the video is taken, some of them 

feel embarrassed and even cry. The disabled subjects used in this dataset are from a community of 

disabled athletes as well as a special school in Kediri, East Java, Indonesia. The video is then carried 

out through a face-blurring process, which is a stage so that it is not clearly visible on the face, after 

which video cutting is carried out. Face blurring is one of the ethical efforts to maintain facial 

confidentiality when using data as a dataset. The participants involved have signed a consent form to 

be used as research subjects. The video-cutting results are then extracted into 50 images from each 

video. 
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Fig. 1. The Processing of detection and segmentation 

Image Base creation is the stage of making the database used in this research. Data Acquisition 

is the process of taking pictures of the object of research, namely 10 people with disabilities and 

normal people, consisting of 2 assistive people, three non-assistive people, and five normal people, in 

the form of videos. The video is blurred so that the face is not visible. The video obtained is then done 

video cutting, resulting in 13 videos per person, so that there are 130 videos obtained. The next step 

is to extract video to frame, where 1 video will be extracted into 50 frame images, illustrated in Fig. 

2. Next, the stages of instance segmentation and pixel normalization will be carried out. 

2.2. Annotation  

The images obtained are then subjected to image processing, namely Instance Segmentation and 

pixel normalization using Roboflow. The second step is annotation, which is labeled into three classes, 

namely Assistive, Non-Assistive, and Normal. This labeling process has been consulted with a 

physical disability expert, Dr. Ruruh Andayani Bekti, M. Pd, who is also a trainer of disabled athletes. 

The third step is the implementation of yolov8 by using the training model. Then, detection and 

segmentation will be carried out. 

Instance segmentation is done using roboflow software and polygon tools to get an instance of 

person segmentation. The labeling consists of 3 classes, namely assistive, non-assistive, and normal. 

Assistive means a person with a physical disability in the legs who uses a walker in the form of a cane 

or crutches. Non-assistive refers to individuals with physical disabilities in the legs who are still able 
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to walk without the use of assistive devices but have unbalanced and asymmetrical walking patterns 

like normal people. Meanwhile, it normally refers to individuals who do not have physical disabilities 

in the legs and are able to walk like most people, with an upright, balanced, and symmetrical walking 

pattern. The annotation results are illustrated in Fig. 3. The image that has been segmented instances 

will then be normalized pixels with a size of 640×640 pixels. 

 

Fig. 2. image structure 

 

Fig. 3. Roboflow annotation result 

2.3. Yolov8 

The Yolov8 used in this stage is yolov8-seg, which is a variant of the YOLO (You Only Look 

Once) model specifically designed for the segmentation instance task [49]. The backbone of Yolov8-

seg is a convolutional network backbone for extracting features from the input image. The Head part 

of Yolov8-seg is designed for the segmentation task to predict the segmentation mask for each object 

detection. It consists of several final convolutions that generate the bounding box, class score, and 
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segmentation mask for each object. The training data models used in this study are the yolov8n-seg 

model, the yolov8s-seg model, the yolov8m-seg model, the yolov8l-seg model, and the yolov8x-seg. 

Table 1 shows the parameters of yolov8- seg that will be used in this study. 

Table 1.  Yolov8 Model parameters used 

Model 

Size mAPbox mAPmask Speed Speed Params FLOPs 

(pixels) 50-95 50-95 
CPU ONNX A100 TensorRT 

(M) (B) 
(ms) (ms) 

YOLOv8n-seg 640 36.7 30.5 96.1 1.21 3.4 12.6 

YOLOv8s-seg 640 44.6 36.8 155.7 1.47 11.8 42.6 

YOLOv8m-seg 640 49.9 40.8 317.0 2.18 27.3 110.2 

YOLOv8l-seg 640 52.3 42.6 572.4 2.79 46.0 220.5 

YOLOv8x-seg 640 53.4 43.4 712.1 4.02 71.8 344.1 

 

Detection and Segmentation are obtained from the results of custom validation of the training 

model, which is done by getting the best.pt value for testing validation. 

3. Results and Discussion 

The training Yolov8-seg model has a 640×640 pixel resolution. The degree of detail necessary 

for accurate segmentation was balanced with computational efficiency when selecting this image 

resolution. All experiments were conducted on a Windows 10 Pro PC equipped with an Intel(R) Core 

(TM) i5-4210U CPU running at 1.70GHz and 2.40GHz, 12.0 GB of RAM, and 64-bit architecture. 

3.1. Split Data 

The template is designed so that author affiliations are not repeated each time for multiple authors 

of the same affiliation. Please keep your affiliations as succinct as possible (for example, do not 

differentiate among departments of the same organization). 

Split data in this research test scenario uses 4 test scenarios, namely the first scenario using 70% 

for training data, 15% for data validation, and 25% for testing data. The second scenario uses 70% 

training data, 20% validation data, and 10% testing data. Scenario 3 uses 75% for training data, 10% 

for validation data, and 15% for testing data. Scenario 4 uses 80% for training data, 10% for validation 

data, and 10% for testing data, as shown in Table 2.  

Table 2.  Test Scenario 

Scenario Split Data Training Data Validation Data Testing Data 
1 701515 70% 15% 25% 

2 702010 70% 20% 10% 

3 751015 75% 10% 15% 

4 801010 80% 10% 10% 

3.2. Result of Yolov8 Instance Segmentation 

The test results on yolov8-seg have two validation models: label validation and prediction 

validation. Label validation only mentions assistive, non-assistive, and normal. Meanwhile, the 

prediction validation provides the results of the confidence score value. For example, the results show 

assistive 1.0. Will 1.0 indicates the highest confidence score that the detected object really corresponds 

to the specified class, namely assistive. In other words, the system is very confident that the detected 

object is assistive (Fig. 4) 

Mean Average Precision (mAP) is a metric that measures the overall performance of an object 

detection [50], [51] model by calculating precision and recall at various prediction thresholds and then 

averaging them [52], [53]. mAP at IoU 0.5 means that mAP is calculated with an IoU threshold of 0.5 

[54]. 
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Steps to Calculate mAP at IoU 0.5 

1. Prediction and Ground Truth: For each image in the validation dataset, the model generates a 

prediction bounding box with a confidence score and class label. The ground truth bounding 

box is also available for that image. 

2. Calculate IoU: For each prediction bounding box, calculate the IoU with the corresponding 

ground truth bounding box. Equation (1). 

 
𝐼𝑜𝑈 =

𝐴𝑟𝑒𝑎 𝑂𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 (1) 

3. Determining True Positive (TP), False Positive (FP), and False Negative (FN): 

a. True Positive (TP): Predicted bounding box that has IoU >= 0.5 with ground truth bounding 

box and correct prediction class. 

b. False Positive (FP): A bounding box prediction that does not have the corresponding ground 

truth bounding box (IoU < 0.5) or the wrong prediction class. 

c. False Negative (FN): Ground truth bounding box that does not have a corresponding 

bounding box prediction (IoU < 0.5). 

4. Precision and Recall: Precision: The proportion of TP compared to TP + FP. Equation (2). 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

5. Recall: The proportion of TP compared to TP + FN. Equation (3). 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

6. Precision-Recall Curve: 

a. Create a precision-recall curve by changing the prediction confidence score threshold from 

0 to 1. 

b. Calculate the precision and recall at various thresholds. 

7. Average Precision (AP): Calculate the area under the precision-recall curve for each object class. 

This is called Average Precision (AP). 

8. Mean Average Precision (mAP): Take the average of the APs for all object classes. This is called 

mAP. Equation (4). 

 

𝑚𝐴𝑃 =
1

2
 ∑ 𝐴𝑃𝑖

𝑁

𝑖=1

 (4) 

Where N is the number of object classes. 

The mAP50 (Box) value measures how well the model detects and localizes objects with a 

bounding box [55], while mAP50 (Mask) measures how well the model detects and describes detailed 

object shapes with a mask [56]. In the tests conducted, the value of mAP50(B) is the same as the value 

of mAP50(M) shown in Fig. 5. 

3.3. Discussion 

Mean Average Precision at IoU 0.5, often abbreviated as mAP50 in the 4 test scenarios 

conducted, the minimum and maximum values of each scenario and model test are sought. The results 

of the max mAP value and four scenarios and model tests show the same maximum value of mAP 50, 

which is at a value of 0.995, illustrated in Table 3.  Overfitting indicates that the model has learned 
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too specifically on the training data, thus failing to generalize to new data. This can happen if the 

training data has characteristics that are too uniform or if the dataset used has not gone through an 

augmentation process to increase variation. Meanwhile, high model performance in training or testing 

datasets does not necessarily guarantee good performance in the real world, as real-world data tends 

to be more diverse. These variations include changes in lighting, object orientation, and complex 

situations that may not be fully represented in the training or testing data. 

 

Fig. 4. Label validation and prediction results 

Table 3.  mAP 50 value results from 4 test scenarios 

Scenario 
Yolov8n-seg Yolov8s-seg Yolov8m-seg Yolov8l-seg Yolov8x-seg 

Min Max Min Max Min Max Min Max Min Max 
1 0.06659 0.995 0.7825 0.995 0.94461 0.995 0.97217 0.995 0.94445 0.995 

2 0.0653 0.995 0.7789 0.995 0.94461 0.995 0.96708 0.995 0.94753 0.995 

3 0.30328 0.995 0.82592 0.995 0.97177 0.995 0.94917 0.995 0.98257 0.995 

4 0.30328 0.995 0.35803 0.995 0.74313 0.995 0.93895 0.995 0.91992 0.995 

 

In the tests conducted on four scenarios in Table 4, a minimum mAP50 value of 0.3028 and a 

maximum mAP50 value of 0.995 were obtained. This larger range may indicate instability or 

variability in model performance. Several factors, such as uneven data distribution, suboptimal 

training methods, or model sensitivity to certain parameters may cause such instability. This is 

dependent on the quality of the training process's dataset. Accurate and consistent annotations help 

the model learn effectively. Additionally, the diversity of the dataset, which includes a variety of 

objects, backgrounds, lighting conditions, and viewing angles, ensures that the model can generalize 

well. Since the dataset includes images of people with disabilities taken in real-world settings where 

the subjects chose the location, the data is varied with many backgrounds, lighting conditions, and 

suboptimal viewpoints. The min-max value is obtained from the difference between the highest 

mAP50 value and the lowest mAP50 value during training in each scenario. For example, in scenario 

1 for the Yolov8l-Seg model, the highest value was 0.995, while the lowest value was 0.9721. Thus, 

the min-max value distance is calculated as follows: 

𝑀𝑎𝑥 –  𝑀𝑖𝑛 =  0.995 –  0.9721 =  0.02283 
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Table 4.  Range of min- max distance at mAP50  

Scenario Yolov8n-seg Yolov8s-seg Yolov8m-seg Yolov8l-seg Yolov8x-seg 
1 0.92841 0.2125 0.05039 0.02283 0.05055 

2 0.9297 0.2161 0.05039 0.02792 0.04747 

3 0.69172 0.16908 0.02323 0.04583 0.01243 

4 0.69172 0.63697 0.25187 0.05605 0.07508 

 

The selection of the test model and the best test scenario in this study can be seen in the 

convergence value of the test at what epoch value? Tests on convergence and epoch are in Table 5.  

Table 5. Convergence epoch on Yolov8-seg modelConvergence on training data is seen in 

scenario each model has an epoch convergence value of 99 and 98 on yolov8n-seg in scenarios 1 and 

2. Scenario 3 at epoch 14 has experienced convergence, but in scenario 4, it rises again, converging at 

epoch 37. On yolov8s-seg, it looks to have the same convergence at epoch 57 in scenarios 1 and 2. 

While convergence at epoch 40 in scenario 3 and convergence at epoch 22 in scenario 4. The increase 

in convergence of each scenario has a stable value, but because the value of the min-max range is still 

too far apart, then yolov8s-seg is not the best in this research. 

 

Fig. 5. Map 50 (B) and mAP 50 (M) results 

Yolov8m-seg also has the same convergence value in scenarios 1 and 1 at epoch 84. Yolov8l-

seg has convergence at epoch 18 in scenario 3 and experienced an increase in convergence in scenario 

4, namely at epoch 42. Yolov8l-seg has convergence at epoch 65 in scenarios 1 and 2. At epoch 24, it 

experienced convergence in scenario three and convergence of epoch 23 in scenario 4. In this yolov8l-

seg, which has the lowest and most stable minimum and maximum range values seen from the mAP50 

value. In yolov8x-seg has a convergence value at epoch 21 in scenarios 1 and 2. Convergence at epoch 

52 in scenario three and convergence at epoch 17 in scenario 3. When viewed from the results of 

scenarios related to the value of convergence, scenarios 1 and 2 have training data as much as 70% of 

the total data. It can be concluded that the higher the training value, the lower the epoch convergence 

value that occurs in the case of datasets for assistive, non-assistive, and normal recognition. 

Fig. 6 depicts the tests in scenario 4. This indicates that the mAP50 value reached epochs 14–22, 

declined at epoch 23, and then started to converge again at epoch 24. These changes were caused by 

box_loss and seg_loss. Box_loss increased by 0.0149, resulting in a decrease in results that prevented 

convergence. Relationship between box_loss and seg_loss shown in Table 5. 

Data Explanation Table: 

1. Box_loss of Training vs Validation: 
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a. The box_loss in training gradually decreases from 0.71753 (Epoch 14) to about 0.64518 

(Epoch 24). This indicates that the model is getting better at predicting the bounding box 

during training. 

b. The validation box_loss also shows a decrease (e.g., from 0.50613 to 0.41733), which 

reflects better generalization of the model to the validation data. 

2. Training vs. Validation Seg_loss: 

a. The training seg_loss shows more variable values (e.g., 10.702 at Epoch 14 and a drastic 

decrease to 0.98325 at Epoch 25). This decrease could indicate that the model is starting to 

handle segmentation better despite the initial large values. 

b. In the validation data, seg_loss tends to be stable, with small fluctuations from 0.74806 to 

around 0.71952. This relatively constant value could indicate the stability of the model's 

performance on the segmentation task. 

This study compares 5 yolov8-seg models for the gait of disabled and normal people. The model 

evaluation uses the mAP50 value with box and mask values. The research that has been done found a 

model that shows that the mAP50 box and mask values are the same. When added objects and datasets 

are added, it will affect the results of the evaluation of the mAP50 value on the box and mask. The 

use of changing data scenarios will affect the distance or range of mAP50 values. The values of 

box_loss and seg_loss also affect the mAP50 value so that it can cause underfitting or overfitting. 

 

Fig. 6. mAP50 value of yolov8l- seg 

Table 5.  Relationship between box_loss and seg_loss 

Epoch 
Train 

Epoch 
Valid 

Box_loss Seg_loss Box_loss Seg_loss 
14 0.71753 10.702.00 14 0.50613 0.74806 

15 0.70947 11.023.00 15 0.44159 0.72531 

16 0.69649 10.372.00 16 0.48738 0.77173 

17 0.70705 10.586.00 17 0.46925 0.74413 

18 0.69493 10.493.00 18 0.45774 0.73859 

19 0.68981 11.206.00 19 0.41764 0.74214 

20 0.6661 10.333.00 20 0.45293 0.74208 

21 0.66499 1.048.00 21 0.39075 0.74796 

22 0.66648 0.97948 22 0.44437 0.70847 

23 0.68657 1.007.00 23 0.45165 0.72343 

24 0.64518 10.594.00 24 0.41733 0.72808 

25 0.65621 0.98325 25 0.44149 0.71952 

 

This study has several important implications that can serve as a reference for further 

development. Firstly, the consistency of the mAP50 box and mask values suggests that the model can 
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be uniformly used for bounding box and mask segmentation evaluation on similar data. Secondly, 

increasing the number of objects or varying the dataset can affect the performance of the model, so 

testing on various datasets is necessary to ensure the generalizability of the model. Thirdly, varying 

data scenarios can also affect the mAP50 value, so it is important to test the model under various 

conditions to determine performance tolerances. In addition, the box_loss and seg_loss values are 

directly related to mAP50, indicating that optimization of these two parameters during training is 

necessary to avoid underfitting or overfitting. Evaluation using mAP50 also provides an initial 

indication of model quality, but further research is still needed to understand the effects of additional 

factors, such as dataset complexity or usage scenarios. Finally, the model has the potential to be further 

developed to effectively detect and analyze the gait of people with disabilities and normal people in 

various conditions, such as in rehabilitation or health monitoring applications. All these implications 

can serve as guidelines for further research or real-world implementation of the model.  

4. Conclusion 

This study proposes the YOLOv8-seg framework to detect and classify three gait classes in 

people with disabilities, namely assistive, non-assistive, and normal disabilities, by comparing five 

variants of the YOLOv8-seg model. The evaluation results showed consistent performance across 

the five models, with a maximum mAP50 of 0.995 for both box and mask metrics, where the 

YOLOv8l-seg model and the 4th test scenario gave the best results with convergence at the 23rd 

epoch. While these findings are promising, further research is needed to ensure the robustness of the 

model against more diverse and complex datasets, such as variations in resolution, illumination, and 

the presence of anomalies or mislabeling, to improve generalizability. In addition, testing in real-

world scenarios and in-depth analysis of the box_loss and seg_loss parameters are needed to avoid 

overfitting and improve performance. Further validation and development, such as integration in 

portable devices for rehabilitation or video-based real-time applications, are promising potential 

areas to optimize the implementation of this model to support comprehensive gait analysis. 
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