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1. Introduction 

In recent decades, robotics control methodologies for nonlinear mechanical systems have 

garnered significant attention from researchers [1]. An important example is a robot manipulator arm, 

which poses a challenge due to its highly nonlinear nature and coupled dynamics. The additional 

degrees of freedom enhance flexibility and resolution, allowing a wider range of tasks to be performed. 

In the industrial manufacturing sector, there is an increasing preference for multi-axis robots, such as 

4-DOF configurations. This trend is particularly significant in processes like laser tracking and 

industrial welding, where increased flexibility can lead to improved processing precision [2]. 

However, the complexity of dynamics associated with higher DOFs in multi-axis robots poses 

challenges for accurate trajectory tracking. Furthermore, operations involving high payloads may 

intensify these challenges, resulting in considerable disturbances. Therefore, the implementation of a 

robust controller is crucial for effective tracking in multi-axis robotic systems. This research focuses 

on the development of a controller for a 4-DOF robot manipulator [3], In academic literature, 

numerous approaches have been proposed to manage manipulator robots. Friction in joints is 

addressed by using a robust control method to control a two-degree-of-freedom manipulator robot [4], 

[5]. An adaptive control structure was implemented in [6] to mitigate the adverse effects of 

unidentified nonlinearities. An optimal control of a linearized feedback is used in [7], [8]. A fast 
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predictive control for a high speed robot arm is used in [9]. A feedforward neural network was 

constructed to solve the problematic inverse kinematics of a robotic planar manipulator with three 

degrees of freedom [10], where the accuracy of trajectory generation in Cartesian space is crucial for 

controlling the robot arm. Backstepping control is used with disturbance and uncertainty estimation 

using a neural network is used in [11]. Hierarchical ML for a manipulator is used in [12]. Reference 

[13] proposed a hybrid control method for a three-link robotic arm consisting of joint control designed 

in space configuration and sliding mode control. Reference [14] suggests a time-optimal trajectory for 

a robotic system using a convex optimization approach. An adaptive control system was developed 

for a robotic arm in [15], incorporating linear quadratic techniques to enhance performance. An 

optimal adaptive sliding mode was implemented and tested with a disturbance observer on a robot 

arm in [16]. Observability analysis is used to drive linearized feedback is used in [17]. Three methods 

of nonlinear predictive control were developed in [18] to supervise two interconnected vertical 

manipulator robots. An adaptive radial-based controller was used in [19]. Reference [20] 

recommended anticipating a robotic manipulator of a nonlinear model mounted on an autonomous 

platform. Feedback linearization for a quadrotor was successfully implemented in [21]. Multivariable 

super-twisting control was introduced to tackle uncertainties in [22] and [23]. A hierarchical 

perturbation controller was introduced in [24]. 

Reference [25] used a modified PD control law with Taylor-series compensation to achieve 

robust reference tracking. Conversely, conventional feedback linearization controllers are designed to 

ensure that the system converges asymptotically to zero. The work cited in [26] presents an innovative 

adaptive continuous sliding mode strategy designed to tackle uncertainties and alleviate the chattering 

phenomena often encountered during control operations. References [27] and [28] explore a 

nonsingular fast terminal second-order sliding mode methodology for robotic manipulators based on 

feedback linearization principles. Furthermore, a hierarchical perturbation compensation system 

incorporating an exponential reaching law sliding mode controller is examined in the quadrotor 

framework in [29]. 

 SMC has become a prominent control technology, recognized for its simplicity and effectiveness 

in handling uncertainties and disturbances. The stability and stabilization aspects of SMC are 

fundamentally anchored in the principles of Lyapunov theory, providing a framework for establishing 

asymptotic stability. SMC is specifically engineered to maintain robust control performance in the 

presence of confined disturbances and uncertainties. It has become a fundamental technique to address 

parametric uncertainties inherent in complex multi-input multi-output (MIMO) nonlinear systems. 

Conventional and high-order SMC is introduced in reference [30]. A design for a second-order sliding 

mode controller that incorporates output constraints is presented in reference [31]. Additionally, 

reference [32]    discusses a novel adaptive sliding-mode control scheme specifically tailored for robot 

manipulators. 

Driven by the benefits of both SMC and Feedback Linearization, a controller that combines these 

two approaches, termed Feedback Linearization based Sliding Mode Control (FLSM), has been 

developed based on extensive research. Feedback Linearization is employed as a nonlinear design 

technique to address the nonlinear dynamics of the mechanical system efficiently. The controller is 

structured in two loops: the inner loop addresses the significant nonlinearities of the robot arm 

parameters, while the outer loop integrates the robust aspects of the sliding mode controller to manage 

nonlinear uncertainties and disturbances. This method is resilient to variations in robot parameters, 

and the stability of the quadrotor system and the finite-time convergence of errors are validated using 

the Lyapunov function. 

The performance improvement of a Feedback Linearization Sliding Mode (FLSM) controller 

over a PID controller can be seen in many aspects, FLSM controllers handle system nonlinearities and 

uncertainties better than PID controllers, which rely on linear assumptions and tuning. FLSM can 

adapt dynamically to changing conditions, resulting in lower overshoot and minimal oscillations 

compared to PID. The sliding mode aspect of FLSM ensures robust tracking and stability, even in the 

presence of external disturbances and modeling errors. FLSM achieves quicker convergence to the 
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desired setpoint with faster error correction, compared to PID's proportional, integral, and derivative 

adjustments. FLSM excels in managing complex, time-varying, or highly coupled systems where PID 

may struggle due to its simplicity [33]. The key contributions of this paper are outlined as follows: 

• Introducing a control system that effectively addresses nonlinearity without resorting to model 

linearization, utilizing feedback linearization principles and adaptive SMC methodologies. 

• Mitigating the impact of severe nonlinearity and tightly coupled dynamics, ensuring robust and 

precise control. 

• Applying the system to the QArm, a four-degree-of-freedom system, in an aggressive trajectory 

with disturbances. 

2. Dynamic Model of the Robot Arm 

The dynamic modeling of a robotic arm articulates the correlation between the forces and torques 

applied to the robot's joints and the resulting motion [34], [35]. This modeling involves analyzing the 

arm's physical attributes, such as mass, inertia, and friction, along with the kinematic and dynamic 

equations that govern its operation. 

The dynamic model of a robotic arm serves as a mathematical framework that explains how the 

arm moves in response to applied forces and torques. It illustrates the interaction between the arm's 

physical characteristics and the forces acting on it, including joint torques, gravitational effects, and 

frictional forces. This model is essential for predicting the arm's behavior under different conditions 

and is crucial for developing control systems that ensure precise and efficient control of the robot's 

movements. 

Analyzing the dynamics of robot manipulators presents significant challenges. Researchers have 

explored various techniques, primarily categorized into the Euler-Lagrange formulation and the 

Newton-Euler formulation. The Euler-Lagrange method views the manipulator as a unified system, 

focusing on its kinetic and potential energy for analysis. In contrast, the Newton-Euler approach treats 

each link of the manipulator individually, starting with forward recursion to describe linear and 

angular motions, followed by backward recursion to evaluate forces and torques. 

The comparison of efficiency between the Euler-Lagrange and Newton-Euler formulations 

remains a prominent topic in the field [36]. The choice of method depends on factors such as the 

number of links and joints in the kinematic chain, the chain's topology, the orientation of coordinate 

frames, and the use of recursive procedures [37]. Generally, the Newton-Euler formulation is preferred 

for manipulators with many degrees of freedom due to its recursive nature, especially when frames 

are appropriately configured. 

To obtain accurate dynamic parameters, identification techniques leveraging the nonlinearity of 

the dynamic model can be employed. The Quanser robot arm manipulator is frequently discussed in 

research papers, and maintaining frame assignments is crucial for accurate modeling. 

In this section, we will demonstrate the modeling of the Quanser four-degree-of-freedom (DOF) 

QArm manipulator. The kinematic diagram in Fig. 1 illustrates the x and z axes of each joint frame, 

while the rigid body diagram provides the x, y, or z axes for notation convenience. The third axis can 

be determined using the right-hand rule. The dynamic equations can be represented in matrix form as 

[29], [38]: 

 𝜏 = 𝑀(𝜃)�̈� + 𝐵 (𝜃)�̇�𝑖�̇�𝑗 + 𝐶 (𝜃)�̇�𝑘
2 + 𝐺(𝜃) (1) 

Where, (𝑖, 𝑗)𝜖 {(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)}, 

𝑘𝜖 {1,2,3,4}, In this context, (𝑀=Inertia matrix), (𝑩=Coriolis matrix), (𝑪= signifies the 

Centrifugal matrix), and (𝑮=Gravity matrix). This representation, referred to as an equation of motion. 

It, illustrates that the matrices corresponding to the Coriolis and Centrifugal coefficients are solely 
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dependent on the manipulator's state 𝜙. It is important to note that certain coefficients within these 

matrices may be rendered inapplicable or equal to zero, contingent upon the specific configuration of 

the manipulator. For the Quanser Arm, these matrices are structured in a particular manner. 

 

[

𝜏1

𝜏2
𝜏3

𝜏4

] = [

𝑀11

0

0
𝑀22

0 𝑀14

𝑀23 0

0 𝑀32 𝑀33 0
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0
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[
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�̇�4

�̇�3

�̇�4

�̇�4]
 
 
 
 
 
 

+ [

0
𝐶21

0
0

0 0
𝐶23 0

𝐶31 𝐶32 0 0
0 0 0 0

]

[
 
 
 
 
�̇�1

2

�̇�2
2

�̇�3
2

�̇�4
2]
 
 
 
 

+ 𝑔 [

0
𝐺2

𝐺3

𝐺4

] (2) 

Coefficients denoted by the subscript 𝑚𝑛 signify the relationship between the torque exerted at 

the mth joint and the associated 𝑛th kinematic term. For instance, the 𝐵24  coefficient connects the torque 

on joint 2, represented as 𝜏2, to the corresponding fourth kinematic term, which is expressed as, �̇�2�̇�3. 

According to Fig. 1, the manipulator is currently at the home stage positioning. The joint space vector 

𝜃 can be represented as, 𝜃 = [0, (𝛽 −
𝜋

4
), −𝛽, 0]𝑇.  

Both the actuators and encoders of the manipulator are fully calibrated at this position. To move 

the manipulator to the home position, a [0 0 0] T command must be applied.  Additionally, the encoder 

will also read the joint position as [0 0 0] T. The joint space alternation may be represented as �⃗� . Further 

description of the manipulator �⃗�  space is addressed in Table 1. For example, when 𝜙2=0 it will convey 

𝜃2=𝛽−𝜋/2. This pertains to joint 2 from the perspective of home position. Further description of the 

robot arm model are detailed in [38]. Dynamic parameters for the Qarm shown in Table 2. 

Table 1.  simplification of mathematical formulation through linear mapping 

New Parameter Original Parameter New Parameter Original Parameter 

𝜆1 𝐿1 ∅1 𝜃1 

𝜆2 √𝐿2
2 + 𝐿3

2  ∅2 𝜃2 +
𝜋

2
− 𝛽 

𝜆3 𝐿4 + 𝐿5 ∅3 𝜃3 + 𝛽 

𝛽 tan−1(
𝐿3

𝐿2
) ∅4 𝜃4 

 

 

Fig. 1. Frame diagram of Quanser Arm manipulator  [38] 
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Table 2.  Dynamic parameters for the Qarm 

Parameter Value Parameter Value 

𝑚1 0.7906 kg 𝑚2 0.4591 kg 

𝜆𝑐1 0.0399 m 𝜆𝑐2 0.1071 m 

𝐼1𝐴 1.489 × 10-3 kg m2 𝐼2𝐴 1.922 × 10-4 kg m2 

𝑛/𝑎∗ - 𝐼2𝐿
∗ 1.610 × 10-3 kg m2 

Parameter Value Parameter Value 

𝑚3 0.269 kg 𝑚4 0.257 kg 

𝜆𝑐3 0.1561 m 𝜆𝑐4 0.0998 m 

𝐼3𝐴 2.679 × 10-4 kg m2 𝐼4𝐴 6.528 × 10-4 kg m2 

𝐼3𝐿
∗ 2.069 × 10-3 kg m2 𝐼4𝐿

∗ 1.120 × 10-3 kg m2 

3. Controller Design 

The procedure for synthesizing the controller is designed to guarantee stability while enabling the 

quadrotor to adhere to a specified trajectory. Feedback linearization is a control strategy used to handle 

nonlinear systems by transforming them into an equivalent linear system through mathematical 

manipulation. This is achieved by designing a control law that cancels out the nonlinear dynamics of 

the system, leaving a linearized behavior that can be easily controlled using standard linear control 

techniques. It effectively simplifies the design and analysis of controllers for complex systems. 

A Lyapunov function is a scalar mathematical function used to assess the stability of a dynamic 

system. It is analogous to an "energy-like" measure for the system, where the function decreases over 

time for a stable system, indicating that the system's state is converging to an equilibrium point. In 

engineering, Lyapunov's direct method leverages this function to prove stability without solving the 

system's differential equations explicitly, making it a powerful tool for nonlinear control design. 

3.1. Control Algorithm 

This section presents the implementation of a robust sliding mode controller that integrates a 

Feedback linearization approach. The objective of the proposed system is to achieve asymptotic 

convergence of the error while accommodating nonlinear uncertainties and external disturbances. The 

linearization process employs an input/output feedback linearization technique, which is executed 

through two distinct loops: the inner and outer loops. The inner loop is specifically designed to mitigate 

the impact of the system's hard nonlinearity, thereby establishing a relationship between input and 

output states and formulating a nonlinear control law. Conversely, the outer loop focuses on regulating 

the input/output system to ensure the stabilization of the closed-loop system and to facilitate the 

estimation of nonlinear uncertainties. The control system's block diagram is illustrated in Fig. 2. The 

primary aim of the input-output system is to establish a direct correlation between the system's output 

and its input control action. According to equation (4), the desired input U can be expressed as follows: 

 𝜏 = 𝑀(𝜃)𝑣 + 𝐵 (𝜃)�̇�𝑖�̇�𝑗 + 𝐶 (𝜃)�̇�𝑘
2 + 𝐺(𝜃) (3) 

Knowing that, 𝑣 is a supplementary controlling input to the model and 𝑣= [𝑣1 , 𝑣2 , 𝑣3 , 𝑣4]T. 

According to (3), a clear and direct relationship between the control input and the system's output exists, 

allowing the system to be restructured to emphasize this linkage [39] and [40]: 

 �̈�=𝑣 +D(t) (4) 

Where; D(t) = bounded uncertainty. 

Assumption: we assume the term of uncertainties, is globally Lipchitz function. 

The desired trajectory 𝜃d is obtained from the required robot mission. E=𝜃-𝜃d ϵRn and Ė=�̇�-

�̇�d ϵRn represent the error along its derivation. The sliding variable along its derivation is designated 

as per the notations [39]: 
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𝑆 = �̇� + Λ𝐸 

�̇� = �̈� + Λ�̇� 
(5) 

Where; Λ = 𝑑𝑖𝑎𝑔(𝜆𝑖𝑖) for 𝑖 = 1,… , 𝑡𝑜 𝑛 is a diagonal positive definite matrix and (𝑛) is the length 

of the states vector. The velocity and acceleration of the desired trajectory �̇�𝑑, �̈�𝑑 are measurable 

quantities in the manipulator. The auxiliary input 𝑣  is designed as described in Equation (6), [40]: 

 𝑣 =  �̈�𝑑 − Λ�̇� − 𝐾 𝑆𝐺𝑁 −  𝐷(𝑡) (6) 

Where; 𝐾 = 𝑑𝑖𝑎𝑔(𝑘𝑖𝑖) for 𝑖 = 1,… , 𝑡𝑜 𝑛  is a positive-definite diagonal matrix. 𝑆𝐺𝑁 =

[𝑆𝑖𝑔𝑛(𝑠1), 𝑆𝑖𝑔𝑛(𝑠2), 𝑆𝑖𝑔𝑛(𝑠3), 𝑆𝑖𝑔𝑛(𝑠4)]T, and the function 𝑆𝑖𝑔𝑛(𝑠𝑖),  is defined such that: 

 
𝑆𝑖𝑔𝑛(𝑠𝑖) = {

1  𝑓𝑜𝑟 𝑠𝑖 > 0
0   𝑓𝑜𝑟 𝑠𝑖 = 0

−1  𝑓𝑜𝑟 𝑠𝑖 < 0
 (7) 

Theorem: 

In the context of the quadrotor system outlined in (1), the control inputs of 6, 4, and 3 facilitate 

the finite-time convergence of the sliding surface defined by S(x, t) = 0. Consequently, both the 

tracking error E and its derivative Ė will asymptotically approach zero. 

Proof: 

It is appropriate to identify the following Lyapunov function: 

 
𝑉 =

1

2
𝑆𝑇𝑆 (8) 

The time derivative of Lyapunov functions is specified by: 

 �̇� = 𝑆𝑇�̇� (9) 

By substituting the derivative of the selected surface as shown in equation (5), we derive the 

following result: 

 �̇� = 𝑆𝑇(�̈� + Λ�̇�) = 𝑆𝑇[�̈� − �̈�𝑑 + Λ�̇�] (10) 

Substituting equation (1) into equation (10) gives: 

 �̇� = 𝑆𝑇[𝑀−1(𝜃)(𝜏 − 𝐵 (𝜃)�̇�𝑖�̇�𝑗 − 𝐶(𝜃)�̇�𝑘
2 − 𝐺(𝜃)) − �̈�𝑑 + Λ�̇�] (11) 

By substituting the control inputs (3) and (6) into equation (11), we find: 

 
�̇� = 𝑆𝑇[(−𝐾 𝑆𝐺𝑁 − 𝐷(𝑡))] 

�̇� = −∑ 𝑠𝑖

4

𝑖=1
(𝑘𝑖 𝑠𝑖𝑔𝑛(𝑠𝑖) − 𝐷𝑖(𝑡)) 

≤ −∑ |𝑠𝑖|
4

𝑖=1
(|𝑘𝑖 𝑠𝑖𝑔𝑛(𝑠𝑖)| − |𝐷𝑖(𝑡)|) 

≤ −∑ |𝑠𝑖|
4

𝑖=1
(𝑘𝑖 − |𝐷𝑖(𝑡)|) 

(12) 

To ensure that V̇ is less than 0, the gain must be selected as ki>𝐷𝑖. Once this condition is met, 

the stability of the system is verified. 
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Fig. 2. Control system block diagram 

4. Simulation Results 

The simulation outcomes are based on the actual parameters of the Quanser Robot QArm, as 

shown in Fig. 3. The robot model in equations (1) and (2) is used, with 𝑀𝑖𝑗 , 𝐵𝑖𝑗 , and 𝐶𝑖𝑗 detailed in 

[38]. The QArm parameters are listed in Table 2. The initial values of the joints are 𝑞1 = 𝑞2 = 𝑞3 =
𝑞4 = 0, corresponding to 𝑥 = 45𝑐𝑚, 𝑦 = 0 𝑐𝑚 and 𝑧 = 49 𝑐𝑚. To showcase the resilience of the 

proposed control schemes, a time-varying disturbance is introduced to the controlled signal. The 

external disturbances are assumed to be as follows: 

 𝐷𝑖 =  3 𝑐𝑜𝑠(𝜔𝑡) + 0.5 𝑠𝑖𝑛(𝜔𝑡) (13) 

The control feedback linearization based on sliding mode controller described in section 3 is used. 

The gain values are as follows: 

Λ = 𝑑𝑖𝑎𝑔[10,10,10,1000], 

   𝐾 = 𝑑𝑖𝑎𝑔[100,100,100,500] 

The desired trajectory consists of two squares with sharp edges, as shown in Fig. 4. The graph 

illustrates the performance of the trajectory tracking system. Fig. 5 and Fig. 6 depict the tracking of 

the three axes and the joint tracking, showcasing the controller's ability to provide precise tracking. 

Additionally, the proposed controller is compared to a standard PID controller. 

 
𝜏 = 𝐾𝑝𝑒(𝑡) + 𝐾𝐷 

𝑑

𝑑𝑡
𝑒(𝑡) + 𝐾𝐼  ∫ 𝑒(𝑡)𝑑𝑡 (14) 

The errors in the axes for the proposed controller, which is based on feedback linearization 

utilizing sliding mode, are presented in Fig. 7, along with the PID controllers. It is evident that the 

proposed control reduces the error. Fig. 8 displays the control signals, showing continuous signals 

that never reach saturation, indicating the capability to apply to a practical system to verify the 

controller's quality and stability. The controller regulates the behavior of a system to achieve desired 

performance. Control signals are smooth and uninterrupted over time, without abrupt jumps or 

discontinuities which reduces stress on the system's actuators and improves overall performance and 

indicates the controller operates within a safe range, avoiding potential issues like degraded 

performance or system instability. System stability ensures the system does not oscillate 

uncontrollably or deviate from the desired state. 

The root mean square (RMSE) value of the errors in each case is shown in Table 3. The numbers 

in the table show the advantage of FLSMC over the PID controller. The proposed combined system 

provides good performance as shown in the figures and the table. 

As it can be noticed in the simulation the FLSM controller over a PID controller has improved 

Robustness to Nonlinearities, Reduced Overshoot and Oscillations, Improved Stability, ensured Faster 
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Response, and Reduced Sensitivity to Tuning. The FLSM demonstrated superior robustness and 

precision under varying conditions compared to the PID controller, effectively maintaining stability 

and accuracy even in challenging scenarios. 

Table 3.  Root mean square of the errors 

RMSE PID FLSM 

x 0.3818 0.036 

y 0.1377 0.03 

z 0.03 0.002 

 

 

Fig. 3. Quanser QArm [38] 

 

Fig. 4. Trajectory tracking in3D 
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Fig. 5. Trajectory tracking in xyz 

 

Fig. 6. QArm joint tracking 
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Fig. 7. Error in Feedback linearization and PID controllers 

 

Fig. 8. Control signals 
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5. Conclusion 

This paper presents a comprehensive approach to Feedback Linearization using a sliding mode 

tracking controller. The methodology leverages prior knowledge of the dynamic model, enabling the 

proposed controller to directly address the system's nonlinearity without the need for model 

linearization. By mitigating the effects of highly coupled dynamics, the controller ensures robust and 

precise tracking performance. The robustness characteristics are analyzed within the context of the 

global closed-loop system. Stability is examined through Lyapunov analysis, and the dynamic model 

is implemented in MATLAB/Simulink. The effectiveness of the proposed system is demonstrated 

through empirical results and a comparative analysis with a traditional PID controller, showcasing 

commendable performance and accuracy. Future research directions include comparing the proposed 

system with feedback linearization approaches based on alternative control systems to identify the 

most effective method. Future research can explore the following directions to enhance and extend 

the findings of this study such as Real-World Experimental Validation, Extension to Multi-Input 

Multi-Output (MIMO) Systems, Integration with Machine Learning Techniques, and Energy 

Efficiency and Computational Optimization. 
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