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1. Introduction

Gait, defined as the manner of walking, is a complex human activity that requires precise coor-
dination among the brain, nervous system, and muscles. Worldwide, issues with gait have become
increasingly prevalent, contributing to an estimated 646,000 fatal falls each year, predominantly af-
fecting individuals aged 50 and above [1], [2]. These issues represent the second leading cause of
accidental deaths globally and impose a significant financial burden on healthcare systems. In addi-
tion to higher mortality rates, gait disorders diminish the quality of life for older adults, underscoring
their broader societal and economic consequences. Gait-related conditions are responsible for approx-
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imately 0.85% to 1.5% of worldwide healthcare expenditures [3]—[5]. Given the substantial costs and
the growing incidence of falls linked to gait disorders in older adults, there is a critical need for early
detection and timely intervention to address these challenges [6]. Neurodegenerative diseases (NDDs)
are a primary cause of gait abnormalities, further complicating the management of these disorders.

1.1. Neurodegenerative Diseases and Gait Patterns

Neurons, the basic units of the nervous system, are essential for bodily functions. Neurode-
generation involves the progressive loss of neurons, leading to debilitating conditions known as neu-
rodegenerative diseases (NDDs). Conditions such as Parkinson’s disease (PD), Huntington’s disease
(HD), and Amyotrophic Lateral Sclerosis (ALS) profoundly affect gait patterns in distinct ways. For
instance, ALS patients often exhibit slower walking speeds and longer stride durations, while those
with HD and PD demonstrate variable stride lengths and increased gait variability [7]-[9].

Advanced research techniques, including detrended fluctuation analysis and multi-resolution en-
tropy analysis, have provided further insights into the unique gait dynamics associated with each dis-
order, underscoring the necessity of precise diagnostic and therapeutic approaches [10]-[12]. While
each neurodegenerative disease presents distinct symptoms, gait and balance disorders are common
across PD, HD, and ALS [13], [14]. However, overlapping gait features across these diseases, com-
bined with age-related gait variability, pose challenges for accurate classification. Current studies
often provide limited insights into distinguishing between these disorders, highlighting the need for
more comprehensive multi-class classification approaches [15], [16].

For instance, a study reported an accuracy of 85% by utilizing Discrete Wavelet Transform,
entropy, coherence, and linear classifiers for analysis [17]. Another study using a dual-channel
LSTM-based multi-feature extraction approach reported an accuracy rate of 95.6% [16]. Despite
these advancements, the inclusion of healthy controls (HC) and addressing class imbalances remain
significant hurdles for robust multi-class classification. Some studies employing Convolutional Neu-
ral Networks (CNN) achieved higher classification rates [13], [18], [19] while ensemble classifiers
demonstrated improved performance [20]. However, even with machine learning and CNN-based
classification techniques, accuracy rates remain constrained, necessitating further refinements [21],
[22].

1.2. Advancements and Challenges in Gait Analysis

Recent studies have significantly advanced gait analysis, revealing both its potential and on-
going challenges. For instance, a theoretical model investigating the impact of noise on gait data
highlighted that width representation is particularly sensitive to noise. Even at low levels, noise
degraded classification rates, underscoring the need for practical refinements in data processing and
model robustness [23], [24]. Similarly, advancements in wearable technology have shown promise, as
demonstrated by a detachable device using AHRS, which achieved 97% accuracy in gait classification
and over 99% in step counting.Despite its accuracy, challenges related to usability and accessibility
continue to hinder its widespread clinical adoption [25].

Studies focusing on gait interval analysis have also shown promise. One study achieved binary
classification accuracies ranging from 90.6% to 97.8%, with a tertiary classifier reaching 89.8% ac-
curacy. ALS was identified with a high accuracy of 96.79%. However, the inclusion of participants
across all age groups, rather than a focus on older adults primarily affected by neurodegenerative dis-
eases (NDDs), limits its applicability to the demographic most at risk [26]. Similarly, the use of Gaus-
sian kernels in LS-SVM for ALS classification achieved an accuracy of 82.8%, while wavelet-based
feature selection further improved the analysis of gait data [27]. While effective, these approaches
often do not fully address the unique complexities of older adults’ gait characteristics.

A fall risk model for the elderly, which combined data from IMU sensors and Azure Kinect,
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demonstrated enhanced performance by integrating disease history into the analysis. However, this
study lacked a specific focus on older adults, highlighting a gap in tailored research [28].

1.3. Machine Learning Innovations in Gait Analysis

Machine learning has revolutionized gait analysis by providing robust tools for detecting and
classifying gait abnormalities. For example, using the Kinect Motion system, a study classified gait
patterns associated with flat-ground falls in elderly individuals. SVM and KNN algorithms achieved
accuracies of 94.9% and 94.0%, respectively, outperforming CNN and LSTM models [29]-[31].
These findings underscore the effectiveness of traditional machine learning techniques in scenarios
where datasets are limited, highlighting their efficiency and reliability in specific applications.

Shank-mounted inertial sensors have also demonstrated success in identifying mild cognitive im-
pairment (MCI), achieving an accuracy of 71.67%. The use of dual-task walking conditions further
enhanced classification performance, indicating the value of combining motor and cognitive biomark-
ers for better diagnostic precision [32].These studies emphasize the importance of refining biomarkers
and incorporating diverse datasets to improve reliability and robustness.

Automated classification of gait patterns in Huntington’s Disease has achieved high accuracy
using Decision Trees and SVM, demonstrating the potential of these models in tracking disease pro-
gression and tailoring interventions [33]—[35]. Similarly, IMU-based gait analysis for Parkinson’s
disease achieved over 80% accuracy using SVM, RF, and DT classifiers. However, challenges such
as overfitting and multicollinearity persist, requiring advanced feature engineering and regularization
techniques [36], [37]. Addressing these challenges is critical for enhancing model generalizability
and clinical applicability. These advancements illustrate the transformative role of machine learning
in gait analysis, especially for older adults with neurodegenerative diseases.

1.4. Technological Innovations and Clinical Relevance

Recent advancements in technology have driven significant progress in gait analysis and its clin-
ical applications. For instance, a study utilized accelerometer data combined with evolutionary op-
timization to classify walking episodes in elderly individuals with gait abnormalities. By employing
a stacking classifier, the study achieved an accuracy of 93.32%, emphasizing the critical role of pre-
cise sensor placement and advanced optimization techniques in improving model performance [38].
Wearable devices with advanced algorithms offer scalable solutions but require further validation in
clinical settings. Another innovation involves Kinect sensor technology, which has demonstrated
transformative potential in healthcare applications. This technology leverages depth-sensing cameras
and motion tracking to create personalized treatment plans and monitor patient progress. Despite its
promise, clinical validation and broader adoption remain challenges, emphasizing the need for rig-
orous testing and integration into healthcare workflows [39], [40]. Generative artificial intelligence
(AD) techniques, such as Variational Autoencoders (VAE), are also being explored to enhance data
augmentation and model training, though challenges persist in ensuring generalizability [41], [42].

Furthermore, the integration of machine learning with neuroimaging modalities such as MRI
and MEG offers promising avenues for understanding neurological disorders. A comprehensive re-
view highlighted the use of deep learning models to classify motor symptoms with high accuracy,
though challenges persist in achieving robust results across varied clinical scenarios [43], [44].These
advancements demonstrate the potential of Al and sensor technology in addressing gait disorders, par-
ticularly in older adults, but underscore the importance of interdisciplinary approaches for effective
clinical implementation.

1.5. Motivation for This Study

Previous research predominantly develops machine learning or deep learning models using gait
data from a broad age range, often resulting in generalized models that may not adequately capture the
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unique characteristics of older adults with NDDs [16]. These generalized approaches often overlook
age-related changes in gait patterns, which are critical for diagnosing neurodegenerative disorders
(NDDs) in older adults. Gait abnormalities, however, are most prevalent among older individuals
affected by conditions such as PD, HD, and ALS. These disorders significantly alter gait dynamics,
necessitating tailored approaches to enhance diagnostic precision and therapeutic strategies. Table 1
provides a summary of key studies in gait analysis and NDD classification, highlighting the advance-
ments and limitations of prior research. Notably, the reliance on small or imbalanced datasets in many
studies further restricts their clinical applicability, especially for older adult populations. Addition-
ally, while significant progress has been made in employing machine learning techniques, challenges
such as dataset diversity, clinical validation, and generalizability persist.

Table 1. Summary of key studies in gait analysis and neurodegenerative disease classification

Reference Objective Methods Results Limitations

[45] Parkinson’s detection EEG and handwriting Accuracy: Up to 100%  Real-world integration
using emotional intelli-  modalities challenges
gence (EI) and Al

[46] Dementia  prediction  Statistical and machine  Accuracy: 98.25% Dataset diversity
using hybrid systems learning methods needed to mitigate

biases

[47] Automatic selection for Random Forest and K-  Precision: 0.893 Requires diverse
PD and HD classifica-  star algorithms datasets
tion

[32] MCI detection using Inertial sensors and Accuracy: 71.67% Biomarkers require re-
gait biomarkers dual-task analysis finement

[29] Classification of flat-  SVM, KNN, CNN, Accuracy: 94.9% Small dataset limits
ground falls in elderly LSTM (SVM), 94.0% (KNN) generalizability
individuals

[26] Gait interval analysis Time-series data analy- Accuracy: 96.79% for General age group fo-
among participants sis ALS cus limits clinical use

[25] Gait classification with ~AHRS-based system Accuracy: 97%, Step Broader usability chal-
wearable devices Count: 99% lenges

[23] Gait noise sensitivity = Theoretical model Highlighted noise im- Practical implementa-
analysis pact on classification tion needed

rates

[13] Classification of NDDs ~ CNN-based techniques ~ Higher  classification  Limited dataset size
using gait patterns rates for NDDs

[17] Classification of NDDs DWT, Entropy, Coher- Accuracy: 85% Limited scope for
using gait patterns ence, Linear Classifiers multi-class ~ classifica-

tion

[16] Multi-feature extraction ~ Dual-channel LSTM Accuracy: 95.6% Focused on general age
for gait classification groups

[43] Potential of deep learn- MRI and MEG Highlighted  promise Robust results across
ing and neuroimaging for accurate diagnosis varied clinical scenarios
in diagnosing neurolog- remain challenging
ical disorders

[39] Exploring Kinect Depth-sensing cameras Personalized treatment Clinical validation re-
sensor technology in and motion tracking plans possible quired for adoption
healthcare

[41] Biomechanical ML en-  Variational Autoen-  Reduced reconstruction  Generalizability of syn-
hancement using syn- coder (VAE) errors thetic data remains a

thetic data

challenge

This study aims to address these limitations by leveraging advanced methods tailored to the spe-
cific needs of older adults. It emphasizes the integration of robust preprocessing techniques, such
as noise reduction and data normalization, to mitigate variability in gait patterns caused by comor-
bidities or other confounding factors. Advanced feature extraction techniques, such as Continuous
CWT, are utilized to analyze gait patterns comprehensively. Machine learning algorithms, including
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Support Vector Machine (SVM), Random Forest (RF), Decision Tree (DT), and Multilayer Percep-
tron (MLP), are employed to classify gait disorders effectively. Additionally, the study incorporates
parameter tuning methods, such as grid search, to optimize model performance, ensuring better clas-
sification outcomes.The results are evaluated through comparisons with existing studies using similar
datasets to highlight the robustness and relevance of this focused approach. By concentrating on older
adults, this research addresses the gap in current studies, ensuring the findings are more applicable to
the demographic most affected by neurodegenerative diseases.Furthermore, the study underscores the
importance of model interpretability, utilizing techniques such as SHAP or LIME to provide insights
into the features driving classification decisions. This study ultimately aims to enhance the precision
and applicability of machine learning models for gait disorder classification, paving the way for early
detection and improved intervention strategies.

2. The Proposed Method

The methodology employed in this research is depicted in Fig. 1. This study focused on de-
signing a machine-learning framework to classify gait disorders among older adults. The approach
consisted of four key phases: data collection, preprocessing, feature extraction, and machine learning
model training and evaluation. This structured workflow ensures clarity and reproducibility, aligning
with recommendations for transparent research practices.

5
%fz Dataset Feature
O Preprocessing El_'l Extraction
a (=] ® " . . .
Gait Force Signal: Five-minute capture Transformation to frequency-
time
VGRF Data for l !
ALS, PD, HD, . "
DATASET and Healthy Noise Removal: Band-pass filter | Image Conversion |
COLLECTON | PHYSIONET = Sublects 7 7
‘ Wavelet Denoising: Signal enhancement | Numerical Features |

’ Wavelet Transform: 10s windows

ML Models
Trainig &

e

Final Result Through
Models

Fig. 1. Flowchart summarising the proposed method for classifying gait disorders in older adults

Classifiaction
Report

2.1. Dataset

This study utilized the ”Gait in Neurodegenerative Diseases Dataset” [48], which provides valu-
able data for analyzing gait patterns associated with neurodegenerative disorders. The dataset’s com-
prehensive parameters make it highly suitable for classification tasks related to these conditions.The
gait data collection process, illustrated in Fig. 2, involved capturing raw signals from ground reaction
force (GRF) sensors embedded in shoes. Participants walked along a 77-meter hallway at their usual
pace for a duration of 5 minutes.

The dataset comprises gait recordings from 64 individuals, including 13 with ALS, 15 with
Parkinson’s disease (PD), 20 with Huntington’s disease (HD), and 16 healthy controls (HC). To main-
tain the study’s focus on older adults, only data from participants aged 50 and above were included,
aligning with reviewer recommendations. This refinement ensures the demographic relevance of the
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analysis for NDD-specific gait patterns.

Data identification
and Categorization

. ]
|

ﬁ.—ﬁ | = ",

Subject Ground reaction Force Data Acquisition

Time (saconds)

Dataset

Fig. 2. Flowchart of the data collection procedure using GRF sensors [49]

To ensure the study’s focus remained on older adults, data from participants aged 50 years and
above were exclusively selected. The refined dataset consisted of five healthy controls (mean age:
62.6 + 8.63 years), seven individuals with Parkinson’s disease (mean age: 66.5 + 9.06 years), five
participants with Huntington’s disease (mean age: 57.2 + 6.24 years), and four subjects with Amy-
otrophic Lateral Sclerosis (mean age: 61.75 + 7.07 years).Concentrating on this age group enhances
the study’s clinical significance by specifically targeting the demographic most impacted by neurode-
generative disorders.

Key gait parameters recorded for each participant included stance, swing phase, double support
interval, and stride measurements for both the left and right foot.For computational efficiency and to
minimize complexity, only the force data from the right foot was analyzed, following evidence from
previous studies that demonstrated signal consistency. Table 2 provides a detailed overview of the
participants, including metrics such as age, height, weight, and gait speed.

Table 2. Summary of gait data participants by group [49]

Statistical Parameter (6{0] HUNT PARK ALS
Age (Year) 62.6+8.63 57.2+6.24 66.5 +£9.06 61.75 £7.07
Height (m) 1.84+£0.10 1.78+0.14 1.99 £ 0.12 1.797 £ 0.34
Weight (kg) 74.6 +13.02 64 +10.8 87.38 +13.68 89.04 +13.91

Gait Speed (m/s) 1.29 +£0.21 1.10+0.14 1.34 +£0.27 1.23+£0.19

2.2. Data Pre-Processing

In this study, gait force signals were recorded over a five-minute duration. To eliminate noise, a
digital band-pass filter was utilized, producing the filtered signal y(¢), mathematically represented by
equation (1) as a convolution operation:

y(t) = h(z) x x(1) (1)

Here, x(¢) denotes the raw input signal, while A(z) corresponds to the impulse response of the
applied band-pass filter. Subsequently, wavelet-based denoising was implemented to refine the sig-
nal further. This process involved converting y(¢) into the wavelet domain, applying a threshold to
minimize noise, and reconstructing the denoised signal z(), as shown in equation (2):

() =W T (W) )

Here, W (.) represents the wavelet transform, 7'(.) denotes the thresholding operation, and W ™!
is the inverse wavelet transform. This two-step filtering approach ensured the signal was adequately
prepared for further processing. To enhance temporal resolution and frequency analysis, wavelet
transforms were performed using three window durations: 10 seconds, 30 seconds, and 60 seconds.
Ultimately, the 10-second window was selected, offering an optimal balance between temporal preci-
sion and frequency detail, which is critical for analyzing gait dynamics [50].
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2.3. Feature Extraction

The study involved 21 subjects, focusing on transforming gait signals from the time domain to
the frequency-time domain using the CWT. This method, which captures both temporal and spectral
characteristics of the signals, is mathematically defined in Equation (3):

CWT(a,b) = \/1?| /_ o;x(t)l// (7’) di 3)

Where a and b are the scaling and translation parameters, respectively, and v is the mother wavelet.
The CWT effectively decomposes the signal into time-localized frequency components, making it
particularly suitable for analyzing non-stationary signals such as gait patterns [51].

Following this transformation, the data was converted to grayscale to ensure consistency in the
subsequent analysis, thereby eliminating any potential variability introduced by colour information.
The grayscale conversion is mathematically expressed in Equation (4):

Grayscale =0.2989 x R4 0.5870 x G+ 0.1140 x B @)

Where R, G, and B represent the red, green, and blue color channels, respectively. This conversion
standardizes the data, focusing the analysis on intensity variations [52].

After preprocessing, key features were then extracted from the processed data to characterize the
gait signals effectively. These features are fundamental for analyzing the patterns within the signals
and include Mean Intensity, Variance, Standard Deviation, Root Mean Square (RMS), and Gait Speed,
among others. Feature extraction is a critical step in signal processing and machine learning to ensure
the relevant characteristics are accurately captured for analysis [53]. The mathematical expressions
used to calculate these features are detailed in Table 3.

Table 3. Feature parameters and mathematical expressions

Feature Extraction Parameter Mathematical Expressions
Mean (X) Mean(X) = Iy X;

Where X; is a data point in the sample, n is the number of observations.
Variance (VAR) VAR(X) = 1ym (X, —X)2

Where X is the mean of the dataset, X; is a data point in the sample, 7z is the
number of observations.

Standard Deviation (SD) SD(X) = /iy (x;—X)?

Where X is the mean of the dataset, X; is a data point in the sample, 7z is the
number of observations.

Interquartile Range (IQR) IQR=03-01

Where Q3 is the third quartile, Q1 is the first quartile.
Root Mean Square (RMS) RMS = % nX?

Where X; is a data point in the sample, n is the number of observations.
Gait Speed Gait speed = Distance

Where Distance is the distance covered, and Time is the time taken.

These features were chosen for their proven ability to accurately capture the nuances of gait
patterns, as supported by previous studies that demonstrate improved classification performance when
using a comprehensive set of features [18]. The features outlined in Table 2 were calculated and then
used as inputs for the classifier models.

2.4. Classification Model

Following feature extraction, the processed data was utilised to develop and evaluate classifica-
tion models, as depicted in Fig. 3. The dataset was split into training (70%) and testing (30%) subsets,
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ensuring that the models were trained on one portion of the data and validated on another, enhancing
the model’s ability to generalise to unseen data.

This study employed four machine learning algorithms: SVM, RF, Decision Tree, and MLP.
These algorithms were selected based on their proven effectiveness in handling classification tasks
within nonlinear feature spaces, as demonstrated in previous research [54], [55].

Output

Input Variable

features

X1 | X2 | X3 |X4| Y

0.2|09)|0.8|01| HD

1.0/02|00(0.7]| co

0.5|03|09]|02| PD

«

0.7(01]| 04|09 /.‘SL
E Data Sp“ﬁng—d—L
Traingi set v vv Test set
N o

optimization

G
Parameter * dlgorithm /—-MLP

o {—O¢7//

O O Predicted o Model
O to—> values Eveluation
o— “o

Trained model
Fig. 3. Classification model workflow

Support Vector Machine (SVM): Using a Radial Basis Function (RBF) kernel, the SVM model
was applied due to its effectiveness in dealing with nonlinear datasets like the one in this study [56].
SVM seeks to find the optimal hyperplane that separates classes by maximizing the margin between
them. The decision function is defined by Equation (5):

®)

1 ifw-z+b>0
YY1 ifweztb<0

Where y is the predicted class, w and b are the model parameters, and z is the test sample.

Decision-Tree: The Decision Tree algorithm creates a model that predicts the target variable by
learning simple decision rules inferred from the data features. The model uses Gini impurity to decide
the optimal splits, as calculated by Equation (6).:

e

Gini(t) =1- Y [p(i| 1))’ (6)

i=1
Where Gini(¢) measures the impurity of node ¢, with lower values indicating higher purity.

Random Forest (RF): Random Forest is an ensemble learning method that constructs multiple
decision trees during training and outputs the mode of the classes for classification [57]. It enhances

Kazi Ashikur Rahman (Classifying Gait Disorder in Neurodegenerative Disorders Among Older Adults Using Machine

Learning)



ISSN 2775-2658 International Journal of Robotics and Control Systems 1091
Vol. 5, No. 2, 2025, pp. 1083-1101

classification accuracy and robustness, particularly for datasets with complex structures like the one
used in this study. The classification decision for a new sample z is made by aggregating the predic-
tions from each tree in the forest. Mathematically, this can be represented as Equation (7).

¥y =mode{h;(z),h2(z),...,hn(2)} @)

Where h;(z) represents the prediction from the i-th decision tree, and N is the total number of trees in
the forest.

Multilayer Perceptron (MLP): The MLP is a type of feed-forward artificial neural network
well-suited for learning complex nonlinear mappings between inputs and outputs [58]. Each neuron
computes a weighted sum of its inputs and applies a non-linear activation function, as described by

Equation 8:
Y =sign ( XiW; — 9) (8)
i=0

Where x; are the input values, w; are the corresponding weights, n is the number of inputs, and 0 is
the threshold.

These models were optimized using parameter tuning to achieve the best classification perfor-
mance. The trained models were then evaluated using the test dataset, where predicted values were
compared to actual labels, assessing metrics such as accuracy, precision, recall, and F1-score, as
discussed in the subsequent sections.

2.5. Performance Evaluation

The performance of the Gait Neurodegenerative Disorders classification model was assessed us-
ing critical metrics, including accuracy, sensitivity, specificity, precision, recall, and F1 score. These
metrics were computed from the confusion matrix, which records the true positives (TPs), false pos-
itives (FPs), false negatives (FNs), and true negatives (TNs) for each class. Specificity, representing
the proportion of correctly identified negatives out of the total negatives, is expressed mathematically
in Equation (9). Sensitivity, also referred to as recall, calculates the ratio of true positives to the total
actual positives, as shown in Equation (10). Accuracy, which evaluates the overall correctness of the
model, is derived using Equation (11). Precision, indicating the percentage of true positives among
all positive predictions, is given by Equation (12). The F1 score, which provides a balanced measure
of precision and sensitivity, is defined in Equation (13). Together, these metrics provide a compre-
hensive evaluation of the model’s effectiveness in classifying neurodegenerative disorders using gait
data.

- Yo TN;
Specificity = ! 9
P d iz (TN; +FP;) ©

" TP;
Sensitivity = — L1 TP; (10)

i—1 (TP,' + FN,')
" (TP; +TN;
Accuracy = — i1 (TPi +TN;) (11)
i—1 (TP,' +TN; +FP; + FN,')
TP

Precision = Z’(Tzl‘;—i—FP) (12)
F1 score — 2 x (Precision x Sensitivity) (13)

Precision + Sensitivity
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3. Results

This study aimed to classify gait disorders in older adults with neurodegenerative diseases (NDDs)
by analysing vertical ground reaction force (vGRF) signals. vGRF signals for the control group (CO)
and the NDD groups (PD, AD, and HD) were processed and analysed. MATLAB 2022b was utilised
for data preprocessing and feature extraction, enabling the identification of key features from the
vGREF signals that are potentially distinctive for diagnosing these conditions.

3.1. Statistical Analysis

Fig. 4 presents time-domain frequency plots for the gait data of CO and patients with HD, PD,
and ALS. The CO (A) plot shows a stable frequency, indicating a consistent walking rhythm.

Health Gait Data plot HUnting Disease Gait Data plot
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Fig. 4. Gait time-domain patterns. (A) natural gait, (B) huntington disease gait, (C) parkinson disease gait, (D)
ALS disease gait. each pattern highlights distinct temporal characteristics across neurodegenerative disorders

In contrast, HD (B) exhibits erratic and highly variable frequencies, reflecting significant gait
disturbances. The PD plot (C) demonstrates alternating periods of stability and increased frequency,
corresponding to the characteristic motor fluctuations of the disease. The ALS plot (D) shows vari-
ability in step frequency but with more stability than HD, highlighting the progressive motor decline
in ALS. Fig. 5 presents time-frequency spectrograms generated using Continuous Wavelet Trans-
form (CWT) for the gait data of CO, HD, PD, and ALS groups. These spectrograms illustrate the
complex patterns of gait frequencies over time, with contour lines representing the strength of these
frequencies.

The ALS (D) spectrogram shows closely spaced contour lines, indicating a relatively stable walk-
ing pattern. In contrast, the HD (B) displays widely spread contours, reflecting a more erratic gait.
The spectrogram PD (C) features a mix of tightly packed and spread-out contours, capturing the fluc-
tuations typical of Parkinson’s disease. The Control (A) exhibits consistent contours, indicating a
stable rthythm. These observations align with [49] where box models and spectrograms were em-
ployed to differentiate gait patterns. The findings highlight the potential of time-frequency analysis
for capturing subtle disease-specific characteristics.
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Fig. 5. Gait Time-Frequency Patterns (CWT). (A) natural gait, (B) huntington disease gait, (C) parkinson
disease gait, (D) ALS disease gait. spectrograms reveal time-localized frequency variations

Fig. 6 presents a series of box plots corresponding to each extracted feature to further elucidate
the statistical differences across the subject groups. These plots provide a visual comparison of the
distribution, central tendency, and variability of the features across the different neurodegenerative
conditions. The box plots highlight key observations, such as the lower Gait Speed observed in ALS
patients compared to controls and the increased variability in the Interquartile Range for the HUNT
group, which may reflect the irregular gait patterns characteristic of Huntington’s Disease.
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Fig. 6. Box plot analysis of gait features. these plots visually compare statistical differences across subject
groups, emphasizing variability and central tendencies
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The combination of the numerical data in Table 3 and the visual analysis provided by the box
plots in Fig. 6 underscores the significance of these features in distinguishing between neurodegen-
erative disorders. The variance and standard deviation metrics, for instance, capture the dispersion in
gait patterns, which can indicate the degree of motor control loss in affected individuals. These in-
sights are further validated through the box plots, which not only depict the variation across different
neurodegenerative conditions but also within each group, thereby emphasizing the heterogeneity of
these disorders.

The extracted features will serve as critical inputs for training machine learning models aimed at
accurately classifying gait disorders among older adults, contributing to early diagnosis and effective
monitoring of neurodegenerative diseases. This approach underscores the importance of robust statis-
tical analysis and visualization in informing clinical decision-making and algorithmic development.

3.2. Classification Result

Fig. 7 presents the confusion matrices for four classifier models: Decision Tree, Random Forest,
Support Vector Machine (SVM), and Multilayer Perceptron (MLP). The matrices reveal that while
all models perform reasonably well, they commonly struggle with accurately classifying the " HUNT’
condition, often confusing it with "PARK".

co co

True Class
True Class

HUNT 1 HUNT i

P e

ALS co HUNT PARK ALS co HUNT PARK
Predicted Class Predicted Class

DT MLP

co co

True Class
True Class

HUNT 1

P e

ALS co HUNT PARK ALS Cco HUNT PARK
Predicted Class Predicted Class

HUNT

Fig. 7. Confusion matrices for the test classifiers, illustrating performance and areas of misclassification

This suggests a significant overlap in the feature space between "THUNT’ and other conditions,
particularly "PARK’, which challenges the classifiers’ ability to differentiate between these neurode-
generative diseases. Despite these challenges, the Random Forest model shows a slight improvement
in classification accuracy.

3.3. Performance Comparison

Fig. 8 shows the performance comparison of the classifiers—SVM, Random Forest, Deci-
sion Tree, and Multilayer Perceptron (MLP)—in terms of specificity, sensitivity, and accuracy.The
SVM, Random Forest, and Decision Tree models exhibit similar performance, with each achieving
a specificity of 93.75% and an accuracy of 83.33%. Sensitivity for these three models is consistent
at 75.00%. In contrast, the MLP model shows lower performance, with a specificity of 81.25%,
sensitivity of 50.00%, and accuracy of 50.00%.

This comparison highlights that while SVM, Random Forest, and Decision Tree are effective
for this classification task, the MLP model struggles, particularly in terms of sensitivity and overall
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accuracy. The higher specificity of SVM, Random Forest, and Decision Tree models indicates their
robustness in identifying true negatives, which is crucial for avoiding false-positive diagnoses in clin-
ical applications. However, the moderate sensitivity underscores the need for further refinement to
ensure the accurate identification of true positive cases, particularly in early-stage neurodegenerative
diseases.

M Specificity ™ Sensitivity M Accuracy

100%

90%
80%
70%
60%
50%
40%
30%
20%
10%
0% SVM

Random forest | Decision Tree MLP
B Specificity 93.75% 93.75% 93.75% 81.25%
B Sensitivity 75.00% 75.00% 75.00% 50.00%
B Accuracy 83.33% 83.33% 83.33% 50.00%

Fig. 8. Classifier performance on test data. the bar chart highlights variations in specificity, sensitivity, and
accuracy among the models

4. Discussion

The findings of this study emphasize the importance of age-specific data in the classification of
neurodegenerative diseases (NDDs) through gait analysis, particularly for older adults. Many prior
studies have relied on datasets covering diverse age groups, which often results in generalized models
incapable of capturing the nuanced gait abnormalities unique to older adults [16], [17]. By narrowing
the focus to older adults, this study addresses a critical research gap, providing insights that are more
directly applicable to the demographic most affected by NDDs. This demographic focus enhances
the relevance of the findings for clinical applications, particularly in early diagnosis and personalized
intervention.

The application of Continuous Wavelet Transform (CWT) for feature extraction enabled the
identification of time-frequency features critical for understanding gait patterns in older adults. This
approach aligns with previous research demonstrating the effectiveness of wavelet-based methods in
analyzing non-linear gait dynamics [27]. Classifiers such as Support Vector Machine (SVM), Random
Forest (RF), and Decision Tree (DT) achieved notable performance, with SVM demonstrating an
accuracy of 83.33%, specificity of 93.75%, and sensitivity of 75.00%. These performance metrics
highlight the potential of these classifiers for reliable identification of NDDs in older adults, despite
challenges in sensitivity, which remain a critical area for improvement.Comparisons with existing
studies reveal both similarities and distinctions. Table 4 provides a summary comparison between
this study and prior research:

While Lin et al. observed that CNN models tailored to disease-specific data outperformed gen-

eralized classifiers, achieving higher classification rates for PD and ALS [18], the relatively moderate
sensitivity observed in our study highlights ongoing challenges in capturing true positive cases, which
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remains a common limitation in machine learning models for NDD classification [22], [21]. This
suggests that while SVM and RF demonstrate robustness, further refinement in feature selection or
advanced ensemble methods may enhance sensitivity. The underperformance of the Multilayer Per-
ceptron (MLP) model, with an accuracy of 50.00% and sensitivity of 50.00%, underscores the limi-
tations of single-layer neural networks in handling complex, high-dimensional datasets [47]. Future
studies could explore deeper architectures or hybrid models that combine MLP with wavelet-based
feature extraction to overcome these limitations.

Table 4. Comparison of this study with previous studies

Study Feature Extraction Models Used Key Findings and Limitations
[17] Discrete Wavelet Transform  Linear Classifiers 85% accuracy; limited scope
(DWT) for multi-class classification
[16] Dual-channel LSTM LSTM-based Multi-Feature ~ 95.6% accuracy; focused on
Extraction general age groups
[18] CNN-based techniques CNN High accuracy; dataset size lim-
itations
[25] AHRS-based wearable system Ensemble Classifiers 97% accuracy in classification;
usability challenges
[37] IMU-based Feature Analysis SVM, RF, DT Over 80% accuracy; chal-
lenges with overfitting and mul-
ticollinearity
[36] Multimodal Data Integration ML and Neural Networks Improved classification; chal-
lenges in clinical generalizabil-
ity
[41] Synthetic Data Generation Variational Autoencoder (VAE) Reduced reconstruction errors;
limited generalizability across
populations
This Study  Continuous Wavelet Transform SVM, Random Forest, Deci- 83.33% accuracy with SVM;
(CWT) sion Tree, MLP moderate sensitivity highlights

need for further refinement

In addition to machine learning innovations, recent research emphasizes the potential of inte-
grating multimodal data to enhance model performance. For instance, the combination of gait data
with clinical history and wearable sensor data has shown promise in improving diagnostic precision
for neurodegenerative disorders [36], [37]. This integration could also address challenges of class
overlap, as observed in the confusion matrices, by providing complementary information to distin-
guish conditions more effectively.Furthermore, advanced techniques such as generative artificial in-
telligence (AI) have demonstrated the ability to augment training datasets by creating synthetic data,
which may help address the limitations posed by small sample sizes [41]. Synthetic data generation,
when combined with robust validation techniques such as k-fold cross-validation, could mitigate is-
sues of overfitting and enhance model generalizability.Despite these advancements, the challenges of
generalizability and model interpretability remain. Many studies report difficulties in translating ma-
chine learning models into clinical practice due to variations in sensor types, experimental protocols,
and patient demographics [25], [39]. Standardizing data collection protocols, such as using consis-
tent sensor placements and gait analysis methodologies, is essential for achieving broader clinical
adoption. Additionally, incorporating explainability techniques like SHAP or LIME could improve
clinician trust in machine learning models, fostering their integration into healthcare workflows.

5. Conclusion

This study underscores the significance of focusing on older adults for the classification of neu-
rodegenerative diseases (NDDs) through gait analysis. By utilizing advanced feature extraction tech-
niques such as CWT and employing machine learning algorithms including SVM, RF, DT, and MLP,
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this research achieved notable improvements in diagnostic precision compared to prior studies.

The results demonstrated that models trained on age-specific data are better equipped to capture
the unique gait abnormalities associated with Parkinson’s disease, Huntington’s disease, and Amy-
otrophic Lateral Sclerosis. While SVM and RF classifiers achieved high specificity and reasonable
accuracy, the moderate sensitivity observed highlights the need for further refinement. These findings
align with previous research, emphasizing the importance of tailored feature extraction and ensemble
approaches for robust classification performance.The study contributes to the growing body of evi-
dence that machine learning models designed for specific populations yield more clinically relevant
results. By narrowing the focus to older adults, this research addresses a critical gap in current liter-
ature, paving the way for more effective diagnostic and therapeutic strategies for neurodegenerative
diseases.

Future work will focus on integrating deep learning models and multimodal data fusion to en-
hance sensitivity and overall accuracy. Such approaches hold promise for improving the early detec-
tion and management of NDDs, ultimately contributing to better clinical outcomes for older adults.
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