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1. Introduction  

Traffic accidents remain a critical global concern, with data from the World Health Organization 

(WHO) indicating that approximately 1.25 million fatalities occur annually due to road accidents [1]. 

Each year, the United States records over 6.4 million vehicle accidents [2]. Studies suggest that over 

80% of these accidents are attributed to driver errors, which stem from factors such as fatigue, lack 

of concentration, inadequate road lighting, mobile phone distractions, and complex terrain conditions 

[3]-[5] . While modern vehicles are equipped with passive safety features like airbags and seat belts 

to mitigate accident impact, these systems primarily function after a collision has already occurred 
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 The rapid advancement of technology is driving the transition toward 

Society 5.0, where intelligent transportation systems enhance safety, 

efficiency, and sustainability. One of the biggest challenges in 

transportation is the high frequency of vehicle accidents, with 

approximately 80% attributed to driver error. To mitigate this, Advanced 

Driver Assistance Systems (ADAS) have been developed to improve 

vehicle autonomy and reduce accidents. This research proposes a potential 

field-based collision avoidance system for autonomous vehicle navigation, 

where the vehicle and obstacles act as positive poles, repelling each other, 

while the target destination serves as a negative pole, attracting the vehicle. 

Experimental results demonstrate a GPS positioning error of 1.55 m with 

a 66% success rate and LiDAR sensor accuracy of 96.4%, exceeding the 

required 95% threshold. Obstacle avoidance was tested with two safety 

thresholds (2 m and 2.5 m) across single- and two-obstacle scenarios. The 

2 m threshold resulted in shorter travel distances (16.406 m vs. 16.535 m 

for 2.5 m) and faster completion times (19.036 s vs. 19.144 s), while the 

2.5 m threshold provided greater clearance. GPS accuracy was 

significantly influenced by HDOP values and satellite count, with lower 

HDOP improving trajectory precision. The system successfully adjusted 

its trajectory in response to obstacles, ensuring effective real-time 

navigation. 
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[6]. Therefore, to proactively reduce accident risks, the development of Advanced Driver Assistance 

Systems (ADAS) is essential [7]-[9]. 

ADAS is an integrated safety system that enhances vehicle automation by utilizing various 

sensors, such as cameras, LiDAR (Light Detection and Ranging), radar, and ultrasonic sensors, to 

detect the surrounding environment and support real-time decision-making [10]. Key ADAS features 

include adaptive cruise control (ACC) [11], road recognition, lane departure warning, inteligent 

speed assistant, collision prevention [12], and automatic emergancy braking [13]. Among these, 

collision prevention is particularly critical for autonomous vehicles, as it ensures safe navigation by 

identifying and avoiding obstacles. Traditionally, cameras have been widely used for object detection 

[14]-[18]; however, they are highly sensitive to lighting conditions, have limited range, and create 

blind spots due to their unidirectional coverage [19]. To address these limitations, LiDAR has 

emerged as a more robust alternative for collision detection [20]. Unlike cameras, LiDAR is 

unaffected by ambient lighting, as it operates by emitting infrared laser pulses and measuring their 

reflection time to determine object distances [21]. However, integrating LiDAR into an efficient 

collision avoidance system requires an effective path-planning algorithm [22]-[24]. 

ADAS represents a transformative technology that has significantly reshaped vehicle safety. 

The primary goal is to enhance driving safety by utilizing advanced technology capable of detecting 

obstacles, alerting drivers, and even taking automated action when necessary. ADAS has made 

considerable strides in advancing road safety and reducing accidents, marking a crucial step toward 

a future where fully autonomous vehicles can navigate without driver assistance. However, reaching 

full autonomy requires progressing through multiple levels of ADAS, which reflect the technology's 

current capabilities and the driver’s role. The Society of Automotive Engineers (SAE) has established 

a widely recognized framework that categorizes ADAS into levels based on the degree of automation 

and the driver’s role in controlling the vehicle, as shown in Fig. 1 [25], [26]. The first three SAE 

levels (0, 1, and 2) focus on driver assistance by providing warnings or interventions while requiring 

the driver to remain fully aware of their surroundings. In contrast, levels 3, 4, and 5 introduce 

increasing levels of automation, ranging from partial control shared between the system and the 

driver to full autonomy [27].  

 
Fig. 1. Autonomous driving levels [26] 

In recent research, an ADAS system was developed with two main features: collision prevention 

(Level 2) and automatic navigation using GPS (Level 3). Both systems work together to avoid 

surrounding objects and guide the vehicle to its destination through GPS-based navigation. The 

collision prevention feature operates using sensors such as LiDAR, radar, ultrasonic sensors, and 

strategically positioned cameras to monitor the environment. A notable advantage of this system is 

its ability to respond in various ways, including issuing warnings, providing information to the driver, 

applying emergency braking, and adjusting the vehicle's path to avoid collisions. Meanwhile, the 

automatic navigation system uses GPS technology to help the vehicle reach its destination without 

driver intervention. This means vehicles can follow pre-programmed routes and adapt to potential 

changes along the way. However, to improve collision avoidance effectiveness, real-time path-

planning algorithms are needed to ensure the vehicle dynamically responds to changing 

environments. 

An autonomous vehicle is a type of car capable of operating in unfamiliar or previously 

unexplored environments [28]. This vehicle can move toward a goal independently and can avoid 

surrounding obstacles. To achieve this level of autonomy, autonomous vehicles are equipped with 
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various sensors, such as an Inertial Measurement Unit (IMU), GPS, and LiDAR, which serve as the 

foundation for navigation. These sensors not only allow the vehicle to follow predetermined paths 

but also function as real-time object detectors, enabling immediate obstacle response and adaptive 

path adjustments [29]. 

In this research, a collision avoidance system was developed based on a two-dimensional, 360-

degree LiDAR sensor. LiDAR was selected for its ability to thoroughly detect objects in all 

directions, including in areas not typically visible to a driver. Moreover, it is independent of weather 

conditions and has a longer detection range than acoustic and optical sensors [30]-[32]. The system 

utilizes the Potential Field Method (PFM), which is widely used in robotic navigation due to its 

ability to generate repulsive forces between objects, ensuring the vehicle follows a safe path [33]. 

The key advantage of PFM-based navigation is its ability to operate in dynamic environments, 

adjusting the vehicle's trajectory in real time to avoid potential collisions [34]-[36]. 

To validate the proposed system, a 1/12 scale Radio Control (RC) car was used to simulate an 

autonomous vehicle shown in Fig. 2. This car is equipped with an Ackermann steering system, a DC 

motor for propulsion, and a servo for controlling the front-wheel steering. The scaled model serves 

as a testbed for evaluating ADAS technologies, allowing for the practical development of 

autonomous navigation strategies. By combining LiDAR-based perception with the PFM algorithm, 

this research aims to enhance collision avoidance performance, contributing to the advancement of 

autonomous vehicle safety. Such developments mark an important step toward achieving fully 

autonomous navigation in real-world scenarios. 

 
Fig. 2. RC-car scale 1/12 

2. Material and Method 

2.1. Hardware Design 

The block diagram of the entire system is shown in Fig. 3. The primary sensor used in this 

project is the RPLIDAR A3M1 LiDAR, which enables 360-degree environmental scanning for object 

detection. This wide scanning range allows the system to generate an accurate real-time map of the 

surroundings. The Raspberry Pi 4 serves as the main processing unit, handling LiDAR data to 

measure distances and determine the sensor's orientation for precise object detection. For positioning 

and navigation, the system integrates Radiolink's SE100 GPS sensor, which provides real-time 

location data, ensuring the vehicle follows its designated path autonomously without human 

intervention. 

The electronics system connection is illustrated in Fig. 4. The key electronic components 

include: Pixhawk 2.4.8 controller – serves as the vehicle’s main control unit for autonomous 

operation; Steering servo – controls the vehicle's directional movement; Brushed DC motor – 
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provides propulsion; 360-degree LiDAR sensor – detects obstacles and maps the environment; 

Electronic Speed Controller (ESC) – regulates the speed of the DC motor [37]-[39]; Telemetry 

module – facilitates real-time data communication with a development laptop; and Receiver – 

enables wireless control signals. 

The servo and DC motor receive PWM signals from Pixhawk 2.4.8, allowing for precise control 

over steering and speed adjustments [40]. A LiPo battery (7.4 V 5400 mAh) powers the vehicle. A 

step-down DC-DC converter that reduces DC voltage from the battery to ensure a stable 5V supply 

for the Pixhawk microcontroller [41]. Additionally, the ESC manages power delivery to the driving 

motor. Telemetry communication enables real-time data monitoring and control during vehicle 

testing, ensuring efficient debugging and performance evaluation. 

 
Fig. 3. Block diagrams of the whole system  

 
Fig. 4. Electronics system 

2.2. System Design 

This phase focuses on implementing the potential field method to develop an active collision 

avoidance system that autonomously steers the vehicle around obstacles while following the shortest, 
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obstacle-free route to its destination. A 360-degree LiDAR sensor is employed to detect objects at 

distances exceeding 5 meters, ensuring effective and responsive collision avoidance. 

2.2.1. Potential Field Method for Lidar Sensor Data Processing 

In this stage, the potential field method is utilized to create a crash-avoidance system, enabling 

the vehicle to autonomously navigate toward its target while avoiding obstacles, even if they appear 

directly in its path [42]. The system identifies the shortest safe route by leveraging 360-degree 

LiDAR data, which provides precise distance measurements between the vehicle and surrounding 

objects. Within the potential field framework, the vehicle is treated as a particle moving in a potential 

field, where the destination point acts as a negative charge that attracts the vehicle, while obstacles 

are represented as positive charges that generate repulsive forces [43]. These attractive and repulsive 

forces interact to guide the vehicle along a collision-free path [44], as illustrated in Fig. 5. The optimal 

route is determined through potential field calculations using equations (1)-(3), ensuring real-time 

decision-making for autonomous navigation. 

 

Fig. 5. Potential field method [44] 

𝑓𝑡𝑜𝑡𝑎𝑙 = 𝑓𝑃𝑢𝑙𝑙 + 𝑓𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒  (1) 

𝑓𝑃𝑢𝑙𝑙 = 𝑘𝑃𝑢𝑙𝑙
𝑝𝐺𝑜𝑎𝑙 − 𝑝

|𝑝𝐺𝑜𝑎𝑙 − 𝑝|
 (2) 

𝑈𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒
        (𝑛)

(𝑥) = {

1

2
𝐾𝑜𝑏𝑠 (

1

𝑑𝑙𝑖𝑑𝑎𝑟
−

1

𝑑𝑀𝑎𝑥
) , 𝑑𝑙𝑖𝑑𝑎𝑟 < 𝑑𝑚𝑎𝑥

000000000000000      0, 𝑑𝑙𝑖𝑑𝑎𝑟 ≥ 𝑑𝑚𝑎𝑥

 (3) 
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𝑓𝑃𝑢𝑙𝑙   : Potential Attraction 

𝑈𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒
        (𝑛)

(𝑥) : Potential Rejection 

𝑘𝑃𝑢𝑙𝑙  : Coefficient Potential pulls interesting 

𝑝𝐺𝑜𝑎𝑙  : Position point destination (coordinates point destination) 

𝑝  : Position final car 

𝐾𝑜𝑏𝑠  : Coefficient potential reject 

𝑑𝑙𝑖𝑑𝑎𝑟  : Distance read by the Lidar sensor 

𝑑𝑚𝑎𝑥  : Threshold value (safe threshold) 

2.2.2. Vehicle Kinematic Model 

To accurately describe the vehicle’s movement, a kinematic model is established using a fixed 

reference point (I) and a reference point on the vehicle’s frame, as depicted in Fig. 6. A Cartesian 

coordinate system is applied, where forward and backward movements occur along the Y-axis, while 

left and right movements occur along the X-axis. The vehicle’s rotation angle is denoted as Ψ, while 

the velocity components along the Y and X axes are represented as U and V, respectively. 

Displacement along each axis is defined in (4) [45], where movements along the X-axis are assigned 

opposite directional values, with one component given a negative sign, whereas all Y-axis values 

remain positive [46]. The vehicle’s movement direction, particularly when encountering obstacles, 

is determined using LiDAR sensor data and the vehicle’s heading angle, as formulated in (5). 

 

Fig. 6. Kinematic models of cars 

[
𝑋
𝑌
Ψ
] = [

cosΨ −sinΨ 0
sinΨ cosΨ 0
0 0 1

] [
𝑈
𝑉
𝑟
] (4) 

[
𝑋
𝑌
Ψ
] =  [

𝑈 cosΨ − V sinΨ
𝑈 cosΨ + V sinΨ

𝑟
] (5) 

Description: 

𝑋  = Displacement to the side (lateral) 

Y  = Displacement proceeds or back off                                          
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Ψ = Angular displacement 

U  = Speed moment forward and backward                                              

V  = Speed moment to side                                                           

𝑟 = Angular speed of the car 

2.2.3. Dodger Crash System 

The Dodger Crash System, illustrated in Fig. 7, integrates a GPS-based autonomous navigation 

system, which activates at the start of program execution. If the detected distance dLidar remains 

greater than or equal to the threshold dmax, the vehicle proceeds toward its target coordinates without 

interruption. However, if dLidar falls below dmax, the main program is interrupted by a collision 

avoidance subroutine [47], [48]. The first step of this subroutine involves calculating the X and Y 

coordinates using (6), based on distance and angle data received from the LiDAR sensor. These 

coordinates are used to compute the lengths of the X and Y axes, relative to the LiDAR readings, as 

determined in (7). Once these values are obtained, the system calculates the required displacement 

for the vehicle using (8), resulting in final displacement values (vxEnd, vyEnd) as specified in (9) [48]. 

To prevent excessive displacement, additional adjustments are made using (10). Once the 

recalculated displacement falls below dmax, the program resumes normal operation according to the 

conditions outlined in (9). 

Through this approach, the system effectively enables real-time obstacle avoidance while 

maintaining an efficient navigation path. Further enhancements could include optimizing LiDAR 

data processing algorithms or integrating alternative path-planning techniques, such as A*[49], 

Dijkstra [50], or Rapidly-exploring Random Trees (RRT) [51], to improve decision-making in 

dynamic environments. 

 

Fig. 7. Flowchart of the system dodger crash 

{
𝑋𝑙𝑖𝑑𝑎𝑟 = cos 𝜃 × 𝑑𝑙𝑖𝑑𝑎𝑟
𝑌𝑙𝑖𝑑𝑎𝑟 = sin 𝜃 × 𝑑𝑙𝑖𝑑𝑎𝑟

 (6) 
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{
𝑣𝑥𝐿𝑖𝑑𝑎𝑟 = 𝑋𝑙𝑖𝑑𝑎𝑟 × 𝑈𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒

        (𝑛)
(𝑥)

𝑣𝑦𝑙𝑖𝑑𝑎𝑟 = 𝑌𝑙𝑖𝑑𝑎𝑟 × 𝑈𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒
        (𝑛)

(𝑥)
 (7) 

{
𝑣𝑥𝐸𝑛𝑑 = 𝑣𝑥𝐿𝑖𝑑𝑎𝑟 × cos 𝜃 − 𝑣𝑦𝑙𝑖𝑑𝑎𝑟 sin 𝜃 

𝑣𝑦𝐸𝑛𝑑 = 𝑣𝑥𝐿𝑖𝑑𝑎𝑟 × sin 𝜃 + 𝑣𝑦𝑙𝑖𝑑𝑎𝑟 × cos 𝜃
 (8) 

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 = (𝑣𝑥𝐸𝑛𝑑 , 𝑣𝑦𝐸𝑛𝑑) (9) 

{
 
 

 
 𝑣𝑥𝐸𝑛𝑑 = 𝑑𝑚𝑎𝑥  × (

𝑣𝑥𝐸𝑛𝑑

√𝑣𝑥𝐸𝑛𝑑
2 + 𝑣𝑦𝐸𝑛𝑑

2
) 

𝑣𝑦𝐸𝑛𝑑 = 𝑑𝑚𝑎𝑥 × (
𝑣𝑦𝐴𝑘ℎ𝑖𝑟

√𝑣𝑥𝐸𝑛𝑑
2 + 𝑣𝑦𝐸𝑛𝑑

2
) 

 
 

(10) 

Where +𝑣𝑥𝐸𝑛𝑑, −𝑣𝑥𝐸𝑛𝑑, +𝑣𝑦𝐸𝑛𝑑, −𝑣𝑦𝐸𝑛𝑑 are stand for moving right, move left, move forward, 

and move backward, respectively. 

3. Results and Discussion 

3.1. Simulation Testing 

The simulation was conducted by setting multiple GPS coordinate points as navigation targets 

for the car, with GPS accuracy playing a crucial role in ensuring precise navigation. The test utilized 

a trajectory with 12 waypoints, or reference GPS points, as illustrated in Fig. 8. The results indicate 

that the car successfully follows the predefined path, forming a trajectory that closely aligns with the 

programmed path. However, at higher speeds, the car exhibits a greater offset from the intended 

trajectory. This deviation is likely due to reduced response time and increased momentum, making 

rapid adjustments more challenging. Additionally, when waypoints are set either too close together 

or too far apart, some may not be detected due to each waypoint having an effective radius. Once the 

car enters this radius, the waypoint is considered passed, potentially leading to navigation 

inconsistencies in dense waypoint configurations. 

The collision avoidance system is based on the potential field method and was simulated using 

Python's plotting tools to evaluate its effectiveness under different conditions. The simulation 

examined variations such as different threshold values and multiple obstacle scenarios. When 

navigating around two obstacles, the system’s behavior remains similar to the single-obstacle case, 

except that the car performs two consecutive direction changes. Initially, it shifts to the left to avoid 

the first obstacle, like its response to a single obstacle, and then moves right to evade the second one. 

Once the second obstacle is cleared, the car returns to its original path, proceeding toward the target 

point, as illustrated in Fig. 9. 

 

Fig. 8. Trajectory formed when carrying out missions 
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Fig. 9. Simulation results with 2 obstacles 

3.2. Hardware Testing 

Following successful simulation results demonstrating collision-free navigation, a prototype RC 

car was built and implemented, as shown in Fig. 10. The car was designed with a four-level structure 

to optimize space efficiency, with each level housing specific electronic components. In designing 

the collision avoidance system, the threshold or safety distance is a critical parameter. This threshold 

represents the minimum safe distance between the car and obstacles, determined using LiDAR sensor 

data. When an obstacle enters this range, the system activates, adjusting the car's trajectory to avoid 

collisions. If the object is outside the threshold, the system remains inactive. Selecting an optimal 

threshold is crucial: a small threshold may not provide sufficient time for the car to react, increasing 

the risk of collisions, while a large threshold may cause unnecessary deviations, slowing down the 

vehicle’s progress. 

 

Fig. 10. Autonomous car prototype: (a) front view, (b) rear view 

3.2.1. Sensor Testing 

Accurate LiDAR sensor readings are essential for effective collision avoidance. Since LiDAR 

data primarily guides vehicle movement, a low margin of error is necessary for reliable navigation. 

To meet accuracy criteria, the error percentage should remain below 10%. Experimental results 

indicate that the accuracy achieved was approximately 96.40%, with an average error of 3.60%. Data 

collection involved 10 trials at 30 cm intervals, comparing LiDAR sensor measurements to manual 
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measurements using a meter stick. The calculations, based on (7), confirmed the sensor’s high 

precision. Table 1 presents the measured data, showing that the sensor readings are sufficiently 

accurate to support the collision avoidance system. 

The GPS module was tested through 50 trials to measure positioning accuracy. The test involved 

navigating a 14-meter distance between a starting point and a target point. The GPS coordinates, 

obtained from a Garmin GPS, were input into the vehicle’s navigation system and executed 50 times. 

The actual stopping point of the vehicle was measured using a measuring tape to determine the error 

distance. The smallest error recorded was 22 cm (final trial). The largest error was 3 m (31st trial). 

The average error was 1.55 m, with a U-Blox-based GPS module offset of ~1.75 m. 

The final stopping points of each test are depicted in Fig. 11. Out of 50 trials, the vehicle 

successfully reached the target circle in 33 trials, achieving an accuracy rate of 66%. The average 

number of satellites detected was 14, with an estimated travel distance of 15.5 m based on GPS data. 

Comparing actual distances with GPS readings, the average GPS error was approximately 0.59 m. 

Table 1.  Lidar testing results 

No 
Measured distance (cm) 

Error (%) 
Tape measure Lidar 

1 30 33 10 

2 60 64 6.67 

3 90 85 5.56 

4 120 123 2.50 

5 150 153 2.00 

6 180 184 2,22 

7 210 214 1.90 

8 240 244 1,67 

9 270 275 1.85 

10 300 305 1.67 

Mean of Error (%) 3.60 

Accuracy (%) 96.40 

 

 

Fig. 11. GPS testing results 

3.2.2. Collision Avoidance Testing 

The study evaluated the collision avoidance system’s effectiveness by testing two safety 

threshold values, 2 m and 2.5 m, with each threshold tested 10 times in scenarios involving one or 
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two obstacles along the vehicle's path. The experimental setup is shown in Fig. 12. When an obstacle 

entered the detection range, the system activated, adjusting the car’s trajectory based on LiDAR data. 

In the single-obstacle test with a 2.5 m threshold, the error distance (distance to Point of Interest 

(POI)) ranged from 50 cm to 180 cm, with an average of 89.4 cm, as in Table 2. The shortest 

completion time recorded was 18.36 s with an error of 53 cm, while the longest was 19.98 s with an 

error of 180 cm, averaging 18.707 s. During these trials, an average of 16 satellites were detected, 

with an HDOP (Horizontal Dilution of Precision) of approximately 0.673, as shown in Fig. 13. In 

the two-obstacle test with the same threshold, error distances ranged from 78 cm to 185 cm, with an 

average of 135.6 cm, as resumed in Table 3. The shortest mission time was 18.2 s with an error of 

100 cm, while the longest was 19.98 s with an error of 185 cm. The HDOP value averaged 0.679, 

with 16 satellites detected. These results suggest that the number of satellites and HDOP values 

significantly influence vehicle positioning accuracy, with higher satellite counts and lower HDOP 

values improving accuracy, while adverse weather conditions can reduce GPS precision. 

 

Fig. 12. Obstacles of collision avoidance testing 

Table 2.  Test results 1 obstacle with a threshold of 2.5 m 

Test 

1 Obstacle 

Distance to Point  

of Interest (cm) 

Satellite  

Average 

HDOP  

Average 
Time (s) 

1 180 14 0.691 19.210 

2 50 18 0.641 18.680 

3 98 15 0697 18.920 

4 53 17 0.655 18.360 

5 66 16 0.683 18.367 

Average 89.4 16.6 0.673 18.707 

 

  

Fig. 13. (a) Graph distance to POI vs. Satellite and HDOP (Test 1 Obstacle), (b) Graph distance to POI vs. 

Satellite and HDOP (Test 2 Obstacle) at 2.5 Meter Threshold Value 
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Table 3.  Test results for 2 obstacles with a threshold of 2.5 m 

Test  

2 Obstacles 

Distance to Point  

of Interest (cm) 

Satellite  

Average 

HDOP  

Average 
Time(s) 

1 185 14 0.692 19.980 

2 78 17 0.663 18.440 

3 170 15 0.687 19.720 

4 145 16 0.677 19.380 

5 100 16 0.678 18.20 

Average 135.6 15.8 0.679 19.144 

  

To compare the impact of the two threshold values, key metrics such as travel distance, deviation 

from obstacle-free travel, and time differences were analyzed, with the results summarized in Table 

4 and Fig. 14. With a 2 m threshold, the vehicle executed sharper turns, covering 16.406 m compared 

to 16.535 m with the 2.5 m threshold, while the baseline travel distance without obstacles was 15.5 

m. The 2 m threshold resulted in an additional 0.432 m of travel distance, whereas the 2.5 m threshold 

added 0.447 m. The increase in travel time was 3.167 s for the 2 m threshold and 3.324 s for the 2.5 

m threshold. Additionally, lower HDOP values improved GPS accuracy, helping the vehicle maintain 

a closer trajectory to the target. 

Table 4.  Test results with 1 obstacle 

1 Obstacle 

Comparison Threshold 2 m Threshold 2.5 m 

Average Mileage (m) 15.932 15.947 

Average Time(s) 18.707 18.864 

Margin to point destination (cm) 97.600 89.400 

 

 

Fig. 14. Comparison trajectory when encountering 1 obstacle 

For the two-obstacle navigation test, the track length and target point remained unchanged, but 

two obstacles were placed along the car’s trajectory. The first obstacle, a pink object, caused the 

vehicle to veer left, as determined by a negative X-axis speed calculation. The second obstacle, an 

orange object, triggered a rightward adjustment since that path was closer to the target. Once both 
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obstacles were cleared, the collision avoidance system deactivated, allowing the vehicle to resume 

its GPS-based navigation. The results showed that with a 2 m threshold, the car traveled 16.406 m, 

while with a 2.5 m threshold, it covered 16.535 m. The additional travel distance with the 2.5 m 

threshold was 0.906 m. The average travel time was 19.036 s for the 2 m threshold and 19.144 s for 

the 2.5 m threshold. HDOP values fluctuated, with higher values reducing accuracy and lower values 

helping the car stay on the course. The results, summarized in Table 5 and Fig. 15, confirm that the 

collision avoidance system effectively navigates obstacles while maintaining reasonable accuracy. 

The choice of threshold impacts travel time, trajectory deviation, and the number of required 

directional changes. 

Table 5.  Test results with 2 obstacles 

2 Obstacles 

Comparison Threshold 2 m Threshold 2.5 m 

Average Mileage (m) 16.406 16.535 

Average Time(s) 18.707 18.864 

Margin to point destination (cm) 19.036 19.144 

 

 

Fig. 15. Comparison trajectory moment facing 2 obstacles 

4. Conclusion 

The proposed collision avoidance system effectively navigates obstacles by integrating LiDAR-

based detection and GPS positioning. Across multiple trials, the GPS-based autonomous mode 

achieved an average positioning error of 1.55 m, while LiDAR maintained an accuracy of 96.40%, 

exceeding the required 95% threshold. Testing with two safety thresholds (2 m and 2.5 m) 

demonstrated that both values enabled successful navigation, though the 2 m threshold resulted in a 

0.8% shorter travel distance and a 0.6% faster completion time compared to the 2.5 m threshold. 

However, the 2.5 m threshold provided greater clearance, reducing close encounters with obstacles. 

The system’s performance was also influenced by GPS accuracy, with lower HDOP values and 

higher satellite counts improving trajectory precision. Real-time trajectory adjustments ensured 

adaptive navigation in both single- and two-obstacle scenarios, confirming the system’s reliability in 

dynamic environments. These findings highlight the importance of threshold selection in balancing 

efficiency and safety. Future work may explore adaptive threshold tuning based on real-time 

environmental conditions to further enhance system performance. 
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