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ABSTRACT

This study introduces an architecture for an autonomous vehicle control
system based on a collision detector and geometric modeling of trajectories.
The goal is to develop a robust and reliable control model that can navigate
metropolitan environments, often crowded with pedestrians and bicycles,
as well as suburban areas, where traffic patterns can fluctuate. We have
created a modular control unit that includes a collision predictor, which
interacts closely with the decision module. The executed algorithm demon-
strates the effectiveness of our system by ensuring the safety and comfort
of the passengers. It can identify potential collisions from a distance and
initiate braking preventively, following precise guidelines for deceleration
and acceleration. To validate our methods, we are looking at simulations
of realistic case studies. The research conducted underscores a crucial ad-
vancement in the development of safer and more flexible autonomous driv-
ing technologies.

This is an open access article under the CC-BY-SA license.

1. Introduction
Recent studies reveal that road crashes impose a great health and monetary burden on public

health. Road traffic injuries are one of the top ten causes of death worldwide, and the insurance cost
of crashes for a country per year is a significant percentage of its gross national product. The aim is to
reduce the predicted death rate away from the existing trend because of road traffic accidents, reducing
around one-third in 2020 from 1.3 million to 0.91 million per year. Moreover, many corporations are
moving towards fully integrated driverless cars that have either been developed or are still under
construction and testing. Another driving force in the autonomous vehicles zone is safety, managing
the ever-increasing crashes, road accidents, and untoward incidents worldwide, affected by economic
gains. All these examples attest to the urgency and immense importance of collision avoidance for
vehicles to dramatically affect the overall layout in terms of operator revenues and productivity as the
driverless trend becomes more prevalent, potentially shutting down the automotive industry [1].

In the automotive crash scenario, control, localization, communication, vision, decision-making,
environment modeling, path planning, dynamic obstacle prediction, collision detection, and finally
the real-time collision-free trajectory estimation are various integral cutting-edge domains; the contri-
bution herein revolves around collision detection and subsequent collision prediction systematically.
Therefore, it is proposed to have a specialized section reserved to discuss the evolution and devel-
opmental paradigms developed for the collision avoidance system for automotive [2], [3]. Hence,
assisted driving has further drawn the attention of researchers in two realization dimensions: semi-
autonomous driverless vehicles and fully autonomous driverless technology, such that we aim pri-
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marily to have the first category of discussion in this essay [4], [5]. The inevitable rise in traffic load
over the years has been triggering major incidents in terms of crashes, especially on roads or in the
opposite lanes. It is this inner and understated dashboard of human nature, being largely unaware
of one’s immediate surroundings, that causes the greatest number of road incidents, accidents, or
mishaps in developed countries. Such is the case with autopilot and traffic-aware cruise control in
the case of commercial airplanes and self-sensing radar-guided missiles. With the technology and
knowledge increment, this near certainty of continual collisions of human-driven vehicles can now be
systematically reduced to injury-free available collision risk, thereby reducing the possibility of any
such incidents reaching towards negation, with all cars in full automation reaching zero collision pos-
sibility [?], [7]. For the very purpose of such automated intelligent decision-making, special attention
has to be provided to the local environment of the vehicle defined by a certain distance of operating
radius, inbound for any anticipated collision, and as such integrating decision-making with the actual
vehicle controls; such an enriched framework for collision prediction is essentially a multi-sensory
approach [8], [9].

Collisions are a significant cause of death and injury around the world. Advanced driver assis-
tance systems and partial or full vehicle automation have received substantial attention as means to
reduce these incidents. Numerous automobile manufacturers have made substantial strides towards
providing vehicles with these capabilities, enabled in part by the rapid reduction in the cost of the sen-
sors and computation used by these systems. However, several incidents involving both partial and
full vehicle autonomy have been publicized, indicating a need to develop methods for certification
and validation of the technologies developed for these vehicles [10].

Numerous challenges must be resolved to align fully autonomous vehicle operation with human-
in-the-loop operation [11], [12]. New sensors and actuators have been developed that can process
data much more rapidly and make decisions in real time on the order of milliseconds. However, this
generates significant data communication, perception, and prediction challenges for safe vehicle op-
eration [13], [14]. The general public continues to be skeptical regarding the efficacy and safety of
autonomous vehicles, and new legal frameworks will need to be developed to operate these vehicles
in a cost-effective manner [15], [16]. The roles of various stakeholders in autonomous vehicle op-
eration have been developed, and the safety of the vehicle hardware, software, and decision-making
capabilities must be continually updated and validated [17], [18]. The majority of research to date has
focused on trajectory estimation and prediction, collision detection, and vehicle control topics [19],
[20].
The main objectives of this research are:

• Design of an Autonomous Vehicle Model: Develop a model of an autonomous vehicle based on
interactive blocks. These blocks will be designed to adaptively simulate the human driving model,
taking into account the variety and complexity of human behaviors while driving.

• Development of a Collision Estimator Block: Design a block specialized in estimating potential
collisions. This block must be perfectly integrated and interact effectively with the decision logic
system, allowing the vehicle to make safe and optimized decisions in real-time.

The contributions of this research are:

• Evolutionary Model of Human Behavior: Propose an evolutionary model capable of accurately
simulating human behavior in terms of driving. This model must be sufficiently flexible to adapt
to different driving scenarios and reflect the behavioral variations of drivers.

• Validation by Interaction with the Decision Block: Study and validate the effectiveness of the
interaction between the different blocks, particularly the decision block. This validation is essential
to ensuring that the proposed model functions are consistent and reliable.

• Trajectory and Collision Prediction Algorithm: Develop an advanced algorithm that supports dy-
namic trajectory calculation as well as collision prediction for various types of trajectories. This
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approach will enable the vehicle to anticipate and avoid obstacles proactively.

The remainder of this paper is structured as follows: Section 1 presents an introduction to the
subject with a full literature review. Section 2 details the proposed autonomous vehicle model, while
Section 3 explores the control block properties. Section 4 discusses the adopted methodology for the
calculation in the collision estimator, and Section 5 presents the calculation method in the collision
estimator. Section 6 presents the simulation results and analysis. Finally, Section 7 concludes the
paper with key findings and future research directions.

2. Proposed Autonomous Vehicle Model
The modeling of objects and vehicles is done in the form of a rectangle defined by a length L

and a width W (Fig. 1) with a speed orientation vector and a straight or curved trajectory.

Fig. 1. Representation of the autonomous vehicle by a rectangle

The overall route is predefined at the beginning of the journey according to a well-known map.
Autonomous vehicles can follow lines within the route according to speed instructions. The actions
of changing stop or acceleration speed instructions are carried out according to the signage and the
traffic code. The current version does not consider the latency times of the sensors or the reliability
of the measurements. Furthermore, we have defined intrinsic parameters that present limitations for
the autonomous vehicle:

• Maximum braking capacity: It represents the vehicle’s deceleration capacity under optimal con-
ditions. However, this parameter could vary depending on weather conditions, road conditions, or
tire wear conditions. The deceleration capacity also includes the time for acquisition, processing,
and decision-making [21].

• Maximum acceleration capacity: It defines the vehicle’s ability to accelerate according to several
parameters. Depending on the weight of the vehicle and the power of the engine. This parameter
could be changed depending on the type of vehicle, as in the case of trucks. Indeed, the weight
factor also influences the deceleration capacity mentioned in the previous point. The acceleration
capacity also includes the time for acquisition, processing, and decision-making [22].

• Maximum linear speed: It is the maximum speed that a vehicle can reach while following a
straight trajectory.

• Comfort acceleration and deceleration: They define the nominal acceleration and deceleration
that allow for a comfortable ride for the driver and passengers. The acceleration and deceleration
capacities include the time for acquisition, processing, and decision-making.

• Minimum distance between vehicles: It is the minimum safety distance between vehicles at rest
or in motion. It’s a dynamic parameter that can depend on the speed and weight of the vehicle,
weather conditions, wheel adhesion, and traffic rules [23].

• Detection distance or space: It defines the distance or surrounding space at which the autonomous
vehicle could make braking or acceleration decisions [24].

• Maximum wheel rotation angle: it is the maximum turning angle of the front wheels of the
vehicle.

• Maximum centrifugal acceleration: it is a parameter dependent on the vehicle’s speed and the
angle of the front wheels. It represents a crucial factor in vehicle safety, especially for maintaining
sufficient grip without loss of control [25].
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• Centrifugal comfort acceleration: it is the nominal acceleration permissible for passenger com-
fort.

3. Control Block
Fig. 2 shows the proposed control block for a scaled-down model of an autonomous vehicle with

three actuators. We will focus on the “Object Collision Prediction Block” and its communication with
the “Logic Decision Block”.

Fig. 2. Autonomous vehicle control block

Moreover, the execution of the control block follows a closed-loop iterative process. The mea-
surement of the different parameters and the calculations are done periodically. Thus, certain parts can
operate independently depending on the choice of the computing platform. Below is the functional
description of each block:

• External Environment detection: This block represents all the sensors detecting the external
environment, such as cameras, lidars, and radars. In addition, the reception of location data from
satellites and road infrastructure. Furthermore, the autonomous vehicle can exchange information
with other vehicles, such as emergency braking or the presence of danger, the intention to change
direction, or the presence of other obstacles hidden by the communicating vehicle [26].

• Internal sensors: They provide the intrinsic information of the vehicle: linear and radial accelera-
tion, absolute speed, front wheel angle, etc.

• Traffic Rules: They gather rules defining the vehicle’s behavior. Including stop or go signs (such
as traffic lights, stop signs, or right or left priority signs). The actions of changing the permissible
speed limits and reducing speeds at intersections and danger zones.

• Traffic Rules Exception: They represent all the specific cases in which the vehicle may not comply
with traffic rules. As is the case in certain situations of danger, blockage, or under the orders of a
traffic officer.

• Travel path: It represents the overall path the autonomous vehicle will follow to reach its destina-
tion. The vehicle could change lanes within this path. In general, the route is not changed during the
journey unless the road is blocked. In this case, path re-planning is done according to a predefined
strategy.

• Comfort and Safety Rules: They define the strategy to follow according to the situation. By
default, it is the comfort rules that are adopted most of the time. However, in cases of imminent
danger, these rules are no longer followed. The example of emergency braking and quick direction
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change is the solution to avoid an obstacle.
• Object collision Prediction: It is the block that estimates the presence of a collision between the

autonomous vehicle and objects within its detection space. It is used in two different situations.
The first, using real-time speed and position data of the vehicle. And the second is used on a future
projection of speed, direction, and position to respond to a request from the decision block.

• Logic Decision Solver: It is the heart of the decision-making system, merging all the data from the
previous blocks and providing speed and wheel angle commands for the actuator part [27].

4. Methodology Adopted for the Calculation in the Collision Estimator
For two vehicles, this block uses the wheel angle position, steering, and speed data. Thus, several

scenarios are grouped into two situations:

• The first in which two vehicles follow each other along a straight or curved path (Fig. 3).

Fig. 3. The two types of straight and curved trajectories for vehicles that follow each other

• In the second case, the paths of the two vehicles intersect, whether they are straight-straight trajec-
tories (Fig. 4A), straight-curved (Fig. 4B), or curved-curved (Fig. 4C).

Fig. 4. The types of intersecting trajectories

4.1. Definition and Convention
In Fig. 5, the vehicle is modeled by four points a, b, c, and d. Moreover, for the case of a linear

trajectory, we define two lines DL and DR (respectively left and right). And in the same way, two
concentric arcs of radius RR and RL centered at O are defined for a curved trajectory. The distance
between the two lines DL1 and DL2 or the two arcs is equal to the width of the vehicle.

For example, in the case of two vehicles V1 and V2 in the intersecting straight-line trajectories
shown in Fig. 6, we define four intersection points of the lines DL1, DR1, DL2, and DR2 at four
points i1, i2, i3, and i4, defining the collision zone according to expressions below:
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Fig. 5. Modeling of straight and curved trajectories

Fig. 6. Intersection points defining the collision zone defined by i1, i2, i3, and i4

i1 = DL1 ∩DL2
i2 = DL1 ∩DR2
i3 = DR1 ∩DR2
i4 = DR1 ∩DL2

Additionally, for each iteration, we compute the arrival time for points a, b, c, and d at locations
i1, i2, i3, and i4 based on the instantaneous speed at time T . The calculations assume the vehicle
will sustain a constant speed and trajectory.

5. Calculation Method in the Collision Estimator
5.1. Case of Vehicles Following Each Other

In this situation, the two vehicles are following each other with overlapping trajectories, as shown
in Fig. 7. In the case of straight-line trajectories, the calculation is based on the distances between
the front of the following vehicle and the rear of the leading vehicle; the speeds of the two vehicles
determine whether or not there is a collision, especially in the case where V1>V2. However, the
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distance to the point of impact and the moment of impact are calculated based on the difference in
speeds of the two vehicles [28].

Fig. 7. Modeling of linear and curved trajectories for two following vehicles

Furthermore, in the case of concentric trajectories with different curvature radii and a center O,
the calculation is based on the angular speeds θ̇1 point and θ̇2 point derived from the speeds of the
vehicles V1 and V2 and the curvature radii. Thus, if θ̇1 is greater than θ̇2 with overlapping trajectories,
there will be a collision.

5.2. Case of Intersecting Trajectories
The principle of the method is to define the arrival times Ta, Tb, Tc, and Td of the different

points a, b, c, and d of the two vehicles V1 and V2 at points i1, i2, i3, and i4. The idea is to define the
arrival time intervals of the front and rear points calculated based on the speeds of vehicles V1 and
V2. The absence of collision is mainly due to the lack of intersection of the time intervals of arrival
moments according to the conditions below. The method remains the same regardless of the type of
trajectory (straight or curved) and regardless of the direction of the vehicle’s movement. However,
there is a difference in the method of calculating arrival times depending on the type of movement.

NO COLLISION IF
At i1 : [Ta1, Td1] ∩ [Ta2, Td2]=∅

AND
At i2 : [Ta1, Td1] ∩ [Tb2, T c2]=∅

AND
At i3 : [Tb1, T c1] ∩ [Tb2, T c2]=∅

AND
At i4 : [Tb1, T c1] ∩ [Ta2, Td2]=∅

5.3. Collision Estimator Algorithm
For the collision detector, it starts by checking if the two trajectories intersect. If there is no

intersection, he calculates for two cars that follow each other, regardless of their straight or curved
trajectories. Otherwise, it calculates the times and compares the intervals, then determines whether
or not there is a collision. The collision estimator will be able to have real-time data on the speeds,
trajectories, and positions of the vehicles. Or hybrid data based on a projection of a future action with
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speed, position, or trajectory commands.

5.4. Case of Two Vehicles Following Each Other
Fig. 8 represents the pseudo-code of the estimator in the case where two vehicles follow each

other along a straight trajectory. The algorithm determines if a collision would occur between two
vehicles moving in a linear manner. He starts by calculating the relative distance between the vehicles,
taking their lengths into account, then he determines their relative speed projected onto the X−axis.
If a positive relative speed is detected (indicating an approach), the algorithm calculates the time
required before a potential collision. The future positions of the vehicles are then estimated, and
the distance traveled by the first vehicle up to that point is calculated, limited to a maximum value.
(supVal). Finally, the algorithm returns the time of the potential collision as well as this distance. If
the relative speed is negative or zero, no collision is possible according to this simplified model, and
a default value (supVal) is returned. This algorithm is based on a simplified model of linear motion
and does not take into account factors such as acceleration or changes in direction.

Fig. 8. The Pseudo-Code for the algorithm to calculate distance and the moment of collision for the case of
vehicles following each other on a straight trajectory

5.5. Case of Two Vehicles Crossing Paths at an Intersection
Fig. 9 represents the pseudo-code of the algorithm that detects collisions between two cars using

a geometric and temporal approach. He starts by defining reference points on each vehicle to then
calculate their trajectories. By determining the intersection points of these trajectories and comparing
the arrival times of each car at these points, the algorithm identifies if there is a collision. The angle
between the trajectories is also taken into account to determine the type of collision (frontal, lateral,
rear). If a collision is detected, the algorithm precisely calculates the point and moment of impact.
Finally, it categorizes the collision according to different possible scenarios (based on the angle and
other factors), allowing for a more detailed analysis of the event. Additional information on the
trajectories can also be provided. The accuracy of the algorithm depends on the quality of the input
data regarding the position, speed, and direction of the vehicles.

The two algorithms remain valid for cases of curved or straight trajectories; the main difference
is the method of calculating distances and arrival times based on the radii of curvature.

6. Results and Discussion
This section showcases two Python simulations that utilize the Pygame library to replicate our

model. We employed a time step of 17 milliseconds for each iteration, with pixels as the fundamental
unit of displacement. The algorithm is comparatively straightforward with few branches. Conse-
quently, we will be capable of simulating a substantial number of cars on GPU architectures, as
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demonstrated in our prior research on the NaSCH traffic model implementation [29] [30].

Fig. 9. The Pseudo-Code of the algorithm detecting collisions between two cars using a geometric and
temporal approach

6.1. Simulation 1: Case of Two Following Vehicles
In this simulation (Fig. 10), we used a scenario where two vehicles follow each other along

a straight trajectory. The blue following car is equipped with an active braking and acceleration
system according to the algorithm in Fig. 11. The speeds of the two vehicles are plotted in Fig.
12. Thus, the following vehicle adjusts its speed according to the leading vehicle to maintain a safe
distance (adaptive cruise control). The inter-vehicle distance (div) remains stable thanks to dynamic
adjustments, thus avoiding potential collisions. The braking moments are indicated by the peaks on
the “Brake” curve, which are activated to manage the speed changes of the lead vehicle. The braking
distance (df ) represents the distance required for the following vehicle to come to a complete stop
safely. Simultaneously, the system manages the distance from the potential impact point (Dv) to
prevent collisions by proactively adjusting speed and distance. Together, these elements highlight the
effectiveness of the active braking system in maintaining road safety.

6.2. Simulation 2: Crossing Case with Dynamic Braking
Fig. 13 shows a sequence from the simulation of a vehicle (blue) approaching an intersection

where a convoy of two cars (red) is passing through. The convoy of red vehicles moves at a constant
speed, unlike the blue vehicle, which adjusts its speed several times.

The curve in Fig. 14 shows the dynamic change in speed as a function of the distance to the im-
pact point located in the collision zone of the intersection. The blue curve represents the autonomous
vehicle, which initially maintains a speed of about 100 pix/s. However, it slows down twice when it
detects the first and second vehicles of the convoy, which are moving at a stable speed of 80 pix/s.
The first slowdown reduced the blue car’s velocity to 90 pix/s. During the second slowdown, the car
drastically reduces its velocity to the point of total braking, maintaining a safe distance of 100 pix
between the blue car and the convoy. Otherwise, the orange curve indicates the distance to the point
of impact, which gradually decreases with two notable drops. These drops correspond to the blue
vehicle’s successive detection of other vehicles, which prompts a reduction in its speed to prevent an
accident. The ”‘brake”’ curve illustrates the points at which the brakes engage, thereby conveying the
control system’s reaction to the varying distances before impact and during braking.
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Fig. 10. The Pseudo-Code for the speed change algorithm based on the safety distance and the distance to the
impact point

Fig. 11. Different stages of the active speed change of the blue vehicle based on the behavior of the red one

Fig. 12. Chart of the results of speed and inter-vehicle distance showing the reliability of the braking and
active acceleration of vehicle two

Fig. 15 represents the pseudo-code of the loop used to manage the speed of the autonomous
vehicle. At the beginning of this function, the necessary global variables are initialized. The function
checks if the autonomous vehicle or other vehicles in its immediate environment are approaching
a potential impact point. If such an impact point is detected, the autonomous vehicle activates its
brakes to avoid a collision, and a message indicating the detection of the impact point is displayed.
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If no impact point is detected, the function checks if the vehicles involved have exited the danger
zone. If the vehicles have not exceeded the point of impact and are within a distance shorter than
the defined safety distance, braking is also activated to maintain safety. However, if the distance is
sufficient and there is no immediate danger, the vehicle adjusts its acceleration to reach or maintain a
defined cruising speed. Throughout this logic, messages are displayed to monitor the vehicle’s status,
indicating whether safety distances are being maintained or if the vehicle continues to maintain its
cruising speed without restriction.

Fig. 13. Simulation of active speed change of a vehicle approaching an intersection with the passage of two
vehicles

6.3. Limitations and Future Work
The suggested predictive model, as previously stated, does not account for measurement errors

or misinterpretations of information. The existence of hidden vehicles or objects with hypothesized
direction and velocity may provide big challenges due to the temporary or complete lack of data.
Furthermore, we plan in future work to integrate the prediction of a neighboring vehicle’s change of
direction based on its behavior (normal or aggressive driving) and the analysis of the surrounding
traffic. We also intend to incorporate logic into the decision-making block when there is a complete
lack of information, such as in instances of sensor disruption or camera glare.

7. Conclusion and Perspectives
We developed a concept of an autonomous vehicle using a modular control architecture, and

we established and validated collision prediction algorithms via simulation. The main aim of our
research is to guarantee safety in autonomous vehicles for both urban and rural driving conditions.
Due to their capacity to respond in under a millisecond, these systems greatly surpass human reac-
tion rates, which often fall between 1 and 1.5 seconds, resulting in a decrease in accidents by 40%
or greater. Furthermore, comfort is an essential element of urban driving. The collision prediction
system facilitates the prevention of abrupt braking, reserving it exclusively for emergencies. A forth-
coming article will detail subsequent research, focusing on the interaction of the decision block with
other components described in our model. This ongoing project will examine the prediction of col-
lisions between concealed items and cars. The current version omits considerations of latency and
measurement reliability; addressing these aspects could improve the comprehensiveness of our study.
Subsequent iterations could be enhanced by using error margins or probabilistic models, like Kalman
filters, to enhance forecast accuracy.
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Fig. 14. Dynamic speed change of vehicle 1 (Blue Car) upon detecting the passage of two vehicles at the
intersection

Fig. 15. The Pseudo-Code for the Speed Change Based on Vehicles Passing Through the Intersection
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vehicles with collision avoidance,” IET Intelligent Transport Systems, vol. 14, no. 13, pp. 1882–1891,
2020, https://doi.org/10.1049/iet-its.2020.0355.

[4] M. Ammour, R. Orjuela and M. Basset, “A MPC Combined Decision Making and Trajectory Planning for
Autonomous Vehicle Collision Avoidance,” in IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 12, pp. 24805-24817, 2022, https://doi.org/10.1109/TITS.2022.3210276.

[5] H. Alghodhaifi and S. Lakshmanan, “Autonomous Vehicle Evaluation: A Comprehensive Survey on
Modeling and Simulation Approaches,” in IEEE Access, vol. 9, pp. 151531-151566, 2021, https://doi.
org/10.1109/ACCESS.2021.3125620.

[6] P. S. Perumal et al., “An insight into crash avoidance and overtaking advice systems for Autonomous
Vehicles: A review, challenges and solutions,” Engineering Applications of Artificial Intelligence, vol.
104, p. 104406, 2021, https://doi.org/10.1016/j.engappai.2021.104406.

[7] J.-B. Receveur, S. Victor, and P. Melchior, “Autonomous car decision making and trajectory tracking
based on genetic algorithms and fractional potential fields,” Intelligent Service Robotics, vol. 13, no. 2,
pp. 315–330, 2020, https://doi.org/10.1007/s11370-020-00314-x.

[8] T. Zhang, W. Song, M. Fu, Y. Yang, X. Tian and M. Wang, “A Unified Framework Integrating Decision
Making and Trajectory Planning Based on Spatio-Temporal Voxels for Highway Autonomous Driving,”
in IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 8, pp. 10365-10379, 2022, https:
//doi.org/10.1109/TITS.2021.3093548.

[9] P. Ghorai, A. Eskandarian, Y. -K. Kim and G. Mehr, “State Estimation and Motion Prediction of Vehicles
and Vulnerable Road Users for Cooperative Autonomous Driving: A Survey,” in IEEE Transactions on
Intelligent Transportation Systems, vol. 23, no. 10, pp. 16983-17002, 2022, https://doi.org/10.1109/TITS.
2022.3160932.

[10] N. Klinjun, M. Kelly, C. Praditsathaporn, and R. Petsirasan, “Identification of Factors Affecting Road
Traffic Injuries Incidence and Severity in Southern Thailand Based on Accident Investigation Reports,”
Sustainability, vol. 13, no. 22, p. 12467, 2021, https://doi.org/10.3390/su132212467.

[11] Y. Huang, J. Du, Z. Yang, Z. Zhou, L. Zhang and H. Chen, “A Survey on Trajectory-Prediction Methods
for Autonomous Driving,” in IEEE Transactions on Intelligent Vehicles, vol. 7, no. 3, pp. 652-674, 2022,
https://doi.org/10.1109/TIV.2022.3167103.

[12] F. Leon and M. Gavrilescu, “A Review of Tracking and Trajectory Prediction Methods for Autonomous
Driving,” Mathematics, vol. 9, no. 6, p. 660, 2021, https://doi.org/10.3390/math9060660.

[13] P. Kothari, S. Kreiss and A. Alahi, “Human Trajectory Forecasting in Crowds: A Deep Learning
Perspective,” in IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 7, pp. 7386-7400,
2022, https://doi.org/10.1109/TITS.2021.3069362.

[14] S. Wang, Z. Bao, J. S. Culpepper, and G. Cong, “A Survey on Trajectory Data Management, Analytics,
and Learning,” ACM Computing Survey, vol. 54, no. 2, pp. 1–36, 2021, https://doi.org/10.1145/3440207.

Yassine El Hafid (Autonomous Driving Model with Collision Prediction for Urban and Extra-Urban Environments)

https://doi.org/10.1016/j.matpr.2021.05.415
https://doi.org/10.1016/j.matpr.2021.05.415
https://doi.org/10.1109/JSYST.2021.3085479
https://doi.org/10.1109/JSYST.2021.3085479
https://doi.org/10.1049/iet-its.2020.0355
https://doi.org/10.1109/TITS.2022.3210276
https://doi.org/10.1109/ACCESS.2021.3125620
https://doi.org/10.1109/ACCESS.2021.3125620
https://doi.org/10.1016/j.engappai.2021.104406
https://doi.org/10.1007/s11370-020-00314-x
https://doi.org/10.1109/TITS.2021.3093548
https://doi.org/10.1109/TITS.2021.3093548
https://doi.org/10.1109/TITS.2022.3160932
https://doi.org/10.1109/TITS.2022.3160932
https://doi.org/10.3390/su132212467
https://doi.org/10.1109/TIV.2022.3167103
https://doi.org/10.3390/math9060660
https://doi.org/10.1109/TITS.2021.3069362
https://doi.org/10.1145/3440207


568 International Journal of Robotics and Control Systems
Vol. 5, No. 1, 2025, pp. 555-569

ISSN 2775-2658

[15] S. Capobianco, L. M. Millefiori, N. Forti, P. Braca and P. Willett, “Deep Learning Methods for Vessel
Trajectory Prediction Based on Recurrent Neural Networks,” in IEEE Transactions on Aerospace and
Electronic Systems, vol. 57, no. 6, pp. 4329-4346, 2021, https://doi.org/10.1109/TAES.2021.3096873.

[16] L. Lin, W. Li, H. Bi and L. Qin, “Vehicle Trajectory Prediction Using LSTMs With Spatial–Temporal
Attention Mechanisms,” in IEEE Intelligent Transportation Systems Magazine, vol. 14, no. 2, pp.
197-208, 2022, https:/ddoi.org/10.1109/MITS.2021.3049404.

[17] X. Song et al., “Pedestrian Trajectory Prediction Based on Deep Convolutional LSTM Network,”
in IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 6, pp. 3285-3302, 2021,
https:/doi.org/10.1109/TITS.2020.2981118.

[18] R. Quan, L. Zhu, Y. Wu and Y. Yang, “Holistic LSTM for Pedestrian Trajectory Prediction,” in IEEE
Transactions on Image Processing, vol. 30, pp. 3229-3239, 2021, https://doi.org/10.1109/TIP.2021.
3058599.

[19] C. Vishnu, V. Abhinav, D. Roy, C. K. Mohan and C. S. Babu, “Improving Multi-Agent Trajectory
Prediction Using Traffic States on Interactive Driving Scenarios,” in IEEE Robotics and Automation
Letters, vol. 8, no. 5, pp. 2708-2715, 2023, https://doi.org/10.1109/LRA.2023.3258685.

[20] S. Mozaffari, O. Y. Al-Jarrah, M. Dianati, P. Jennings and A. Mouzakitis, “Deep Learning-
Based Vehicle Behavior Prediction for Autonomous Driving Applications: A Review,” in
IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 1, pp. 33-47, 2022,
https://doi.org/10.1109/TITS.2020.3012034.

[21] R. Hajiloo, M. Abroshan, A. Khajepour, A. Kasaiezadeh and S. -K. Chen, “Integrated Steering
and Differential Braking for Emergency Collision Avoidance in Autonomous Vehicles,” in IEEE
Transactions on Intelligent Transportation Systems, vol. 22, no. 5, pp. 3167-3178, 2021,
https://doi.org/10.1109/TITS.2020.2984210.

[22] A. P. Carrone, J. Rich, C. A. Vandet, and K. An, “Autonomous vehicles in mixed motorway traffic:
capacity utilisation, impact and policy implications,” Transportation, vol. 48, no. 6, pp. 2907–2938,
2021, https://doi.org/10.1007/s11116-020-10154-4.

[23] C. Wang, X. Zhao, R. Fu, and Z. Li, “Research on the Comfort of Vehicle Passengers Considering the
Vehicle Motion State and Passenger Physiological Characteristics: Improving the Passenger Comfort of
Autonomous Vehicles,” International Journal of Environmental Research and Public Health, vol. 17,
no. 18, p. 6821, 2020, https://doi.org/10.3390/ijerph17186821.

[24] D. Parekh, N. Poddar, A. Rajpurkar, M. Chahal, N. Kumar, G. P. Joshi, and W. Cho, “A Review on
Autonomous Vehicles: Progress, Methods and Challenges,” Electronics, vol. 11, no. 14, p. 2162, 2022,
https://doi.org/10.3390/electronics11142162.

[25] Y. Li, Y. Cai, X. Sun, H. Wang, Y. Jia, Y. He, L. Chen, and Y. Chao, “Trajectory tracking of four-wheel
driving and steering autonomous vehicle under extreme obstacle avoidance condition,” Vehicle System
Dynamics, vol. 62, no. 3, pp. 601–622, 2024, https://doi.org/10.1080/00423114.2023.2186249.

[26] A. Boubakri and S. M. Gamar, “A New Architecture of Autonomous Vehicles: Redundant Architecture
to Improve Operational Safety,” International Journal of Robotics and Control Systems, vol. 1, no. 3, pp.
355–368, 2021, https://doi.org/10.31763/ijrcs.v1i3.437.

[27] W. Farag, M. Abouelela, and M. Helal, “Finding and Tracking Automobiles on Roads for Self-Driving
Car Systems,” International Journal of Robotics and Control Systems, vol. 3, no. 4, pp. 704–727, 2023,
https://doi.org/10.31763/ijrcs.v3i4.1022.

[28] M. H. Harun, S. S. Abdullah, M. S. M. Aras, M. B. Bahar, and F. Ali Ibrahim, “Recent Developments
and Future Prospects in Collision Avoidance Control for Unmanned Aerial Vehicles (UAVS): A Review,”
International Journal of Robotics and Control Systems, vol. 4, no. 3, pp. 1207–1242, Jul. 2024,
https://doi.org/10.31763/ijrcs.v4i3.1482.

[29] T. Feng, K. Liu, and C. Liang, “An Improved Cellular Automata Traffic Flow Model Considering
Driving Styles,” Sustainability, vol. 15, no. 2, p. 952, 2023, https://doi.org/10.3390/su15020952.

Yassine El Hafid (Autonomous Driving Model with Collision Prediction for Urban and Extra-Urban Environments)

https://doi.org/10.1109/TAES.2021.3096873
https:/ddoi.org/10.1109/MITS.2021.3049404
https:/doi.org/10.1109/TITS.2020.2981118
https://doi.org/10.1109/TIP.2021.3058599
https://doi.org/10.1109/TIP.2021.3058599
https://doi.org/10.1109/LRA.2023.3258685
https://doi.org/10.1109/TITS.2020.3012034
https://doi.org/10.1109/TITS.2020.2984210
https://doi.org/10.1007/s11116-020-10154-4
https://doi.org/10.3390/ijerph17186821
https://doi.org/10.3390/electronics11142162
https://doi.org/10.1080/00423114.2023.2186249
https://doi.org/10.31763/ijrcs.v1i3.437
https://doi.org/10.31763/ijrcs.v3i4.1022
https://doi.org/10.31763/ijrcs.v4i3.1482
https://doi.org/10.3390/su15020952


ISSN 2775-2658 International Journal of Robotics and Control Systems
Vol. 5, No. 1, 2025, pp. 555-569

569

[30] Y. E. Hafid, A. E. Rharras, M. Wahbi, and R. Saadane, “GPU optimized parallel implementation of
NaSch traffic model,” Proceedings of the Third International Conference on Computing and Wireless
Communication Systems, 2019, http://dx.doi.org/10.4108/eai.24-4-2019.2284233.

Yassine El Hafid (Autonomous Driving Model with Collision Prediction for Urban and Extra-Urban Environments)

http://dx.doi.org/10.4108/eai.24-4-2019.2284233

	Introduction
	Proposed Autonomous Vehicle Model
	Control Block
	Methodology Adopted for the Calculation in the Collision Estimator
	Definition and Convention

	Calculation Method in the Collision Estimator
	Case of Vehicles Following Each Other
	Case of Intersecting Trajectories
	Collision Estimator Algorithm
	Case of Two Vehicles Following Each Other
	Case of Two Vehicles Crossing Paths at an Intersection

	Results and Discussion
	Simulation 1: Case of Two Following Vehicles
	Simulation 2: Crossing Case with Dynamic Braking
	Limitations and Future Work

	Conclusion and Perspectives

