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1. Introduction 

A Magnetic Levitation System is characterized by the suspension of an object through the 

utilization of a magnetic field and the counteraction of gravitational force.  The application of 

the Maglev system is highly relevant in various engineering sectors, including the Maglev trains 

operating in high speed, wind tunnel levitation models, the use of contactless bearings, disease 

diagnostics, as well as in suspension and manipulation [1]-[5]. The extensive adoption of the Maglev 

system can be attributed to its ability to eliminate physical contact between moving and stationary 

components, effectively addressing friction issues and mitigating vibrations. Consequently, 
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 A magnetic levitation system (Maglev) is a sensitive, multi-parameter, 

nonlinear, and unstable system that is utilized to levitate a ferromagnetic 

object in free space. Due to its vast applications, various research studies 

in the field of control strategy have become extremely important and 

challenging. This work proposes the design of a nonlinear model predictive 

(NMPC) control scheme for the object position control against the 

nonlinearities and uncertainties of a Maglev system. A novel bio-inspired 

Artificial Protozoa Optimization (APO) algorithm is used to fine-tune the 
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objective cost function. The effective performance of the NMPC is verified 

using simulation-based results in MATLAB. The CasADi toolbox is 

utilized to solve nonlinear optimization problems and handle the 

nonlinearity of the Maglev system model. Simulations are implemented for 

three trajectories tracking (step, sine, and square) with 20% and without 

Maglev parameters perturbations. To prove the superiority of the proposed 

controller, comparisons are made with the conventional Linear Quadratic 

Regulator (LQR) and proportional-integral-derivative (PID) controllers. 

Two performance indices are introduced, Integral of Squared Error (ISE) 

and Integral of Absolute Error (IAE), to examine the tracking performances 

of the NMPC, LQR, and PID controller.  The NMPC controller has shown 

more efficient performance and accurate results than other controllers. The 
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the Maglev system provides several benefits, such as enabling operation in high vacuum 

environments, reducing noise levels, and offering a highly precise positioning system [6]. By 

leveraging the principles of electromagnetism, the Maglev system achieves the levitation of 

ferromagnetic objects at specific locations within the air space [7]-[10].  

The Maglev systems are categorized based on the nature of the magnetic forces, which can be 

either attractive or repulsive Maglev systems. Designing controllers for such systems is challenging 

due to their sensitivity, instability, nonlinearity, and the presence of uncertainties [11]. To cope with 

such issues, various research studies have been done on suitable control techniques to control the 

position of the levitated object of Maglev systems to enhance dynamic system response. 

Different linear and nonlinear controllers such as vision-based [12], [13] and PID be applied to 

control the Maglev system. However, it is challenging to determine the controllers’ parameters 

without an optimization method which makes the Maglev system stable. In [14], the Harris Hawks 

(HHO) optimizer-based PID controller is proposed for the unstable Maglev system. Both one Degree 

of Freedom (1DOF) and two Degrees of Freedom (2DOF) PID controllers are considered to enhance 

system performance. The research in [15] compares the response of conventional PID and PID-P 

controllers, focusing on transient response and steady-state details, while the tuning parameters of 

PID-P controller are optimized by both Particle swarm optimization (PSO) and Black window 

optimization (BWO) algorithms. However, using PID may not fully capture the complexities of the 

highly nonlinear nature of magnetic levitation systems. This is due to its sensitivity to parameter 

changes, tuning complexity, and nonlinear behavior of maglev systems. Linear Quadratic Regulator 

(LQR) control has been effectively applied to Maglev Systems. LQR with state feedback controller is 

introduced in [16] for position controlling of steel-ball. [17] introduces an Integral Linear Quadratic 

Regulator (ILQR) integrated with a proportional gain to achieve robust linearization control of a 

Maglev System, thereby guaranteeing stability and precise set-point tracking. The performance of 

the LQR controller is enhanced using PSO optimization in [18] minimizing the time of reaching the 

desired point. However, LQR relies heavily on an accurate model of the system with limited 

nonlinearity handling and may not work with constraints. Other linear controllers are frequently tested 

on a Maglev system such as sliding mode control (SMC) in [19]-[21]. However, chattering is a main 

drawback of the SMC effect resulting from discontinuous control. A fuzzy controller is utilized in 

[22]-[24]. Nevertheless, the limitation of fuzzy logic systems lies in the difficulty of optimizing fuzzy 

controls’ parameters, including the selection of membership function types and the number of rules. 

And linear MPC control strategy is used in [25]-[30]. However, linear controllers often struggle with 

uncertainties in system models. They may not adequately compensate for variations or unexpected 

changes in the system. Alongside these controllers, many optimization methods were crucial and 

implemented for tuning controllers’ parameters and finding optimal solution such as particle swarm 

optimization [31], manta ray foraging optimization [32], atom search optimization [33], and salp 

swarm algorithm [34]. 

To address these challenges, this paper proposes a nonlinear model predictive controller (NMPC) 

for the Maglev system due to its ability to cope with physical system constraints and multivariable 

interactions and provide a determinable quality of closed-loop behavior. MPC is a modern control 

technique that uses an internal model and the current measurements to predict the future behavior of 

the system [35]. MPC is capable of controlling all outputs simultaneously with consideration for input-

output interactions. The basic concept of MPC is to use an explicit model to predict the system's future 

behavior, and then continuously compute a set of control signals by utilizing an optimization algorithm 

that minimizes the difference between the desired reference trajectory and the predicted system 

trajectory within a predetermined time horizon [36]-[38]. The use of linearized models in MPC design 

to offer trajectory tracking or point stabilization for the Maglev system is discussed by the authors of 

the papers in [39], [40]. By using these methods, the control problem is reduced to a set of simple, 

fast, and dependable matrix algebra computations. The main disadvantage of using such linearized 

models for highly nonlinear plants close to an operational point is that they are not accurate enough 

for changed operating conditions. The insufficient accuracy of MPC with linearized models is 
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addressed by using nonlinear models in the control application, NMPC, however, this can raise 

computing costs [41]. 

To avoid this, the selection of NMPC parameters is critical to the design's effectiveness, 

particularly when applying NMPC to dynamic systems such as the Maglev system, as these 

parameters have a great impact on stability, reaction time, control effort, and computational load. The 

performance of NMPC is significantly influenced by its parameters, such as the prediction horizon 

(𝑁), time step ∆𝑇, tracking error weighting factor (Q), and control input weighting factor (𝑅). Using 

three reference trajectories (step, sine, and square), the NMPC scheme is evaluated in comparison to 

LQR and PID controllers. To provide a fair comparison, the NMPC, LQR, and PID controllers’ 

parameters are optimized using the artificial protozoa optimizer (APO). The APO optimization 

method, a bio-inspired metaheuristic optimization algorithm, is employed to deal with the complexity 

of manually tuning the controllers’ gains due to its nonlinearity. The APO imitates the survival 

mechanisms of protozoa behaviors such as foraging, dormancy, and reproduction to enhance 

optimization processes [42]. The importance of using the APO algorithm is because of its features 

such as the ability to manage nonlinear optimization problems, balanced exploration and exploitation 

which is crucial for improving solution quality over iterations, it outperforms many state-of-the-art 

algorithms, ease of implementation, and robustness in convergence. An evaluation of the proposed 

approach is conducted using a simulation that utilizes the Interior Point OPTimizer (IPOPT) solver 

[43] and the CasADi Toolbox [44]-[46] in MATLAB R2023a. The main contribution of this study is 

listed as follows: 

• A novel integration of APO with NMPC. 

• Introducing a novel engineering application of APO. 

• Inherent nonlinearities consideration of the Maglev system by designing an NMPC under 

constraints. 

• Improvement in system stability and transient response over traditional linear controllers under 

perturbation. 

NMPC is particularly well-suited for Maglev systems because of its ability to handle the system's 

inherent nonlinearities and the strict constraints required for safe and stable operation. Unlike 

traditional control methods such as PID or LQR, NMPC excels in managing dynamic uncertainties, 

such as fluctuating magnetic forces and changes in load or environmental conditions, by constantly 

updating its control strategy in real-time. As a result, NMPC not only enhances stability but also 

improves the overall safety and energy efficiency of Maglev systems, making it a more robust solution 

compared to conventional control approaches. 

The rest of this paper is organized as follows: Section 2 highlights the modeling of the Maglev 

system. Sections 2 illustrate the proposed controller with optimization method. Section 3 discusses 

the results of the simulation. Section 4 indicates the conclusion of this work by highlighting the future 

work. 

2. Methodology 

2.1. Mathematical Modeling of the Maglev System 

A Maglev system's schematic representation is displayed in Fig. 1. Using electromagnetic forces, 

Maglev can be characterized as the ability to levitate an object in the airspace without contact with a 

solid substance. State equations derived from fundamental physical laws for a ball (sphere) motion in 

an electromagnetic field can characterize the nonlinear physical model of the Maglev. 

𝑇 =
1

2
𝑚𝑥̇2

1

2
𝐿(𝑥)𝑞̇2 +
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2
∫ 𝑅
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where 𝑢Is the voltage, 𝐼 = 𝑞̇ is the coil's current, 𝑅 is the coil's resistance, 𝑞 is the electric charge, and 

𝑚 is the ball's mass. Additionally, 𝑔 is the gravitational constant, 𝑥 indicates the ball's distance from 

the electromagnet, and 𝐿(𝑥) is a function that defines the coil inductance's dependency on 𝑥. The 

Lagrangian equations must be satisfied by the variables 𝑞(𝑡)  and 𝑥(𝑡): 

𝑑

𝑑𝑡
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−
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= 0 and 
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According to Newton's second law, the equation (1) gives the electromagnetic force as: 

𝐹(𝑥, 𝐼) =
1

2

𝑑𝐿

𝑑𝑥
𝐼2 

Polynomial or exponential functions can be used to approximate the coil inductance's dependence 

on distance: 

𝐿(𝑥) = 𝐿0 + 𝐿1𝑒−𝑎𝑥      𝑎 > 0 

(3) 
𝐿(𝑥) = 𝐿0 +

1

𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥1 + 𝑎0
 

𝑛 ≥ 1,  𝑎0, . . . , 𝑎𝑛 ∈ 𝑅 

  

Fig. 1. Magnetic levitation system 

Ball dynamics and electromagnetic forces are described using the Lagrange function, which is 

the difference between kinetic and potential energy and may be expressed as: 

The exponential term of (3) is used by having: 

𝑑𝐿

𝑑𝑥
= −𝑎𝐿1𝑒−𝑎𝑥 (4) 

where a ≈
1

FemP2
, L1 ≈ FemP1 and 

dL

dx
≈ −

FemP1

FemP2
e

−(
x1

FemP2
)
. 

The approximation obtained by experimentation simplifies the equation (2) into: 
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𝑑𝐼

𝑑𝑡
= −

1

𝑓(𝑥)
(𝑘𝑢 + 𝑐 − 𝐼) (5) 

Where 𝑓(𝑥)  has the same structure as equation (4). By combining (1), (2), (4), and (5), introducing 

state variables as follows: 

𝑥1 = 𝑥 is the ball position 

𝑥2 = 𝑥 ̇ is the ball velocity 

𝑥3 = 𝐼 is the current of the coil 

The augmented state vector is written as: 

𝐱 = [𝑥1, 𝑥2, 𝑥3] ∈ ℝ3 

With slightly different notation, the following is the formulation of the resulting nonlinear 

mathematical model: 

𝑥1̇ = 𝑥 ̇  

𝑥2̇ = −
𝐹𝑒𝑚1

2𝑚
+ 𝑔 

𝑥3̇ =
1

𝑓𝑖(𝑥𝑖)
(𝑘𝑖𝑢 + 𝑐𝑖 − 𝐼) 

(6) 

where  𝐹𝑒𝑚1 = 𝐼2 𝐹𝑒𝑚𝑃1

𝐹𝑒𝑚𝑃2
𝑒

−(
𝑥

𝐹𝑒𝑚𝑃2
)
, and 𝑓𝑖(𝑥𝑖) =

𝑓𝑖𝑃1

𝑓𝑖𝑃2
𝑒

−(
𝑥

𝑓𝑖𝑃2
)
. 

The reference state vector 𝐱𝑟 = [𝑥𝑟 𝑥̇𝑟 𝐼𝑟]𝑇 ∈ ℝ3 

The output vector of the Maglev system is the ball position: 

𝐲 = [𝑥] ∈ ℝ1 

All parameters are summarized in Table 1. Table 1 lists the considered Maglev values for 𝐹𝑒𝑚𝑃1, 

𝐹𝑒𝑚𝑃2, 𝑓𝑖𝑃1, 𝑓𝑖𝑃2, 𝑘𝑖, and 𝑐𝑖. These values are particular to the concrete coil and are inherent plant 

factors. More details can be seen in [47], [48].  

Having formulated the system’s mathematical foundation, the NMPC will be designed next to 

address the specific control challenges. 

2.2. Nonlinear Model Predictive Control (NMPC) Design 

NMPC refers to an MPC controller that utilizes Maglev nonlinear mathematical models for 

prediction and considering both non-quadratic cost functionals and nonlinear constraints on the 

process variables [49]. With this prediction feature, optimum control problems can be solved online 

under limitations on the states, outputs, and inputs. In this context, through a finite horizon, the control 

input and the error between the reference and the output of the ball position of the Maglev system are 

minimized. An optimum control sequence is created by the optimization process, in which the system 

only takes input from the first element in the sequence. Consequently, after shifting the horizon, the 

same optimization process is repeated at the next sample interval. This procedure known as Receding 

Horizon Control (RHC) is mostly utilized for compensating for unmeasurable disturbances and 

modeling errors that cause the system outputs to vary from the predictions of the nonlinear model. 

The following nonlinear differential equation describes a class of systems for which the stabilization 

problem is considered: 

𝐱̇(𝑡) = 𝒇(𝐱(𝑡), 𝐮(𝑡)) ,  𝐱(0) = 𝐱0 (7) 

Where The vector field 𝒇: ℝ3 × ℝ1 → ℝ3 is continuous and satisfies 𝒇(𝟎, 𝟎) = 𝟎. 𝐱(𝑡) ∈ 𝒳 ⊆ ℝ3 

and 𝐮(𝑡) ∈ 𝒰 ⊆ ℝ1 denotes the vector of states and inputs, respectively. 
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Table 1.  Maglev parameters values 

Name Parameters Values Units 
Mass of the ball 𝑚 0.02855 𝐾𝑔 

Gravitational constant 𝑔 9.8100 𝑚/𝑠2 

Electromagnetic force generated by coil 1 𝐹𝑒𝑚𝑃1 1.7521 × 10−2 𝐻 

Electromagnetic force generated by coil 2 𝐹𝑒𝑚𝑃2 5.8231 × 10−3 𝑚 

Maglev constant 𝑓𝑖𝑃1 1.4142 × 10−4 𝑚. 𝑠 

Maglev constant 𝑓𝑖𝑃2 4.5626 × 10−3 𝑚 

Control voltage to coil current gain 𝑘𝑖 2.5165 𝐴/𝑉 

Maglev Constant 𝑐𝑖  0.0243 𝐴 

Upper position bound 𝑥𝑀𝐴𝑋 0.0200 𝑚 

Minimum coil current 𝐼𝑀𝐼𝑁 0.0388 𝐴 

Maximum coil current 𝐼𝑀𝐴𝑋 2.345 𝐴 

Minimum Voltage level of control input 𝑈𝑀𝐼𝑁 0.0 𝑉 

Maximum Voltage level of control input 𝑈𝑀𝐴𝑋 5.0 𝑉 

 

The controller aims to calculate a proper control input 𝐮∗(𝑡) to bring the nonlinear system (7) to 

the equilibrium point: 

The state error vector 𝐱𝑒(𝑡) = 𝐱𝑟 −  𝐱 =  𝟎 

The input error vector 𝐮𝑒(𝑡) = 𝐮𝑟 − 𝐮 =  𝟎 

Minimizing the objective cost function (𝐽) through a prediction horizon (𝑇𝑝) As followed in (8) [50]: 

𝐽(𝑡, 𝐱𝑒(𝑡), 𝐮𝑒(𝑡)) = ∫ 𝐱𝑒
𝑇(𝜏)𝑄𝐱𝑒(𝜏) + 𝐮𝑒

𝑇(𝜏)𝑅𝐮𝑒(𝜏)
𝑡+𝑇𝑝

𝑡

+
1

2
𝐱𝑒

𝑇(𝑡 + 𝑇𝑝)𝑃𝐱𝑒(𝑡 + 𝑇𝑝) (8) 

Where, (𝐱𝑒
𝑇(𝜏)𝑄𝐱𝑒(𝜏) + 𝐮𝑒

𝑇(𝜏)𝑅𝐮𝑒(𝜏)) the integration of the cost function over 𝑇𝑝 and (
1

2
𝐱𝑒

𝑇(𝑡 +

𝑇𝑝)𝑃𝐱𝑒(𝑡 + 𝑇𝑝)) is the terminal penalty which is evaluated at the final step of the optimization 

horizon. The 𝑄 , 𝑅 and 𝑃 represent the positive definite symmetric weight matrices. To track 

trajectory, the NMPC optimal control problem at time (𝑡) Can be described mathematically as follows: 

Find, 

min
𝐮∗

 𝐽(𝑡, 𝐱𝑒(𝑡), 𝐮𝑒(𝑡) ) 

Subject to, 

𝐱̇(𝑡) = 𝑓(𝐱(𝑡), 𝐮(𝑡)) 

𝐱(𝑡) ∈ 𝑋, (𝜏 ∈ [𝑡, 𝑡 + 𝑇𝑝)]) 

𝐮(𝑡) ∈ 𝑈, (𝜏 ∈ [𝑡, 𝑡 + 𝑇𝑝)]) 

The admissible state and control sets are identified here by the sets 𝑋 ∈ ℝ3 and 𝑈 ∈ ℝ1 as 

bounded by the following constraints. Operating under several physical bounds is a feature of any 

realistic system given by set constraints of the following: 

𝑥min ≤ 𝑥 ≤ 𝑥max 

𝐼min ≤ 𝐼 ≤ 𝐼max 

𝑈min ≤ 𝑢 ≤ 𝑈max 

The ball position state constraint is referred to by the sets (𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥), and the Maglev current 

saturation limit indicated by (𝐼𝑚𝑖𝑛, 𝐼𝑚𝑎𝑥) while the input voltage control constraint is described by 
(𝑈𝑚𝑖𝑛, 𝑈𝑚𝑎𝑥).  
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The controller aims to calculate an appropriate command input, 𝑢(𝑘), to make the system 

formulation operate at the equilibrium position denoted by 𝑢𝑒(𝑘) = 0, 𝑥𝑒(𝑘) = 0. It was 

demonstrated that the stability of predictive control was proven by using terminal penalty and 

constraints [51], [52] as follows: 

• A continuous running cost function is considered with 𝑓(0,0) = 0 and 𝑓(𝐱𝑒 , 𝐮𝑒) > 0. 

• Assume that the open-loop optimization problem has a definite solution at time 𝑡 = 0, and that 

the reference control commands are constrained. i.e., 𝑢𝑟 < 𝑈𝑚𝑎𝑥. 

• It is assumed that 𝑃(∙) is a continuous, differential function that meets 𝑃(𝟎) = 0,  and 𝑃(𝐱𝑒) >
0 for all 𝐱𝑒 ≠ 0. 

• There is a terminal-state controller 𝐮𝑒
L that meets the requirements below: 

𝑃̇(𝐱𝑒) + 𝑓(𝐱𝑒 , 𝐮𝑒) ≤ 0, ∀𝐱𝑒 ∈ Ω 

Where the terminal-state region is denoted by Ω. Then, using the aforementioned NMPC technique, 

the asymptotic stability of the closed-loop system is guaranteed.  

Even if 𝑃 and the 𝛺 constraint guarantees the stability of the NMPC, for real-time 

implementation, the constrained nonlinear optimization's computation time continues to be an issue. 

If an optimal solution exists, it might not be found in the limited period of time available for control. 

The stability analysis described above can be done without the optimal control profile, as in [53]. Any 

practical control profile has the potential to yield stability. It suggests that a stable closed control can 

be achieved by finding a feasible solution to the optimization problem. Therefore, optimization is 

completed if the best solution is found in the limited number of optimization stages.  

A significant issue with using NMPC in real-time systems is not just stability but also 

computation. To address this issue, a control profile is created by the NMPC for each optimization 

step in this work. Only the first control signal from the control profile is received by the Maglev; all 

subsequent control signals are ignored. In the next step, the controller should solve again the 

constrained nonlinear optimization problem. But for the current optimal solution, the prior control 

profile provides a positive "hot start" or first solution. The optimization computation minimizes time 

when "hot start" is used. Additionally, using the shortest predictive control horizon possible can 

minimize the computation for real-time applications [54]. To further enhance adaptability, the APO 

is integrated to refine the predictive performance of the NMPC framework in the next section. 

2.3. Optimization of the NMPC Parameters 

It is important to correctly choose the values of the NMPC parameters, specifically, 𝑁, 𝑅, 𝑄, and 

𝑇𝑝 which critical role in determining the characteristics of the system's response. Understanding these 

parameters is crucial to obtain a better system response. Large values of 𝑁 provide a larger horizon, 

which generates more accurate forecasts and enhances control. However, it leads to increased 

computing burden which restricts the control from updating. As 𝑅 increases, the controller becomes 

tighter, resulting in slower reactions. Due to controllers’ overacting. The weighting matrices 𝑄 and 𝑅 

play a key role in balancing the trade-off between the system's performance (e.g., tracking error) and 

the control effort. Tuning these parameters plays a vital role in obtaining the best controller’s response, 

therefore, APO is introduced in the following section. 

2.4. Artificial Protozoa Optimizer (APO) 

Inspired by the natural protozoa, APO, which is a metaheuristic algorithm, has been designed for 

engineering optimization. Within the flagellates, the representative euglena is referred to as the 

protozoa. The APO models the Euglena survival mechanisms, emulating their foraging, dormancy, 

and reproductive behaviors. This biological inspiration is foundational to the algorithm's design. In 

the mathematical model, the solution set is represented by the protozoa, each protozoan has an address 

consisting of several decision variables (𝑑𝑖𝑚). Three behaviors simulate the survival mechanisms of 
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protozoa, the first is a foraging behavior which is composed of autotrophic mode and heterotrophic 

mode. 

When the protozoan is exposed to high light levels in the autotrophic mode, it travels toward a 

location with lower light intensity of the 𝑗th protozoan. This is mathematically modeled by: 

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝑓 ⋅ (𝑋𝑗 − 𝑋𝑖 +

1

𝑛𝑝
⋅ ∑  

𝑛𝑝

𝑘=1

𝑤𝑎 ⋅ (𝑋𝑘− − 𝑋𝑘+)) ⊙ 𝑀𝑓 (9) 

𝑋𝑖 = [𝑥𝑖
1, 𝑥𝑖

2, … , 𝑥𝑖
𝑑𝑖𝑚], 𝑋𝑖 = 𝑠𝑜𝑟𝑡(𝑋𝑖) (10) 

𝑓 = 𝑟𝑎𝑛𝑑 ⋅ (1 + cos (
𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
⋅ 𝜋)) (11) 

𝑛𝑝𝑚𝑎𝑥 = ⌊
𝑝𝑠 − 1

2
⌋ (12) 

𝑤𝑎 = 𝑒
−|

𝑓(𝑋𝑘−)
𝑓(𝑋𝑘+)+𝑒𝑝𝑠|

 (13) 

𝑀𝑓[𝑑𝑖] = {
1,  if 𝑑𝑖 is in 𝑟𝑎𝑛𝑑perm(𝑑im, ⌈𝑑im ⋅

𝑖

𝑝𝑠
⌉)

0,  otherwise

 (14) 

where 𝑋𝑖
𝑛𝑒𝑤 and 𝑋𝑖 indicate the updated and original location of the 𝑖th protozoan, respectively. 𝑋𝑗 is 

the randomly 𝑗th protozoan selection. A randomly chosen protozoan selection in the kth paired 

neighbor whose rank index is less than 𝑖 is indicated by the symbol 𝑋𝑘 −. Specifically, if 𝑋𝑖 is 𝑋1, 

𝑋𝑘− is also set as 𝑋1. 𝑋𝑘+ refer to a randomly chosen protozoan in the 𝑘th paired neighbor, and its 

rank index is greater than 𝑖. Especially, if 𝑋𝑖 is 𝑋𝑛s, 𝑋𝑘+ is also set to 𝑋𝑛s, where 𝑝s is the size of 

population, 𝑓 stands for a foraging factor, 𝑟𝑎𝑛𝑑 represents random values in the [0,1] interval. 𝑖𝑡𝑒𝑟 

and 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 stand for the current and maximum iterations, respectively. 𝑛𝑝 denotes the number of 

neighbor pairs, and 𝑛𝑝𝑚𝑎𝑥 is the maximum number of 𝑛𝑝. 𝑤𝑎 is the autotrophic mode weight factor 

in with 𝑒𝑝𝑠 (2.2204𝑒 − 16). A mapping vector (𝑀𝑓) for foraging has a dimension of (1 × 𝑑𝑖𝑚), 

which each element is either 0 or 1. 𝑑𝑖 represents the dimensional index 𝑑𝑖 ∈ {1,2, … , 𝑑𝑖𝑚}. 

Then, in heterotrophic mode, a protozoan can absorb nutrients from its surroundings in the dark. 

This is can be modeled as a 𝑋𝑛𝑒𝑎𝑟 is a nearby food-rich position, and: 

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝑓 ⋅ (𝑋𝑛𝑒𝑎𝑟 − 𝑋𝑖 +

1

𝑛𝑝
⋅ ∑  

𝑛𝑝

𝑘=1

𝑤ℎ ⋅ (𝑋𝑖−𝑘 − 𝑋𝑖+𝑘)) ⊙ 𝑀𝑓 (15) 

𝑋𝑛𝑒𝑎𝑟 = (1 ± 𝑅𝑎𝑛𝑑 ⋅ (1 −
𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
)) ⊙ 𝑋𝑖  (16) 

𝑤ℎ = 𝑒
−|

𝑓(𝑋𝑖−𝑘)
𝑓(𝑋𝑖+𝑘)+𝑒𝑝𝑠|

 (17) 

𝑅𝑎𝑛𝑑 = [𝑟𝑎𝑛𝑑1, 𝑟𝑎𝑛𝑑2, … , 𝑟𝑎𝑛𝑑𝑑𝑖𝑚] (18) 

The second behavior is dormant behavior.  Dormant behavior is a survival strategy used by 

protozoans to resist stressful environmental conditions. The dormancy mathematical model is as 

follows: 
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𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑚𝑖𝑛 + 𝑅𝑎𝑛𝑑 ⊙ (𝑋max − 𝑋min) (19) 

𝑋𝑚𝑖𝑛 = [𝑙𝑏1, 𝑙𝑏2, … , 𝑙𝑏𝑑𝑖𝑚], 𝑋𝑚𝑎𝑥 = [𝑢𝑏1, 𝑢𝑏2, … , 𝑢𝑏𝑑𝑖𝑚] (20) 

where 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 denote the upper and lower bound vectors. 𝑙𝑏𝑑𝑖 and 𝑢𝑏𝑑𝑖 represent the upper 

and lower bounds of the 𝑑𝑖th variable. 

Reproduction is the last behavior; when the protozoans are of a suitable age and health. They 

reproduce asexually by a process called binary fission. The following is the reproduction mathematical 

model: 

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 ± 𝑟𝑎𝑛𝑑 ⋅ (𝑋𝑚𝑖𝑛 + 𝑅𝑎𝑛𝑑 ⊙ (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)) ⊙ 𝑀𝑟 (21) 

𝑀𝑟[𝑑𝑖] = {
1,  if 𝑑𝑖 is in 𝑟𝑎𝑛𝑑perm(𝑑𝑖𝑚, ⌈𝑑𝑖𝑚 ⋅ 𝑟𝑎𝑛𝑑⌉)  
0,  otherwise  

 (22) 

Where 𝑀𝑟 is a mapping vector in the reproduction process, whose size is (1 × 𝑑𝑖𝑚), and each element 

is 0 or 1. 

Algorithm 1: APO 

Input: Initialize parameters 𝑝𝑠, 𝑑𝑖𝑚, 𝑛𝑝, 𝑝𝑓𝑚𝑎𝑥, and 𝑀𝑎𝑥𝐹𝐸𝑠 (maximum function evaluations). 

Output: The global optima 𝑋𝑔𝑏𝑒𝑠𝑡 and 𝑓(𝑋gbest). 

1: while 𝐹𝐸𝑠 < 𝑀𝑎𝑥𝐹𝐸𝑠 do 

2:  sort(𝑋𝑖),  𝑖 = 1, 2, … , 𝑝𝑠; 

3:  𝑝𝑓 = 𝑝𝑓𝑚𝑎𝑥 ⋅ 𝑟𝑎𝑛𝑑; // proportion fraction; 

4:  𝑫𝒓𝒊𝑛𝑑𝑒𝑥 = 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚(𝑝𝑠, [𝑝𝑠 · 𝑝𝑓]); // index vector of dormancy and reproduction 

5: for 𝑖 = 1: 𝑝𝑠 do 

6:      𝐢𝐟 𝑖 is in 𝐷𝑟𝑖𝑛𝑑𝑒𝑥 then 

7:            𝐢𝐟𝑝𝑑𝑟
> 𝑟𝑎𝑛𝑑 then 

8:                Calculate 𝑋𝑖
𝑛𝑒𝑤 using Eq. (19); // dormancy 

9:            else 

10:                    𝑀𝑟 = 𝑧𝑒𝑟𝑜𝑠(1, 𝑑𝑖𝑚); 
11:                    𝑀𝑟[1,rand perm(𝑑𝑖𝑚, ⌈𝑑𝑖𝑚 ⋅ rand⌉)] = 1; 
12:                 Calculate 𝑋𝑖

𝑛𝑒𝑤 using Eq. (21); // reproduction 

13:            end if 

14:       else 

15:             𝑀𝑓 = 𝑧𝑒𝑟𝑜𝑠(1, 𝑑𝑖𝑚); 

16:             𝑀𝑓 [1, 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚 (𝑑𝑖𝑚, ⌈𝑑𝑖𝑚 ⋅
𝑖

𝑝𝑠
⌉)] = 1 

17:             if 𝑝𝑎ℎ > 𝑟𝑎𝑛𝑑 then 

18:                 Calculate 𝑋𝑖
𝑛𝑒𝑤 using Eq. (9); // foraging in an autotroph 

19:           else 

20:               Calculate 𝑋𝑖
𝑛𝑒𝑤 using Eq. (15); // foraging in an heterotroph 

21:           end if 

22:      end if 

23:       𝐢𝐟 𝑓(𝑋𝑖
пew ) < 𝑓(𝑋𝑖) then 

24:           𝑋𝑖 ← 𝑋𝑖
пеш; 

25:      else 

26:          𝑋𝑖 ← 𝑋𝑖; 
27:      end if 

28: end for 

29: 𝑋𝑔best = 𝑜𝑝𝑡{𝑋𝑖}; 

30: 𝐹𝐸𝑠 ← 𝐹𝐸𝑠 + 𝑝𝑠; 
31: end while 

 

The APO algorithm can be analyzed in two stages. The initialization of the population is the first 

stage, using Latin hypercube sampling and random sampling as the primary methods. Traditional 

random sampling is utilized in this proposed algorithm. Then, the fitness value of each potential 

solution is assessed after the initial population has been created. In the second stage, the population is 
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searched for iteratively over three phases. The first step in the iterative search process, known as the 

guiding mechanism, solves the issue of choosing suitable solutions from the population to be used as 

search space reference points using an ordinal selection technique. The second phase is the search 

operators, which imitate the distinct behavior of natural populations. The last phase is the update 

mechanism, which prepares the candidate solutions, and the new population for searching new 

generation using the fitness value-based method. The framework of APO is shown in Fig. 2. The 

pseudo-code of the APO algorithm is detailed below [42]: 

 

Fig. 2. The flowchart of APO 

More details and comparative analysis with other optimization techniques in [42] for validation 

of the effectiveness of the APO.  

3. Results and Discussion 

In this section, the validation of the proposed NMPC controller of the Maglev system is 

conducted by simulation using MATLAB 2023b. The CasADi toolbox, employing an IPORT solver, 

is utilized to cope with the nonlinear system model in (6). To integrate the states of the Maglev system 
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in the model (6), The Runge-Kutta fourth (RK4) order method is employed with max number of 

iterations sets at 1000 and the IPOPT convergence criterion is kept at 10−8.  The optimal control 

problem, which is specified in the CasADi toolbox, is solved using the IPOPT solver for nonlinear 

programming, integrated with the multiple shooting method for state integration. All the results are 

simulated on a personal computer with Core i7 1.80GHz CPU and 16G RAM. The Maglev system 

parameters are summarized in Table 1. The Maglev states' initial conditions are 𝑥(0) =

[0.004𝑚, 0
𝑚

𝑠
, 0.608𝐴]𝑇. 

To verify the effectiveness of the proposed NMPC controller and the improvement in the 

robustness of the system under uncertainties, comparison to both LQR and PID controllers due to their 

broadly employed in controlling a Maglev system. These comparative simulation studies are 

conducted according to two main simulation scenarios. The first scenario studies the NMPC compared 

to LQR and PID according to the Maglev parameters in Table 1 without perturbation. Uncertainties 

in system parameter values can significantly impact the control design. To ensure that the controller 

can work properly, the design should consider these uncertainties. Therefore, the second scenario 

measures the robustness of the NMPC in comparison with LQR and PID and indicates its proficiency 

to handle the 20% perturbation of Maglev parameters uncertainties. For each scenario, comparative 

simulation studies based on (step, sinusoidal, and square) reference trajectories are investigated. These 

equations represent these three trajectories:  

For step:  𝑥𝑟(𝑡) = 0.009𝑚 

For sinusoidal:   𝑥𝑟(𝑡) = 0.001 sin(0.6𝜋𝑡) + 0.009 

For square:   𝑥𝑟(𝑡) = 0.001 square(0.6𝜋𝑡) + 0.009 

To guarantee a fair comparison, the APO optimization algorithm is utilized to tune the NMPC, 

LQR, and PID parameters. It runs in several iterations to minimize the cost function of each controller 

with different bounds. It is also crucial to select the proper cost function or performance indices that 

affect the APO speed in determining an optimal solution for best system performance. Two 

performance indexes are used in this paper namely Integral of Absolute Error (IAE) and Integral of 

Squared Error (ISE). IAE is defined as ∫ |𝒆(𝒕)|𝒅𝒕
𝒕𝟐

𝒕𝟏
 while ISE is defined as ∫ 𝒆(𝒕)𝟐𝒅𝒕

𝒕𝟐

𝒕𝟏
, where 𝒆(𝒕) 

is the ball position error, and 𝒕 is the interval of 𝑡1, 𝑡2 ∈ 0, 3 for step reference trajectory and 𝑡1, 𝑡2 ∈
0, 10 for both sinusoidal and square reference trajectories. Due to the nonlinearity of the Maglev 

system, the potential of multi-local optimal is considerable which increases the difficulty of selecting 

the proper APO parameters. These parameters, such as the maximum iteration, population size, and 

bounds, have a significant impact on the rate of obtaining the optimal solution. The identification of 

the APO parameters is dependent on personal experience and trial and error as this is a novel 

application of APO optimization. Consequently, the APO parameters are set to 50 and 30 for max 

number of iterations and the population size respectively. In terms of upper and lower bounds, Table 

2 shows the bounds for the NMPC, LQR, and PID. 

Table 2.  Upper and Lower bounds of the tuned parameters 

Controller The bounds of the tuned gains Values 

NMPC 
𝑋𝑚𝑖𝑛 = [𝑄1,1, 𝑄2,2, 𝑄3,3, 𝑅, 𝑇𝑃 , 𝑁] [1e7,10,10,1,0.001,0] 

𝑋𝑀𝑎𝑥 = [𝑄1,1, 𝑄2,2, 𝑄3,3, 𝑅, 𝑇𝑃 , 𝑁] [1e12,1e4,1e4,25,0.003,40] 

LQR 
𝑋𝑚𝑖𝑛 = [𝑘1, 𝑘2, 𝑘3] [0,0,0,0.01] 

𝑋𝑀𝑎𝑥 = [𝑘1, 𝑘2, 𝑘3] [1000,1000,1000,100] 

PID 
𝑋𝑚𝑖𝑛 = [𝑘𝑝, 𝑘𝑖 , 𝑘𝑑] [0,0,0,0.01] 

𝑋𝑀𝑎𝑥 = [𝑘𝑝, 𝑘𝑖 , 𝑘𝑑] [100,100,100,10] 

 

All the aforementioned APO parameters are utilized to optimize the controllers’ gains, Table 3 

demonstrates NMPC, LQR, and PID best-tuned gains.  
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3.1. The First Scenario: Tracking Performance Without Perturbation 

In this scenario, the three aforementioned trajectories are used to examine the controllers’ 

performance of reference trajectory tracking without any perturbation in Maglev parameters. For the 

step reference trajectory, the LQR shows a slightly shorter rise time versus NMPC and PID of 46𝑚𝑠, 

57.1𝑚𝑠, and 57.5𝑚𝑠 respectively. However, NMPC shows fast convergence to the reference step 

trajectory with no overshoot and short settling time. It effectively minimizes the steady-state error 

after a short transient response, leading to better tracking as shown in Fig. 3. PID has a larger overshoot 

and slower settling time, indicating that it cannot handle sharp transitions such as step inputs as 

effectively as NMPC. Regarding the NMPC computational efficiency, the average computing time is 

0.039 𝑠𝑒𝑐. 

Table 3.  Controllers’ tuned parameters values 

Controller Parameter Value 

NMPC 

𝑄 [
8.3964𝑒11 0 0

0 2.7590𝑒03 0
0 0 246.7660

] 

𝑁 10 

𝑅 1.5426 

𝑇𝑝 1.0000e-3 

LQR [𝑘1, 𝑘2, 𝑘3] [329.0246, 5.7941, 0.8931] 

PID [𝑘𝑝, 𝑘𝑖 , 𝑘𝑑] [1.5989e3, 2000, 40.9427] 

 

In the same context, the NMPC tracking performance is more efficient at tracking more 

challenging trajectories such as sine and square reference trajectories. Concerning sine reference 

trajectory with amplitude of 0.001 𝑟𝑎𝑑 and frequency of 0.3 𝐻𝑧 for period of 10 𝑠𝑒𝑐, the NMPC in 

Fig. 4 demonstrates a better tracking to the reference sin trajectory than other controllers. As observed 

in Fig. 4, the NMPC provides smoother and more accurate tracking of the sine wave, with minimal 

deviation (steady state error between the reference and the measured position. The PID controller also 

demonstrates good performance, but it slightly lags in terms of error minimization compared to 

NMPC. LQR demonstrates the worst performance among the three controllers, with significant 

overshoot and a clear inability to track the reference precisely. is very large in LQR than PID and 

NMPC while NPMC offers too smaller deviation than others, especially in rising and falling intervals.  

 

Fig. 3. Step trajectory tracking response without perturbation 
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The most challenging trajectory is square. With the same amplitude and frequency of sine 

trajectory for a period of 10 𝑠𝑒𝑐, the NMPC controller has clear superiority in following the square 

wave trajectory, showing minimal overshoot and fast convergence to the reference in comparison with 

LQR and PID, especially in rising and falling periods as shown in Fig. 5. The NMPC is capable of 

handling sudden changes in the trajectory, demonstrating its predictive ability to cope with 

nonlinearities and unexpected transitions. 0.041 𝑠𝑒𝑐 and 0.063 𝑠𝑒𝑐 are the average computed time of 

the NMPC computational efficiency for both Sine and square trajectories respectively. For all three 

trajectories, the NMPC controller adapts well to the nonlinear dynamics of the magnetic levitation 

system.  

 

Fig. 4. Sine trajectory tracking response without perturbation 

 

Fig. 5. Square trajectory tracking response without perturbation 

3.2. The Second Scenario: Robustness Validation in the Presence of Perturbation 

In this scenario, the three trajectories are applied to the Maglev system with the parameters 

perturbation. The values of Maglev parameters including 𝑓𝑒𝑚𝑃1,𝑓𝑒𝑚𝑃2, 𝑓𝑃1, 𝑓𝑃2, 𝑘, 𝑐 are changed by 

20% to evaluate the controllers’ robustness performance. In Fig. 6, Fig. 7, Fig. 8, the LQR cannot 
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follow the trajectories due to its sensitivity to any change in the system, the effectiveness of its 

performance significantly depends on the precise system model. In contrast, PID provides better 

tracking trajectories and a better rise time of 49.4 𝑚𝑠 for step tracking, but it still has an overshoot 

and larger deviation than NMPC. 

However, the NMPC controller shows more efficient tracking performance and its ability to 

handle nonlinearity and constraints makes it the most robust in the presence of perturbations, 

providing a smoother and more accurate control response compared to other controllers. In Fig. 6, the 

NMPC offers 57 𝑚𝑠 rise time with no overshoot and deviation for step trajectory. In Fig. 7, better 

tracking has shown with smaller steady-state error than other controllers, particularly in rising and 

falling intervals. The most challenging case is in Fig. 8, the NMPC provides superior tracking for 

reference square trajectories with no deviation of 64.9 𝑚𝑠 as an average computed time. The average 

calculated time of the NMPC for step, sine, and square trajectories is 0.040 𝑠𝑒𝑐, 0.0414 𝑠𝑒𝑐, and 

0.0649 𝑠𝑒𝑐 respectively.  

 

Fig. 6. Step trajectory tracking response with perturbation 

 

Fig. 7. Sin trajectory tracking response with perturbation 
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Fig. 8. Square trajectory tracking response with perturbation 

3.3. Tracking Performance Indices 

The comparative study of this work is also supported by Table 4 and Table 5 which consist of 

numerical values of assessing the NMPC, LQR, and PID controllers’ effort. Two performance indices, 

including ISE and IAE, are indicated for controllers’ evaluation. Table 4 highlights the values of the 

ISE of the NMPC, LQR, and PID for all three trajectories with and without perturbations. The NMPC 

demonstrates superior performance with lower ISE values across all input types (Sine, Square, and 

Step) with minimal divergence compared with LQR and PID. Even under perturbation, NMPC still 

maintains relatively low ISE values across all inputs, showing robustness against external 

disturbances. In the same context, Table 5 demonstrates the raw numbers of the IAE which indicates 

that NMPC has the smallest IAE compared with other controllers.  In other words, IAE illustrates that 

NMPC reduces the total accumulated error over time including steady-state error with minimal 

oscillation. The NMPC shows only a slight increase in IAE with perturbation, particularly for Square 

and Step inputs, indicating good robustness. For both tables, PID also shows good performance in 

following the three reference trajectories but it still needs to be improved, while the worst performance 

was for LQR. This analysis highlights NMPC's strengths in handling nonlinearities and disturbances 

in Maglev systems, emphasizing its suitability as a control strategy in applications with similar 

dynamic challenges. 

Table 4.  ISE performance numerical values 

Controller 
𝑰𝑺𝑬 = ∫ 𝒆(𝒕)𝟐𝒅𝒕

𝒕𝟐

𝒕𝟏

 

Sine Square Step 

Without perturbation 

NMPC 2.6352e-6 1.1291e-4 1.5691e-7 

LQR 2.3967e-4 2.9451e-2 5.9171e-7 

PID 5.2016e-6 7.2945e-4 6.6726e-5 

With (20%) perturbation 

NMPC 2.7463e-6 1.1558e-4 1.6894e-7 

LQR 4.4458e-2 3.9310e-1 3.9863e-2 

PID 7.8991e-6 9.2426e-4 1.8810e-6 

 

However, NMPC with APO is computationally intensive, which can be a challenge in real-time 

applications, especially if hardware resources are limited. Real-time implementation challenges 



1962 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 4, No. 4, 2024, pp. 1947-1966 

 

 

Mohanad N. Noaman (Nonlinear Model Predictive Control of a Magnetic Levitation System Using Artificial Protozoa 

Optimizer) 

 

include practical issues such as sensor noise, actuation delays, and physical constraints that could 

impact performance in an actual Maglev setup, requiring additional compensations or adaptations. 

Table 5.  IAE performance numerical values 

Controller 
𝑰𝑨𝑬 = ∫ |𝒆(𝒕)|𝒅𝒕

𝒕𝟐

𝒕𝟏

 

Sine Square Step 

Without perturbation 

NMPC 1.5943e-4 7.1501e-4 2.4153e-5 

LQR 3.1214e-3 4.3182e-2 1.5910e-4 

PID 1.7081e-3 2.2013e-3 6.4891e-3 

With (20%) perturbation 

NMPC 1.6831e-4 7.3413e-4 2.5913e-5 

LQR 4.5031e-1 4.8951e-1 5.9761e-1 

PID 5.8762e-3 7.4061e-3 2.6191e-3 

4. Conclusion 

In this paper, a novel integration of the Artificial Protozoa Optimizer (APO) algorithm with the 

Nonlinear Model Predictive Control (NMPC) framework was introduced for uncertainty, nonlinear, 

and unstable Maglev systems. A comparative study with LQR and PID has been conducted to show 

the superiority of the NMPC controller.  The APO was utilized to optimize the tuning parameters of 

the NMPC, LQR, and PID controllers by minimizing the cost function which resulted in minimal 

tracking error and improved the system's robustness. Three reference trajectories (step, sine, and 

square) were used to examine the controllers with and without Maglev parameters perturbation. The 

nonlinearity of the Maglev system has been solved using the IPORT solver within the CasADi toolbox 

in MATLAB. Aligned with these, two performance indices, including IAE and ISE, were introduced 

to evaluate the effectiveness of the NMPC, LQR, and PID controllers. MATLAB simulation results 

verified that the NMPC has shown superiority in tracking all three trajectories over other controllers. 

It also outperformed the other controllers even though there was a 20% change in the Maglev 

parameters which indicated a robust tracking performance. In addition, the superiority of the NMPC 

was supported by lower numerical values of both IAE and ISE for both aforementioned scenarios. As 

future work, the proposed NMPC controller can be implemented in real-time on a physical Maglev 

educational device presented in Fig. 1. In addition, an adaptive nonlinear model predictive controller 

can be used to address system nonlinearities and real-time changes in dynamics. By utilizing NMPC’s 

ability to handle complex nonlinearities and constraints in real time, this research opens up new 

possibilities for optimizing control in advanced engineering systems, significantly enhancing their 

safety, efficiency, and adaptability in real-world applications such as autonomous vehicles, robotics, 

and aerospace. 
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